基于氮氧自由基催化的醇选择性氧化反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文发展了基于氮氧自由基催化剂的醇的温和、高效、高选择性的催化氧化方法。
     研究发现在NaNO_2存在下,TEMPO/FeCl_3能够有效地催化氧气将醇定量地、高选择性地氧化为相应的醛或酮。在此基础上,系统地考察了溶剂、抗衡阴离子、温度、压力、催化剂各组分用量等因素对醇的催化氧化的影响。在优化条件下, TEMPO/FeCl_3/NaNO_2催化体系能够将含有C=C双键、N、S杂原子等官能团的醇定量地、高选择性地氧化为相应的醛或酮,并且能够高收率得到产品。采用EPR和计量化学等方法对反应机理进行了研究,初步确定了TEMPO/FeCl_3/NaNO_2催化体系中各个组分作用,并提出了可能的催化循环机理。
     研究发现,Cu和Cr离子可以替代TEMPO/FeCl_3/NaNO_2体系中的Fe离子,催化醇的氧气氧化。并在此基础上,系统地考察了溶剂、抗衡阴离子、温度、压力等因素对醇的催化氧化的影响。将TEMPO固载在PEG4600上,考察了PEG-TEMPO/FeCl_3/NaNO_2对醇的催化氧化效果,以及催化剂的循环使用情况。
     研究发现,在催化量的NHS存在下,乙酰碘苯能将芳香醇氧化为相应的醛或酮;在计量的NHS存在下,乙酰碘苯能将芳香醇和脂肪醇氧化为相应的活泼酯。在实验的基础上,提出了NHS催化乙酰碘苯选择性氧化醇的反应机理。
Simple, mild, efficient and high selective methods for nitroxyl radical-catalysed alcohol oxidation were developed in the paper.
     Initial experiment showed that TEMPO/FeCl_3 can catalyze the selective, quantitative aerobic oxidation of alcohols in the presence of NaNO_2. The effect of various conditions (such as solvent, counterion, temperature, oxygen pressure and so on) on the reaction was studied. Under optimum condition, TEMPO/FeCl_3/NaNO_2 catalysed the selective and mild aerobic oxidation of a broad range of alcohols, which may bear N and S heteroatoms or carbon–carbon double bond, to the corresponding aldehydes and ketones with high yield. On the base of experiments, the roles of TEMPO, NaNO_2 and Fe were confirmed and a plausible mechanism was proposed.
     Instead of Fe, TEMPO/Cu/NaNO_2 and TEMPO/Cr/NaNO_2 can also catalyze the selective aerobic oxidation of alcohols. Similarly, the effect of various conditions (such as solvent, counterion, temperature, oxygen pressure and so on) on the reaction was studied. PEG-supported TEMPO was successfully used as a catalyst for the oxidation of benzylic alcohol in the presence of TEMPO/FeCl_3. Forthermore, we investigated the recycleability of the catalyst.
     Alcohols were oxidized to corresponding aldehydes and ketones in the presence of catalytic amount of N–Hydroxysuccinimide with
引文
[1] Sheldon, R. A.; Kochi, J. K. Metal-catalyzed oxidation of organic compounds; Academic: New York, 1981; pp 350–382.
    [2] Hudlicky, M.;Oxidations in Organic Chemistry. Washington, DC: ACS, 1990.
    [3] Holum, J. R.; Study of the chromium(VI) oxide-pyridine complex, J. Org. Chem., 1961, 26, 4814–4816.
    [4] Lee, D. G.; Spitzer, U. A. Aqueous dichromate oxidation of primary alcohols, J. Org. Chem.; 1970, 35, 3589–3590.
    [5] Cainelli, G.; Cardillo, G. Chromium oxidants in organic chemistry; Springer: Berlin, 1984.
    [6] Ley, S. V.; Madin, A. Comprehensive organic synthesis; Trost, B. M., Fleming, I., Ley, S. V., Eds.; Pergamon: Oxford, 1991; Vol. 7, pp 251–289.
    [7] Muzart, J. Chromium-catalyzed oxidations in organic synthesis, Chem. Rev., 1992, 92, 113–140.
    [8] Regen, S. L.; Koteel, C. Activation through impregnation – permanganate-coated solid supports, J. Am. Chem. Soc., 1977, 99, 3837–3838.
    [9] Menger, F. M.; Lee, C. Synthetically useful oxidations at solid sodium permanganate surfaces, Tetrahedron Lett., 1981, 22, 1655–1656.
    [10] Berkowitz, L. M.; Rylander, P. N. Use of Ruthenium Tetroxide as a Multi-purpose Oxidant, J. Am. Chem. Soc., 1958, 80, 6682–6684.
    [11] Griffith, W. P. Ruthenium oxo complexes as organic oxidants, Chem. Soc. Rev., 1992, 21, 179–185.
    [12] Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. Preparation and use of tetra-n-butylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols, J. Chem. Soc., Chem. Commun., 1987, 1625–1627.
    [13] Ley, S. V.; Norman, J.; Griffith, W. P.; Marsden, S. P. Tetrapropylammoniumperruthenate, Pr4N+RuO4-, TPAP – a catalytic oxidant for organic synthesis, Synthesis, 1994, 639–666.
    [14] Lee, T. V. Comprehensive organic synthesis; Trost, B. M., Fleming, I., Ley, S. V., Eds.; Pergamon: Oxford, 1991; Vol. 7, pp 291–303.
    [15] Dess, D. B.; Martin, J. C. Readily accessible 12-I-5 oxidant for the conversion of primary and secondary alcohols to aldehydes and ketones, J. Org. Chem., 1983, 48, 4155–4156.
    [16] Sheldon, R. A.; Arend, I. W. C. E.; Dijksman, A. New developments in catalytic alcohol oxidations for fine chemicals synthesis, Catal. Today, 2000, 57, 157–166.
    [17] ZHAN, B. Z.; THOMPSON, A. Recent developments in the aerobic oxidation of alcohols, Tetrahedron, 2004, 60, 2917-2935.
    [18] Mallat, T.; Baiker, A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts, Chemical Reviews, 2004,104, 3037-3058.
    [19] Sharpless, K. B.; Akashi, K.; Oshima, K. Ruthenium catalyzed oxidation of alcohols to aldehydes and ketones by amine-N-oxides, Tetrahedron Lett., 1976, 2503-2506.
    [20] Matsumoto, M.; Ito, S. Ruthenium-catalysed oxidation of allyl alcohols by molecular oxygen, J. Chem. Soc., Chem. Commun., 1981, 907-908.
    [21] Matsumoto, M.; Ito, S. Ruthenium-catalyzed aerobic oxidation of pantoyl lactone to ketopantoyl lactone, Synth. Commun., 1984, 14, 697.
    [22] Tang, R.; Diamond, S. E.; Neary, N.; Mares, F. Homogeneous catalytic oxidation of amines and secondary alcohols by molecular oxygen, J. Chem. Soc., Chem. Commun., 1978, 562-562.
    [23] Hanyu, A.; Takezawa, E.; Sakaguchi, S.; Ishii, Y. Selective aerobic oxidation of primary alcohols catalyzed by a Ru(PPh3)3Cl-2/hydroquinone system, Tetrahedron Lett., 1998, 39, 5557-5560.
    [24] Miyata, A.; Murakami, M.; Irie, R.; Katsuki, T. Chemoselective aerobic oxidation of primary alcohols catalyzed by a ruthenium complex, TetrahedronLett ., 2001, 42, 7067-7070.
    [25] Jung, H. M.; Choi, J. H.; Lee, S. O.; Kim, Y. H.; Park, J. H.; Park, J. Facile Synthesis of ( 5-Ph4C4COH)(CO)2RuCl and Catalytic Oxidation of Alcohols with Chloroform, Organometallics, 2002 , 21, 5674-5677.
    [26] Dengel, A. C.; El-Hendawy, A. M.; Griffith, W. P.; O'mahoney, C. A.; Williams, D. J. Studies on transition-metal oxo and nitrido complexes. Part 11. New oxo complexes of ruthenium as aerobically assisted oxidants, and the X-ray crystal structure of [Ru2O6(py)4]·3.5H2O, J. Chem. Soc., Dalton Trans., 1990, 737-742.
    [27] Bilgrien, C.; Davis, S.; Drago, R S. The selective oxidation of primary alcohols to aldehydes by oxygen employing a trinuclear ruthenium carboxylate catalyst, J. Am. Chem. Soc., 1987, 109, 3786-3787.
    [28] Backvall, J. E.; Chowdhury, R. L.; Karlsson, U. Ruthenium-catalysed aerobic oxidation of alcohols via multistep electron transfer, J. Chem. Soc., Chem. Commun., 1991, 473-475.
    [29] Coleman, K. S.; Lorber, C. Y.; Osborn, J. A. Selective catalytic oxidation of alcohols by a ruthenium-copper bifunctional system using molecular oxygen , Eur. J. Inorg. Chem., 1998, 1673-1675.
    [30] Shapley, P. A.; Zhang, N.; Allen, J. L.; Pool, D. H.; Liang, H.-C. Selective Alcohol Oxidation with Molecular Oxygen Catalyzed by Os-Cr and Ru-Cr Complexes, J . Am. Chem. Soc., 2000, 122, 1079-1091.
    [31] Hinzen, B.; Lenz, R.; Ley, S. V. Polymer supported perruthenate (PSP): Clean oxidation of primary alcohols to carbonyl compounds using oxygen as cooxidant, Synthesis , 1998, 7 : 977-979.
    [32] Bleloch, A.; Johnson, B. F. G.; Ley, S. V.; Price, A. J.; Shephard, D. S.; Thomas, A. W. Modified mesoporous silicate MCM-41 materials: immobilised perruthenate—a new highly active heterogeneous oxidation catalyst for clean organic synthesis using molecular oxygen, Chem. Commun., 1999, 1907-1908.
    [33] Kaneda, K.; Yamashita, T.; Matsushita, T.; Ebitani, K. Heterogeneous Oxidation of Allylic and Benzylic Alcohols Catalyzed by Ru-Al-Mg Hydrotalcites in the Presence of Molecular Oxygen, J . Org. Chem., 1998, 63, 1750-1751.
    [34] Ji, H. B.; Ebitani, K.; Mizugaki, T.; Kaneda, K. Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature, Catalysis Communication, 2002, 3, 511-517.
    [35] Ji, H. B.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst, Tetrahedron Lett., 2002, 43, 7179-7183.
    [36] Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Creation of a Monomeric Ru Species on the Surface of Hydroxyapatite as an Efficient Heterogeneous Catalyst for Aerobic Alcohol Oxidation, J. Am. Chem. Soc., 2000, 122, 7144-7145.
    [37] Takezawa E , Sakaguchi S , Ishii Y. Oxidative Cleavage of vic-Diols to Aldehydes with Dioxygen Catalyzed by Ru(PPh3)3Cl2 on Active Carbon, Organic Letters, 1999, 1, 713-715.
    [38] Yamaguchi, K.; Mizuno, N. Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen, Angew. Chem. Int. Ed., 2002, 41, 4538-4542.
    [39] Zhan, B.-Z.; White, M. A.; Sham, T.-K.; Pincock, J. A.; Doucet, R. J.; Rao, K. V. R.; Robertson, K. N.; Cameron, T. S. Zeolite-Confined Nano-RuO2: A Green, Selective, and Efficient Catalyst for Aerobic Alcohol Oxidation, J. Am. Chem. Soc., 2003, 125, 2195–2199.
    [40] Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Ruttinger, R.; Kojer, H. Catalytic reactions of olefins on platinum metal compounds, Angew. Chem., 1959, 71, 176–182.
    [41] Lloyd, W. G. Homogeneous oxidations of alcohols with palladium (II) salts, J.Org. Chem., 1967, 32, 2816-2819.
    [42] Barak, G.; Dakka, J.; Sasson, Y. Selective oxidation of alcohols by a H2O2-RuCl3 system under phase-transfer conditions, J. Org. Chem., 1988, 53, 3553-3555.
    [43] Tamaru, Y.; Yamada, Y.; Inoue, K.; Yamamoto, Y.; Yoshida, Z. Oxidation of primary and secondary alcohols by the catalysis of palladium, J. Org. Chem., 1983, 48, 1286-1292.
    [44] Blackbum, T. F.; Schwartx, J. Homogeneous catalytic oxidation of secondary alcohols to ketones by molecular oxygen under mild conditions, J. Chem. Soc., Chem. Commun., 1977, 157-158.
    [45] Gomezbengoa, E.; Noheda, P.; Echavarren, A. M. Formation of alpha,beta-unsaturated carbonyl-compounds by palladium-catalyaed oxidation of allylic alcohols,Tetrahedron Lett., 1994, 35, 7097-7098.
    [46] Aitmohand, S.; Henin, F.; Muzart, J. Palladium(II)-mediated oxidation of alcohols using 1,2-dichloroethane as Pd(0) reoxidant, Tetrahedron Lett., 1995, 36, 2473-2475.
    [47] Peterson, K. P.; Larock, R. C. Palladium-Catalyzed Oxidation of Primary and Secondary Allylic and Benzylic Alcohols, J. Org. Chem., 1998, 63, 3185-3189.
    [48] Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. Pd(OAc)2-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen, Tetrahedron Lett., 1998, 9, 6011-6014.
    [49] Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. Palladium(II)-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones by Molecular Oxygen, J. Org. Chem., 1999, 64, 6750-6755.
    [50] Hallman, K.; Moberg, C. Palladium(II)-catalyzed oxidation of alcohols with air as reoxidant, Adv. Synth. Catal., 2001 , 343, 260-263.
    [51] Schultz, M. J.; Park, C. C.; Sigman, M S. A convenient palladium-catalyzed aerobic oxidation of alcohols at room temperature, Chem. Commun., 2002,3034-3035.
    [52] Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. A well-defined complex for palladium-catalyzed aerobic oxidation of alcohols: Design, synthesis, and mechanistic considerations, Angew. Chem. Int. Ed., 2003, 42, 3810-3813.
    [53] Kaneda, K.; Fujii, M.; Morioka, K. Highly Selective Oxidation of Allylic Alcohols toα, β-Unsaturated Aldehydes Using Pd Cluster Catalysts in the Presence of Molecular Oxygen, J. Org. Chem., 1996, 61, 4502-4503.
    [54] Steinhoff, B. A.; Guzei, I. A.; Stahl, S. S. Mechanistic Characterization of Aerobic Alcohol Oxidation Catalyzed by Pd(OAc)2/Pyridine Including Identification of the Catalyst Resting State and the Origin of Nonlinear [Catalyst] Dependence, J. Am. Chem. Soc., 2004, 126, 11268-11278.
    [55] Mueller, J. A.; Goller, C. P.; Sigman, M. S. Elucidating the Significance ofβ-Hydride Elimination and the Dynamic Role of Acid/Base Chemistry in a Palladium-Catalyzed Aerobic Oxidation of Alcohols, J. Am. Chem. Soc., 126, 9724-9734.
    [56] Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. M S. Palladium-Catalyzed Enantioselective Oxidations of Alcohols Using Molecular Oxygen, J. Am. Chem. Soc., 2001, 123, 7475-7476.
    [57] Mueller, J. A.; Jensen, D. R.; Sigman, M. S. Dual Role of (-)-Sparteine in the Palladium-Catalyzed Aerobic Oxidative Kinetic Resolution of Secondary Alcohols, J. Am. Chem. Soc., 2002, 124, 8202-8203.
    [58] Ferreira, E. M.; Stoltz, B. M. The Palladium-Catalyzed Oxidative Kinetic Resolution of Secondary Alcohols with Molecular Oxygen, J. Am. Chem. Soc., 2001, 123, 7725-7726.
    [59] Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. Palladium-Catalyzed Enantioselective Oxidation of Alcohols: A Dramatic Rate Acceleration by Cs2CO3/t-BuOH, Organic Letters, 2003, 5, 835-837.
    [60] Jensen, D. R.; Sigman, M. S. Palladium Catalysts for Aerobic Oxidative Kinetic Resolution of Secondary Alcohols Based on Mechanistic Insight, Org. Lett., 2003, 5, 63-65.
    [61] Mueller, J. A.; Sigman, M. S. Mechanistic Investigations of the Palladium-Catalyzed Aerobic Oxidative Kinetic Resolution of Secondary Alcohols Using (-)-Sparteine, J. Am. Chem. Soc., 2003, 125, 7005-7013.
    [62] Nishimura, T.; Kakiuchi, N.; Inoue, M.; Uemura, S. Palladium(II)-supported hydrotalcite as a catalyst for selective oxidation of alcohols using molecular oxygen, Chem. Commun., 2000, 1245-1246.
    [63] Kakiuchi, N.; Nishimura, T.; Inoue, M.; Uemura, S. Pd(II)-hydrotalcite-catalyzed selective oxidation of alcohols using molecular oxygen, Bull. Chem. Soc. Jpn., 2001, 74, 165-172.
    [64] Kakiuchi, N.; Maeda, Y.; Nishimura, T.; Uemura, S. Pd(II)-Hydrotalcite-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones Using Atmospheric Pressure of Air, J. Org. Chem., 2001, 66, 6620-6625.
    [65] Kanda, K.; Fujie, Y.; Ebitani, K. Catalysis of giant palladium cluster complexes. Highly selective oxidations of primary allylic alcohols to alpha,beta-unsaturated aldehydes in the presence of molecular oxygen, Tetrahedron Lett., 1997, 38, 9023-9026.
    [66] Ebitani, K.; Fujie, Y.; Kaneda, K. Immobilization of a Ligand-Preserved Giant Palladium Cluster on a Metal Oxide Surface and Its Nobel Heterogeneous Catalysis for Oxidation of Allylic Alcohols in the Presence of Molecular Oxygen, Langmuir, 1999, 15, 3557-3562.
    [67] Mori, K.; Yamaguchi, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Controlled Synthesis of Hydroxyapatite-Supported Palladium Complexes as Highly Efficient Heterogeneous Catalysts, J. Am. Chem. Soc., 2002, 124, 11572–11573.
    [68] Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K.Hydroxyapatite-Supported Palladium Nanoclusters: A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen, J. Am. Chem. Soc., 2004, 126, 10657-10666.
    [69] Whittaker, J. W. Metal ions in biological systems; Sigel, H., Sigel, A., Eds.; Marcel Dekker: New York, 1994; Vol. 30, pp 315–360.
    [70] Ito, N.; Phillips, S. E.; Yadav, K. D.; Knowles, P. F. Crystal-structure of a free-radical enzyme, galactose-oxidase, J. Mol. Biol. 1994, 238, 794–814.
    [71] Wang, Y.; DuBois, J. L.; Hedman, B.; Hodgson, K. O.; Stack, T. D. P. Catalytic galactose oxidase models: Biomimetic Cu(II)-phenoxyl-radical reactivity, Science 1998, 279, 537–540.
    [72] Marko, I.E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Copper-catalyzed oxidation of alcohols to aldehydes and ketones: An efficient, aerobic alternative, Science, 1996, 274, 2044-2046.
    [73] Marko, I.E.; Tsukazaki, M.; Giles, P. R.; Brown, S. M.; Urch, C. J. Anaerobic copper-catalyzed oxidation of alcohols to aldehydes and ketones, Angew. Chem. Int. Ed. Engl., 1997, 36, 2208-2210.
    [74] Marko, I. E.; Gautier, A.; Chelle-Regnaut, I.; Giles, P. R.; Tsukazaki, M.; Urch, C. J.; Brown, S. M. Efficient and practical catalytic oxidation of alcohols using molecular oxygen, J. Org. Chem., 1998, 63, 7576-7577.
    [75] Marko, I. E.; Giles, P. R.; Tsukazaki, M.; Chelle-Regnaut, I.; Gautier, A.; Brown, S. M.; Urch, C. J. Efficient, ecologically benign, aerobic oxidation of alcohols, J. Org. Chem., 1999, 64, 2433-2439.
    [76] Marko, I. E.; Gautier, A.; Mutonkole, J. L.; Dumeunier, R.; Ates, A.; Urch, C. J.; Brown, S. M. Neutral, non-racemising, catalytic aerobic oxidation of alcohols, J. Orgmet. Chem., 2001, 624, 344-347.
    [77] Marko, I. E.; Gautier, A.; Dumeunier, R.; Doda, K,; Philippart, F.; Brown, S. M.; Urch, C. J. Efficient, Copper-Catalyzed, Aerobic Oxidation of Primary Alcohols, Angew. Chem. Int . Ed. Engl., 2004, 43, 1588-1591.
    [78] Coleman, K. S.; Lorber, C. Y.; Osborn, J. A. Selective catalytic oxidation ofalcohols by a ruthenium-copper bifunctional system using molecular oxygen, Eur. J. Inorg. Chem., 1998, 1673-1675.
    [79] Coleman, K. S.; Coppe, M.; Thomas, C.; Osborn, J. A. Catalytic oxidation of alcohols into aldehydes and ketones by an osmium-copper bifunctional system using molecular oxygen, Tetrahedron Lett., 1999, 40, 3723-3726.
    [80] Muldoon, J.; Brown, S. N. Practical Os/Cu-cocatalyzed air oxidation of allyl and benzyl alcohols at room temperature and atmospheric pressure, ORGANIC LETTERS, 2002, 4, 1043-1045.
    [81] Mallat, T.; Baiker, A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts, Chemical Reviews, 2004,104, 3037-3058.
    [82] Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-Specific Catalytic Activity of Polymer-Stabilized Gold Nanoclusters for Aerobic Alcohol Oxidation in Water, J. Am. Chem. Soc., 2005, 127, 9374-9375.
    [83] Guan, B.; Xing, D.; Cai, G.; Wan, X.; Yu, N.; Fang, Z.; Yang, L.; Shi, Z. Highly Selective Aerobic Oxidation of Alcohol Catalyzed by a Gold(I) Complex with an Anionic Ligand, J. Am. Chem. Soc., 2005, 127, 18004-18005.
    [84] Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona-Espriu, B.; Carley, A. F.; Herzing, A. A.; Watanabe, M.; Kiely, C. J.; Knight, D. W.; Hutchings, G. J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2 catalysts, SCIENCE, 2006, 311, 362-365.
    [85] Dobler, C.; Mehltretter, G. M.; Sundermeier, U.; Eckert, M.; Militzer, H. C.; Beller, M. Selective oxidation of alcohols in the presence of an Os/O2 system, Tetrah dron Lett., 2001, 42, 8447-8449.
    [86] Lorber, C. Y.; Smidt, S. P.; Osborn, J. A. Selective and environmentally benign aerobic catalytic oxidation of alcohols by a molybdenum-copper system, Eur. J. Inorg. Chem. , 2000,655-658.
    [87] Maeda, Y.; Kakiuchi, N.; Matsumura, S.; Nishimura, T.; Kawamura, T.; Uemura, S. Oxovanadium Complex-Catalyzed Aerobic Oxidation ofPropargylic Alcohols, J. Org. Chem., 2002, 67, 6718-6724.
    [88] Radosevich, A. T.; Musich, C.; Toste, F. D. Vanadium-Catalyzed Asymmetric Oxidation of -Hydroxy Esters Using Molecular Oxygen as Stoichiometric Oxidant, J. Am. Chem. Soc., 2005, 127, 1090-1091.
    [89] Sheldon, R. A.; Arends, I. W. C. E Organocatalytic oxidations mediated by nitroxyl radicals, Adv. Synth. Catal., 2004, 346, 1051-1071.
    [90] deNooy, A. E. J.; Besemer, A. C.; vanBekkum, H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols, Synthesis, 1996, 1153-1174.
    [91] Rozantsev, E. G.; Sholle, V. D. Free nitroxyl radical, 1971, 190 and 401.
    [92] Anelli, P. L.; Biffi, C.; Montanari, F.; Quici, S Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions, J. Org. Chem.,1987, 52, 2559-2562.
    [93] Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion, J. Am. Chem. Soc., 1984, 106, 3374-3376.
    [94] Dijksman, A.; Arends, I. W. C. E.; Sheldon, R. A. Cu(II)-nitroxyl radicals as catalytic galactose oxidase mimics, Org. Biomol. Chem. 2003, 1, 3232-3237.
    [95] Betzemeier, B.; Cavazzini, M.; Quici, S.; Knochel, P. Copper-catalyzed aerobic oxidation of alcohols under fluorous biphasic conditions, Tetrahedron Lett., 2000, 41, 4343-4346.
    [96] Ragagnin, G.; Betzemeier, B.; Quici, S.; Knochel, P. Copper-catalysed aerobic oxidation of alcohols using fluorous biphasic catalysis, Tetrahedron, 2002, 58, 3985-3991.
    [97] Ansari, I. A.; Gree, R. TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF6], Organic Letters , 2002, 4, 1507-1509.
    [98] Jiang, N.; Ragauskas, A. J. Copper(II)-Catalyzed Aerobic Oxidation ofPrimary Alcohols to Aldehydes in Ionic Liquid [bmpy]PF6, Org. Lett., 2005, 7, 3689-3692.
    [99] Gamez, P.; Arends, I. W. C. E.; Reedijk, J.; Sheldon, R. A. Copper(II)-catalysed aerobic oxidation of primary alcohols to aldehydes, CHEM. COMMun. 2003, 2414-2415.
    [100] Dijksman, A.; Arends, I. W. C. E.; Sheldon, R. A. Efficient ruthenium-TEMPO-catalysed aerobic oxidation of aliphatic alcohols into aldehydes and ketones, Chem. Commun., 1999, 1591-1592.
    [101] Dijksman, A.; Marino-Gonzalez, A.; Mairata i Payeras, A.; Arends, I. W. C. E.; Sheldon, R. A. Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones Using Ruthenium/TEMPO as the Catalytic System, J. Am. Chem. Soc., 2001, 123, 6826-6833.
    [102] Cecchetto, A.; Fontana, F.; Minisci, F.; Recupero, F. Efficient Mn-Cu and Mn-Co-TEMPO-catalysed oxidation of alcohols into aldehydes and ketones by oxygen under mild conditions, Tetrahedron Lett., 2001, 42, 6651–6653.
    [103] Khenkin, A. M.; Neumann, R. Oxygen Transfer from Sulfoxides: Selective Oxidation of Alcohols Catalyzed by Polyoxomolybdates, J. Org. Chem., 2002, 67, 7075–7079.
    [104] Fabbrini, M.; Galli, C.; Gentili, P.; Macchitella, D. An oxidation of alcohols by oxygen with the enzyme laccase and mediation by TEMPO, Tetrahedron Lett., 2001, 42, 7551-7553.
    [105] Sheldon, R. A.; Arends, I. W. C. E Organocatalytic oxidations mediated by nitroxyl radicals, Adv. Synth. Catal., 2004, 346, 1051-1071.
    [106] Ishii, Y.; Sakaguchi, S.; Iwahama, T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions, Adv. Synth. Catal., 2001, 343, 393-427.
    [107] Ishii, Y.; Nakayama, K.; Takeno, M.; Sakaguchi, S.; Iwahama, T.; Nishiyama, Y. Novel Catalysis by N-Hydroxyphthalimide in the Oxidation of Organic Substrates by Molecular Oxygen, J. Org. Chem. 1995, 60, 3934- 3935.
    [108] Ishii, Y.; Sakaguchi, S. A new strategy for alkane oxidation with O2 using N-hydroxyphthalimide (NHPI) as a radical catalyst, Catal. Surveys Japan, 1999, 3, 27-35.
    [109] Iwahama T, Sakaguchi S. Aerobic oxidation of alcohols to carbonyl-compounds catalyzed by N-hydroxyphthalimide (NHPI) combined with Co(acac)3, Tetrahedron Lett., 1995, 36, 6923-6926.
    [110] Iwahama, T.; Yoshino, Y. Efficient Oxidation of Alcohols to Carbonyl Compounds with Molecular Oxygen Catalyzed by N-Hydroxyphthalimide Combined with a Co Species, J. Org. Chem., 2000, 65, 6502-6507.
    [111] Sharma, V. B.; Jain, S. L.; Sain, B. Cobalt phthalocyanine catalyzed aerobic oxidation of secondary alcohols: an efficient and simple synthesis of ketones, Tetrahedron Lett., 2003, 44, 383-386.
    [112] Kervinen, K.; Lahtinen, P. The effect of reaction conditions on the oxidation of veratryl alcohol catalyzed by cobalt salen-complexes, Catalysis Today, 2002, 75, 183-188.
    [113] Minisci, F.; Punta, C.; Recupero, F.; Fontana, F.; Pedulli, G. F. A new, highly selective synthesis of aromatic aldehydes by aerobic free-radical oxidation of benzylic alcohols, catalysed by n-hydroxyphthalimide under mild conditions. Polar and enthalpic effects, Chem. Commun., 2002, 688–689.
    [114] Figiel, P. J.; Sobczak, J. M.; Ziolkowski, J. J. New efficient aerobic oxidation of some alcohols with dioxygen catalysed by N-hydroxyphtalimide with vanadium co-catalysts, Chem. Commun., 2004 , 244-245.
    [115] Liu, R.; Liang, X.; Dong, C.; Hu, X. Transition-Metal-Free: A Highly Efficient Catalytic Aerobic Alcohol Oxidation Process, J. Am. Chem. Soc., 2004, 126, 4112-4113.
    [116] Liu, R.; Dong, C.; Liang, X.; Wang, X.; Hu, X. Highly efficient catalytic aerobic oxidations of benzylic alcohols in water, J. Org. Chem., 2005, 70, 729-731.
    [117] Mu, R.; Liu, ZQ.; Yang, Z.; Liu, Z.; Wu, L.; Liu, Z. An efficient catalyticaerobic oxidation of alcohols in water using hypervalent iodine(V), Adv. Synth. Catal., 2005,347, 1333-1336.
    [118] Herrerias, C. I.; Zhang, T. Y.; Li, C. J. Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions, Tetrahedron Lett., 2006, 47, 13-17.
    [1] Larock, R. C. Comprehensive organic transformations; VCH: New York, 1999; pp 1234–1250.
    [2] Trost, B. M.; Fleming, I.; Ley, S. V. Comprehensive organic synthesis; Pergamon: Oxford, 1991; Vol. 7.
    [3] Holum, J. R. Study of the chromium(VI) oxide-pyridine complex, J. Org. Chem., 1961, 26, 4814–4816.
    [4] Lee, D. G.; Spitzer, U. A. Aqueous dichromate oxidation of primary alcohols, J. Org. Chem., 1970, 35, 3589–3590.
    [5] Cainelli, G.; Cardillo, G. Chromium oxidants in organic chemistry; Springer: Berlin, 1984.
    [6] Ley, S. V.; Madin, A. Comprehensive organic synthesis; Trost, B. M., Fleming, I., Ley, S. V., Eds.; Pergamon: Oxford, 1991; Vol. 7, pp 251–289.
    [7] Muzart, J. Chromium-catalyzed oxidations in organic synthesis, Chem. Rev., 1992, 92, 113–140.
    [8] Regen, S. L.; Koteel, C. Activation through impregnation – permanganate-coated solid supports, J. Am. Chem. Soc., 1977, 99, 3837–3838.
    [9] Menger, F. M.; Lee, C. Synthetically useful oxidations at solid sodium permanganate surfaces, Tetrahedron Lett., 1981, 22, 1655–1656.
    [10] Sheldon, R. A.; Arends, I. W. C.E.; Dijksman, A. New developments in catalytic alcohol oxidations for fine chemicals synthesis, Catal. Today, 2000, 57, 157-166.
    [11] Zhan, B-Z, Thompson, A. Recent developments in the aerobic oxidation of alcohols, Tetrahedron, 2004, 60, 2917–2935.
    [12] Ishii, Y.; Sakaguchi, S.; Iwahama, T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions, Adv. Synth. Catal., 2001, 343, 393-427.
    [13] Sheldon, R. A.; Arends, I. W. C.E. Organocatalytic oxidations mediated by nitroxyl radicals, Adv. Synth. Catal., 2004, 346, 1051-1071.
    [14] deNooy, A. E. J; Besemer, A. C., vanBekkum, H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols, Synthesis, 1996, 1153-1174.
    [15] Anelli,P. L.; Biffi, C.; Montanari, F.; Quici, S. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions, J. Org. Chem., 1987, 52, 2559-2562.
    [16] Zhao, M.; Li, J.; Mano, E.; Song, Z.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. Oxidation of Primary Alcohols to Carboxylic Acids with Sodium Chlorite Catalyzed by TEMPO and Bleach, J. Org. Chem., 1999, 64, 2564-2566.
    [17] De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. A Versatile and Highly Selective Hypervalent Iodine (III)/2,2,6,6-Tetramethyl-1-piperidinyloxyl-Mediated Oxidation of Alcohols to Carbonyl Compounds, J. Org. Chem., 1997, 62, 6974-6977.
    [18] Bolm, C.; Magnus, A. S.; Hildebrand, J. P. Catalytic Synthesis of Aldehydes and Ketones under Mild Conditions Using TEMPO/Oxone, Org. Lett., 2000, 2, 1173-1175.
    [19] Rychnovsky, S. D.; Vaidyanathan, R. TEMPO-Catalyzed Oxidations of Alcohols Using m-CPBA: The Role of Halide Ions, J. Org. Chem., 1999, 64, 310-312.
    [20] Einhorn, J.; Einhorn, C.; Ratajczak, F.; Pierre, J.-L. Efficient and Highly Selective Oxidation of Primary Alcohols to Aldehydes by N-Chlorosuccinimide Mediated by Oxoammonium Salts, J. Org. Chem., 1996, 61, 7452-7454.
    [21] De Luca, L.; Giacomelli, G.; Porcheddu, A. A Very Mild and Chemoselective Oxidation of Alcohols to Carbonyl Compounds, Org. Lett., 2001, 3,3041-3043.
    [22] Miller, R. A.; Hoerrner, R. S. Iodine as a Chemoselective Reoxidant of TEMPO: Application to the Oxidation of Alcohols to Aldehydes and Ketones, Org. Lett., 2003, 5, 285-287.
    [23] Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion, J. Am. Chem. Soc., 1984, 106, 3374-3376.
    [24] Dijksman, A.; Marino-Gonzalez, A.; Mairata i Payeras, A.; Arends, I. W. C. E.; Sheldon, R. A. Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones Using Ruthenium/TEMPO as the Catalytic System, J. Am. Chem. Soc., 2001, 123, 6826-6833.
    [25] Cecchetto, A.; Fontana, F.; Minisci, F.; Recupero, F. Efficient Mn-Cu and Mn-Co-TEMPO-catalysed oxidation of alcohols into aldehydes and ketones by oxygen under mild conditions, Tetrahedron Lett., 2001, 42, 6651–6653.
    [26] Khenkin, A. M.; Neumann, R. Oxygen Transfer from Sulfoxides: Selective Oxidation of Alcohols Catalyzed by Polyoxomolybdates, J. Org. Chem., 2002, 67, 7075–7079.
    [27] Cotton, F. A.; Wilkinson, G.; Manfred, B.; Carlos, M. Advanced Inorganic Chemistry 6th edn; Wiley: New York, 1998; p.796-808.
    [28] Takai, T.; Hata, E.; Yamada, T.; Mukaiyama, T. Aerobic epoxidation of olefinic compounds catalyzed by tris(1,3-diketonato)iron(III), Bull. Chem. Soc. Jpn., 1991, 64, 2513-2518.
    [29] Mastrorilli, P.; Nobile, C. F. Catalytic activity of a polymerizable tris(beta-ketoesterate)iron(III) complex towards the oxidation of organic substrates, Tetrahedron Lett., 1994, 35, 4193-4196.
    [30] Martin, S. E.; Rossi, L. I. An efficient and selective aerobic oxidation of sulfides to sulfoxides catalyzed by Fe(NO3)3-FeBr3, Tetrahedron lett., 2001, 42, 7147-7151.
    [31] Martin, S. E.; Suarez, D. F. Catalytic aerobic oxidation of alcohols byFe(NO3)3-FeBr3, Tetrahedron lett., 2002, 43, 4475-4479.
    [32] Wasser, I. M.; Vries, S. D.; Mo?nne-Loccoz, P; Schr?der, I.; Karlin, K. D. Nitric Oxide in Biological Denitrification: Fe/Cu Metalloenzyme and Metal Complex NOx Redox Chemistry, Chem. Rev., 2002, 102, 1201-1234.
    [33] Liu, R.; Liang, X.; Dong, C.; Hu, X. Transition-Metal-Free: A Highly Efficient Catalytic Aerobic Alcohol Oxidation Process, J. Am. Chem. Soc., 2004, 126, 4112-4113.
    [34] Xu, F.; Kulys, J. J.; Duke, K.; Li, K.; Krikstopaitis, K.; Deussen, H. J. W.; Abbate, E.; Galinyte, V.; Schneider, P. Redox chemistry in laccase-catalyzed oxidation of N-hydroxy compounds, Appl. Environ. Microbiol. 2000, 66, 2052-2056.
    [35] Yamaguchi, K.; Mizuno, N. Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen, Angew. Chem. Int. Ed., 2002, 41, 4538-4542.
    [36] Gamez, P.; Arends, I. W. C. E.; Sheldon, R. A.; Reedijk, J. Room temperature aerobic copper-catalysed selective oxidation of primary alcohols to aldehydes, Adv. Synth. Catal., 2004, 346, 805-811.
    [1] Sheldon, R. A.; Arends, I. W. C.E. Organocatalytic oxidations mediated by nitroxyl radicals, Adv. Synth. Catal., 2004, 346, 1051-1071.
    [2] Ishii, Y.; Sakaguchi, S.; Iwahama, T. Innovation of hydrocarbon oxidation with molecular oxygen and related reactions, Adv. Synth. Catal., 2001, 343, 393-427.
    [3] deNooy, A. E. J; Besemer, A. C., vanBekkum, H. On the use of stable organic nitroxyl radicals for the oxidation of primary and secondary alcohols, Synthesis, 1996, 1153-1174.
    [4] Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A.; Chou, C. S. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion, J. Am. Chem. Soc., 1984, 106, 3374-3376.
    [5] Betzemeier, B.; Cavazzini, M.; Quici, S.; Knochel, P. Copper-catalyzed aerobic oxidation of alcohols under fluorous biphasic conditions, Tetrahedron Lett., 2000, 41, 4343-4346.
    [6] Ragagnin, G.; Betzemeier, B.; Quici, S.; Knochel, P. Copper-catalysed aerobic oxidation of alcohols using fluorous biphasic catalysis, Tetrahedron, 2001, 58, 3985-3991.
    [7] Gamez, P.; Arends, I. W. C. E.; Reedijk, J.; Sheldon, R. A. Copper(II)-catalysed aerobic oxidation of primary alcohols to aldehydes, Chem. Commun. 2003, 2414-2415.
    [8] Ansari, I. A.; Gree, R. TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes and Ketones in Ionic Liquid [bmim][PF6], Organic Letters , 2002, 4, 1507-1509.
    [9] Jiang, N.; Ragauskas, A. J. Copper(II)-Catalyzed Aerobic Oxidation of Primary Alcohols to Aldehydes in Ionic Liquid [bmpy]PF6, Org. Lett., 2005, 7, 3689-3692.
    [10] Dijksman, A.; Marino-Gonzalez, A.; Mairata i Payeras, A.; Arends, I. W. C. E.;Sheldon, R. A. Efficient and Selective Aerobic Oxidation of Alcohols into Aldehydes and Ketones Using Ruthenium/TEMPO as the Catalytic System, J. Am. Chem. Soc., 2001, 123, 6826-6833.
    [11] Cecchetto, A.; Fontana, F.; Minisci, F.; Recupero, F. Efficient Mn-Cu and Mn-Co-TEMPO-catalysed oxidation of alcohols into aldehydes and ketones by oxygen under mild conditions, Tetrahedron Lett., 2001, 42, 6651–6653.
    [12] Khenkin, A. M.; Neumann, R. Oxygen Transfer from Sulfoxides: Selective Oxidation of Alcohols Catalyzed by Polyoxomolybdates, J. Org. Chem., 2002, 67, 7075–7079.
    [13] Pozzi, G.; Cavazzini, M.; Quici, S.; Benaglia, M.; Dell'Anna, G. Poly(ethylene glycol)-supported TEMPO: An efficient, recoverable metal-free catalyst for the selective oxidation of alcohols, 2004, 6, 441-443.
    [14] Gilhespy, M.; Lok, M.; Baucherel, X. Polymer-supported nitroxyl catalysts for selective oxidation of alcohols, Green Chemistry, 2004, 6,310-312.
    [15] But, T. Y. S.; Tashino, Y.; Togo, H.; Toy, P. H. A multipolymer system for organocatalytic alcohol oxidation, Org. Bio. Chem., 2005, 3, 970-971.
    [16] Gilhespy, M.; Lok, M.; Baucherel, X. Polymer-supported nitroxyl radical catalyst for selective aerobic oxidation of primary alcohols to aldehydes, Chem. Commum., 2005, 1085-1086.
    [17] Saltzman, H.; Sharefkin1, J. G. Iodosobenzene diacetate, Org. Synth., 1963, 43, 62.
    [18] Saltzman, H.; Sharefkin1, J. G. Iodoxybenzene, Org. Synth., 1963, 43, 65.
    [19] Boeckman, R. K.; Shao, P-C; Mullins, J. J. The Dess-Martin Periodinane: 1,1,1,-triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one, Org. Syn., 1997, 141.
    [20] US005416215
    [1] Larock R. C., In Comprehesive Organic Transformations, 2nd ed.; Wiley-VCH: New York, 1999, 1197.
    [2] Zhdankin, V. V.; Stang, P. J. Recent developments in the chemistry of polyvalent iodine compounds, Chem. Rev., 2002, 102, 2523-2584.
    [3] Tohma, H; Kita, Y. Hypervalent iodine reagents for the oxidation of alcohols and their application to complex molecule synthesis , Adv. Synth. Catal., 2004, 111-124 .
    [4] Wirth, T. Hypervalent iodine chemistry in synthesis: Scope and new directions, Angew. Chem. Int. Ed., 2005, 44, 3656-3665.
    [5] Dess, D. B.; Martin, J. C. Readily Accessible 12-I-5 Oxidant for the Conversion of Primary and Secondary Alcohols to Aldehydes and Ketones, J. Org. Chem., 1983, 48, 4155-4166.
    [6] Dess, D. B.; Martin, J. C. A Useful 12-I-5 Triacetoxyperiodinane (the Dess-Martin Periodinane) For the Selective Oxidation of Primary or Secondary Alcohols and a Variety of Related 12-I-5 Species , J. Am. Chem. Soc., 1991, 113, 7277-7287.
    [7] Meyer, S. D.; Schreiber, S. L. Acceleration of the Dess-Martin Oxidation by Water, J. Org. Chem., 1994, 59, 7549-7552.
    [8] Barrett, A. G. M.; Hamprecht, D.; Ohkubo, Dess-Martin periodinane oxidation of alcohols in the presence of stabilized phosphorus ylides: A convenient method for the homologation of alcohols via unstable aldehydes, M. J. Org. Chem. 1997, 62, 9376-9378.
    [9] Myers, A. G.; Zhong, B.; Movassaghi, M.; Kung, D. W.; Lanman, B. A.; Kwon, S. Synthesis of highly epimerizable N-protected alpha-amino aldehydes of high enantiomeric excess, Tetrahedron Lett., 2000, 41, 1359-1362.
    [10] Lena, J. I. C.; Ignacio, J.; Hernando, M.; Ferreira, M. R. R.; Altinel, E.;Arseniyadis, S. Tandem glycol cleavage-intramolecular [4+2] cycloadditions mediated by Dess-Martin periodinane, Synlett, 2001, 597-600.
    [11] Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. Oxidation of Alcohols with o-Iodoxybenzoic Acid (IBX) in DMSO - a New Insight into an Old Hypervalent Iodine Reagent, J. Org. Chem,. 1995, 60, 7272-7676.
    [12] Corey, E. J.; Palani, A. A method for the selective oxidation of 1,4-diols to lactols, Tetrahedron Lett., 1995, 36, 3485-3488.
    [13] Crich, D.; Mo, X. S. One pot selective 5'-oxidation/olefination of 2 '-deoxynucleosides, Synlett, 1999, 67-68.
    [14] Nicolaou, K. C.; Montagnon, T.; Baran, P. S.; Zhong, Y. L. Iodine(V) reagents in organic synthesis. Part 4. o-iodoxybenzoic acid as a chemospecific tool for single electron transfer-based oxidation processes, J. Am. Chem. Soc., 2002, 124, 2245-2258.
    [15] Mazitschek, R. ; Mulbaier, M. ; Giannis, A. IBX-mediated oxidation of primary alcohols and aldehydes to form carboxylic acids, Angew. Chem. Int. Ed., 2002, 41, 4059-4061.
    [16] More, J. D.; Finney, N. S. A simple and advantageous protocol for the oxidation of alcohols with, o-iodoxybenzoic acid (IBX), Org. Lett., 2002, 4, 3001-3003.
    [17] Ozanne, A; Pouysegu, L.; Depernet, D.; Francois, B.; Quideau, S. A stabilized formulation of IBX (SIBX) for safe oxidation reactions including a new oxidative demethylation of phenolic methyl aryl ethers, Org. Lett., 2003, 5, 2903-2096.
    [18] Schulze, A.; Giannis, A. IBX-mediated conversion of primary alcohols and aldehydes to N-hydroxysuccinimide esters, Adv. Synth. Catal., 2004, 346, 252-256.
    [19] Varvoglis, A. Hypervalent Iodine in Organic Synthesis; Academic Press: London, 1997, 16-17.
    [20] Muller, P.; Godoy, J. Catalyzed oxidation of alcohols and aldehydes withiodosylbenzene, Tetrahedron Lett., 1981, 22, 2361-2164.
    [21] Demico, A. D.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. A versatile and highly selective hypervalent iodine (III)/2,2,6,6-tetramethyl-1-piperidinyloxyl-mediated oxidation of alcohols to carbonyl compounds, J. Org. Chem., 1997, 62, 6974-6977.
    [22] Dondoni, A.; Massi, A.; Minghini, E.; Sabbatini, S.; Bertolasi, V. Model studies toward the synthesis of dihydropyrimidinyl and pyridyl alpha-amino acids via three-component biginelli and hantzsch cyclocondensations, J. org. Chem., 2003, 68,6172-6183.
    [23] Adam, W.; Hajra, S.; Herderich, M.; Saha-Moller, C. R. A highly chemoselective oxidation of alcohols to carbonyl products with iodosobenzene diacetate mediated by chromium(III)(salen) complexes: Synthetic and mechanistic aspects, Org. Lett. 2000, 2, 2773.
    [24] Karade, N. N.; Tiwari, G. B.; Huple, D. B. Molecular iodine as efficient co-catalyst for facile oxidation of alcohols with hypervalent(III) iodine , Synlett, 2005, 2039-2042.
    [25] Tohma, H.; Takizawa, S.; Maegawa, T.; Kita, Y. Facile and clean oxidation of alcohols in water using hypervalent iodine(III) reagents, Angew. Chem. Int. Ed. 2000, 39, 1306-1308.
    [26] Sun, W.; Wang, H.; Xia, C.; Li J.; Zhao P. Chiral-Mn(salen)-complex-catalyzed kinetic resolution of secondary alcohols in water, Angew. Chem. Int. Ed., 2003, 42, 1042-1044.
    [27] Mu, R.; Liu, Z.; Yang,, Z.; Liu, Z.; Wu, L.; Liu, Z An efficient catalytic aerobic oxidation of alcohols in water using hypervalent iodine(V), Adv. Synth. Catal., 2005, 347, 1333-1336.
    [28] Herrerias, C.-I.; Zhang, T.-Y.; Li C.-J. Catalytic oxidations of alcohols to carbonyl compounds by oxygen under solvent-free and transition-metal-free conditions, Tetrahedron Lett., 2006, 47, 13-17.
    [29] Fabbrini, M.; Galli, C.; Gentili, P. Comparing the catalytic efficiency of some mediators of laccase, J. Mol. Catal. B: Enzymatic,2002, 16, 231-240.
    [30] Saltzman, H.; Sharefkin1, J. G. Organic Syntheses, 1963, 43, p.62.
    [31] Saltzman, H.; Sharefkin1, J. G. Organic Syntheses, 1963, 43, p.60.
    [32] Schulze,A.; Giannis, A. IBX-mediated conversion of primary alcohols and aldehydes to N-hydroxysuccinimide esters, Adv. Synth. Cataly., 2004, 346, 252-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700