小麦田日本看麦娘对精噁唑禾草灵和甲基二磺隆的抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化学除草剂的大面积使用,农田杂草抗药性的发生越来越严重。日本看麦娘(Alopecurus japonicus)是影响小麦和油料作物产量的重要恶性禾本科杂草之一。精噁唑禾草灵是用于防除麦田禾本科杂草的常用ACCase抑制剂类除草剂,在我国小麦主产区连续使用十几年以后,部分省市在推荐剂量(41.4g a.i. ha-1)下,已不能有效地防除麦田日本看麦娘,生产中主要以甲基二磺隆等ALS抑制剂类除草剂作为替代产品,但部分地区也出现了防治失败的情况,日本看麦娘对ACCase和ALS抑制剂类除草剂表现出多抗性,这已成为生产中亟待解决的重要问题。为了明确麦田杂草日本看麦娘对精噁唑禾草灵和甲基二磺隆的抗性水平及其抗性机理,延缓抗药性的发生,指导农民更加科学合理地使用除草剂,进而为麦田日本看麦娘等抗性杂草的综合治理提供理论依据,本研究以采自安徽、江苏、山东、河南、湖北等5省的48个日本看麦娘生物型为试材,研究了日本看麦娘对精噁唑禾草灵和甲基二磺隆的抗性机理,主要研究结果如下:
     (1)整株水平测定法测定了不同日本看麦娘生物型对精噁唑禾草灵的抗性水平,结果表明,安徽、江苏、山东、河南、湖北等5个省份48个日本看麦娘生物型对精噁唑禾草灵的抗性水平差异较大,其中24个生物型(AH-7、AH-21、HN-2、AH-8、JS-4、JS-7、SD-5等)对精噁唑禾草灵敏感;9个生物型(AH-3、AH-11、AH-12、AH-13、JS-1、JS-2、JS-6、SD-4、HN-1)有较低水平的抗药性,抗性倍数在2-10之间;15个生物型对其产生了高水平的抗性,其中采自安徽省天长市龙集乡麦田的日本看麦娘生物型(AH-1)的抗性水平最高,抗性倍数达176.46。
     整株水平测定法测定了48个日本看麦娘生物型对甲基二磺隆的抗性水平,结果表明,JS-5、AH-15、AH-16、AH-17、AH-23等5个生物型对甲基二磺隆表现出高水平的抗性,其余生物型均较敏感,采自江苏省丹阳市吕城镇虎家村麦田的日本看麦娘生物型(JS-5)对甲基二磺隆的抗性水平最高,抗性倍数为169.25。
     在测定的48个日本看麦娘生物型中,AH-15、AH-16、AH-17和AH-23等4个生物型对精噁唑禾草灵和甲基二磺隆产生了高水平的多抗性,其中AH-15生物型对精噁唑禾草灵和甲基二磺隆的抗性倍数分别为93.34和71.53,AH-16生物型对精噁唑禾草灵和甲基二磺隆的抗性倍数分别为76.77和68.64,AH-17生物型对精噁唑禾草灵和甲基二磺隆的抗性倍数分别为108.02和45.08,AH-23生物型对精噁唑禾草灵和甲基二磺隆的抗性倍数分别为69.53和10.20。
     (2)选取抗性水平最高的AH-1抗性生物型、AH-7敏感生物型作为研究对象,测定了日本看麦娘抗性、敏感生物型靶标酶ACCase对精噁唑禾草灵的敏感性,结果表明,抗性生物型ACCase受精噁唑禾草灵的抑制程度明显弱于敏感生物型,精噁唑禾草灵对日本看麦娘抗性和敏感生物型ACCase的抑制中浓度I50值分别为107.45μmol L-1和23.57μmol L-1,酶活力倍数为4.56倍。
     (3)对15个高抗或中等抗性生物型、3个敏感生物型的质体型ACCase基因CT区域进行扩增、测序和比对,扩增的基因序列包含了已报道的ACCase基因CT区域的8个突变位点,序列长度为1437bp,编码479个氨基酸。
     核苷酸序列分析结果表明, AH-1,AH-15,AH-16,AH-17,AH-18,AH-24和JS-12等7个抗性生物型的ACCase1781位氨基酸由异亮氨酸(ATA)突变为亮氨酸(TTA),AH-19和SD-6生物型2027位氨基酸由色氨酸(TGG)突变为半胱氨酸(TGC/TGT);AH-25,JS-11生物型2078位氨基酸由天冬氨酸(GAT)突变为甘氨酸(GGT);JS-10生物型2041位氨基酸由异亮氨酸(ATT)突变为天冬酰胺(AAT);HB-1、HN-3生物型ACCase未发生突变;在所有敏感生物型中,1781位为异亮氨酸,2027位为色氨酸,2078位为天冬氨酸,2041位为异亮氨酸。
     (4)选取高抗生物型AH-1、中等抗性生物型HB-1、HN-3,敏感生物型AH-7作为研究对象,测定4个日本看麦娘生物型在喷施精噁唑禾草灵41.4g a.i. ha-1后1-10dGSTs的活性变化趋势,结果表明在施药后1-10d,与敏感生物型相比,高抗生物型AH-1体内GSTs活性变化无明显差异;而HB-1、HN-3生物型GSTs活性则显著增加。
     (5)JS-5生物型ALS的离体活性测定结果表明,抗性生物型JS-5中ALS受甲基二磺隆的抑制程度明显低于敏感生物型JS-7,抗性生物型ALS对甲基二磺隆的敏感性降低,甲基二磺隆对日本看麦娘抗性和敏感生物型ALS的抑制中浓度I50值分别为0.41μmol L-1和0.17μmol L-1,酶活力倍数为2.41倍。
     (6)扩增了抗性生物型JS-5和敏感生物型JS-7的ALS基因。扩增的基因序列包含了已报道的ALS保守区的8个突变位点,序列长度为1843bp,编码614个氨基酸。
     核苷酸序列分析结果表明,JS-5抗性生物型的ALS基因在197位氨基酸发生了点突变,197位氨基酸由脯氨酸(CCC)突变为苏氨酸(ACC)。
     (7)扩增了4个多抗性生物型(AH-15、AH-16、AH-17、AH-23)以及敏感生物型AH-7的ACCase和ALS基因,结果表明,AH-15、AH-16、AH-17质体型ACCase基因1781位氨基酸由异亮氨酸(ATA)突变为亮氨酸(TTA);AH-15和AH-16生物型ALS基因574位氨基酸由色氨酸(TGG)突变为亮氨酸(TTG)。AH-17生物型ALS基因未发生突变。
     AH-23生物型ACCase基因2027位氨基酸由色氨酸(TGG)突变为精氨酸(CGT),ALS基因574位氨基酸由色氨酸(TGG)突变为精氨酸(CGG),其中ACCase基因2027位氨基酸由色氨酸突变为精氨酸这种突变形式还未见报道,此突变是否与AH-23产生的高水平抗性有关还有待于进一步证实。
     (8)选取多抗生物型AH-17、敏感生物型AH-7作为研究对象,测定2个日本看麦娘生物型P450s的活性变化趋势,结果表明,与敏感生物型相比,抗性生物型AH-17P450s活性增强。
     (9)不同日本看麦娘生物型对不同除草剂的抗性谱测定结果表明,AH-1生物型精噁唑禾草灵、炔草酯和唑啉草酯产生了高水平抗性,对甲基二磺隆和啶磺草胺较敏感;AH-18生物型对精噁唑禾草灵、炔草酯、烯草酮、烯禾啶产生了高水平抗性,对唑啉草酯和精喹禾灵较敏感;AH-19生物型对精噁唑禾草灵和炔草酯产生了高水平抗性,对烯禾啶、高效氟吡甲禾灵和精喹禾灵产生了中等水平的抗性,对唑啉草酯和烯草酮较敏感;SD-6生物型对精噁唑禾草灵、炔草酯、烯草酮和烯禾啶产生了高水平抗性,对唑啉草酯、高效氟吡甲禾灵和精喹禾灵较敏感;AH-15生物型对精噁唑禾草灵、炔草酯、烯草酮、烯禾啶和甲基二磺隆产生了高水平抗性,对唑啉草酯产生了中等水平的抗性,对高效氟吡甲禾灵较敏感;AH-25生物型对精噁唑禾草灵、炔草酯、烯草酮和烯禾啶产生了高水平抗性,对高效氟吡甲禾灵产生了中等水平的抗性,对唑啉草酯和精喹禾灵较敏感;JS-5对甲基二磺隆产生了高水平的抗性,对精噁唑禾草灵、炔草酯、唑啉草酯、高效氟吡甲禾灵、啶磺草胺、咪唑乙烟酸均较敏感。
     本研究明确了我国麦田日本看麦娘生物型对精噁唑禾草灵和甲基二磺隆的抗性水平,抗性机理的研究结果表明,日本看麦娘对精噁唑禾草灵和甲基二磺隆的高水平抗性主要与其靶标酶质体型ACCase、ALS基因突变有关,低水平抗性可能与代谢酶GSTs或P450s的活性增强有关。
With the widespread use of chemical herbicides, it becomes more and more serious thatfarmLand weed resist to drugs. Alopecurus japonicus is one of the most important malignantweeds which affect the output of wheat and oil plants. Fenoxaprop-p-ethyl, an ACCaseinhibitor herbicide, is commonly used to control gramineous weeds in the wheat field.However, after decades of continuously using, under the recommended dose (41.4g a.i. ha-1),fenoxaprop-p-ethyl could no longer control A. japonicus as effectively as it previously had,which developed a high level of resistance. The ALS inhibitor herbicides such asmesosulfuron-methyl were the main substitute products, but in some areas, it failed, thatmeans the weeds have developed resistance, and this has become an important problem to besolved. In order to define the resistant mechanism of Alopecurus japonicus tomesosulfuron-methyl and fenoxaprop-p-ethyl, delay the resistance, guide farmers to useherbicides more effectively, then lay a solid theory foundation for the comprehensivetreatment of A. japonicas, fourty eight Alopecurus japonicus biotypes were collected fromfive provinces: Anhui, Jiangsu, Shandong, Henan and Hubei, and the results were as follows:
     (1)The whole-plant bioassay was used to determine the resistant level of A. japonicus tofenoxaprop-p-ethyl, and the results showed: there were quite differences of the resistant levelin fourty eight A. japonicus biotypes from five provinces (Anhui, Jiangsu, Shandong, Henanand Hubei). Twenty-four biotypes (AH-7, AH-21, HN-2, AH-8, JS-4, JS-7, SD-5) showedhigh sensitivity;9biotypes showed a low resistance (resistance index was between2to10);fifteen biotypes showed a high resistance, AH-1from Tianchang Anhui province showed thehighest resistance (resistance index was176.46).
     The same method was used to determine the resistance to mesosulfuron-methyl. JS-5,AH-15, AH-16, AH-17, AH-23showed a high resistance, and the others were sensitive, JS-5from Hujia village, Lvcheng town, Danyang showed the highest resistance (resistance indexwas169.25).
     Among the forty-eight biotypes, AH-15, AH-16, AH-17and AH-23showed a highresistance to fenoxaprop-p-ethyl and mesosulfuron-methyl both. The resistance index ofAH-15for fenoxaprop-p-ethyl and mesosulfuron-methyl was93.34and71.53, respectively.AH-16was76.77and76.77, respectively. AH-17was108.02and45.08, respectively. AH-23was69.53and10.20, respectively.
     (2) The resistant biotype AH-1and the sensitive biotype AH-7were selected as theresearch objects. The effects of fenoxaprop-P-ethyl on activities of the target enzyme, ACCase were assayed. In the resistant and sensitive biotypes were measured and the resultsshowed that: ACCase activity in the sensitive biotype was suppressed stronger than that in theresistant biotype AH-1by fenoxaprop-p-ethyl, and I50values were107.45μmol L-1and23.57μmol L-1, respectively; furthermore, the resistance index in the former was4.56timesthan the latter.
     (3) CT domain of the plastid ACCase gene of15high or medium resistant and3sensitivebiotypes were amplified, sequenced and compared. The amplified areas contained reportedeight mutations in CT domain of ACCase, and the length of the sequence was1437bps andencoded479amino acids.
     The result of nucleotide sequence analysis showed: point mutations were found at1781amino acid of ACCase gene in seven resistant biotypes(AH-1, AH-15, AH-16, AH-17, AH-18,AH-24and JS-12), which mutated from isoleucine (ATA) into leucine (TTA); In AH-19andSD-6biotypes, point mutations were at2027amino acid, which mutated fromtryptophan(TGG) into cysteine(TGC/TGT); In AH-25and JS-11biotypes, point mutationswere at2078amino acid, which mutated from aspartic acid(GAT) into glycine(GGT); InJS-10biotype, point mutation was at2041amino acid, which mutated from isoleucine(ATT)into asparagine(AAT); there were no mutations in HB-1, HN-3and AH-23. But in allsensitive biotypes, the1781,2027,2078and2041amino acids were isoleucine, tryptophan,aspartic acid and isoleucine, respectively.
     (4) The high resistant biotype AH-1, medium resistant biotypes HN-1and HB-3, togetherwith the sensitive biotype AH-7were chosen, and the variation trends of the GSTs activitiesfrom1to10days after spraying41.4g a.i. ha-1fenoxaprop-p-ethyl in these four biotypeswere studied. The results showed that compared with the sensitive biotypes, the GSTs activityin the high resistant biotype AH-1had no significant difference, while HN-1and HB-3wereincreased significantly.
     (5) ALS activity from JS-5was determinated in vitro. The ALS activity from JS-5was lesssensitive to mesosulfuron-methyl than its JS-7counterpart. Resistant biotype was lesssensitive to mesosulfuron-methyl. The mesosulfuron-methyl I50for both resistant and sensitiveALS was0.41μmol L-1mol L-1and0.17μmol L-1respectively, resistance index was2.41times than the latter.
     (6) The ALS genes from the resistant biotype JS-5and sensitive biotype JS-7wereamplified. And the amplification area contained reported eight mutations in the conservedregion of ALS gene, which length of sequence was1843bp and encoded614amino acids.
     The nucleotide sequence analysis showed that in JS-5biotype, point mutation was at197amino acid, which was replaced by threonine (ACC).
     (7) The ACCase and ALS genes of the four multiresistance biotypes and sensitive biotypeAH-7were amplified. The results showed that in plastid ACCase genes of AH-15, AH-16andAH-17biotypes, point mutation was at1781amino acid, which mutated from isoleucine intoleucine; In ALS genes of AH-15and AH-16biotypes, point mutation was at574amino acid,which mutated from tryptophan into leucine; while the ACCase and ALS genes in AH-23showed no mutation
     2027amino acid of ACCase gene from AH-23was mutated from tryptophan (TGG) intoarginine (CGT),574amino acid of ALS gene was mutated from tryptophan (TGG) intoarginine (CGG). The former mutation style was still unreported, whether this mutation wasinterconnected with the high resistance is to be studied.
     (8) Multi-resistant biotype AH-17and sensitive biotype AH-7was selected. The changetrend of the activity of P450s was determinated, compare with AH-7, the activity of P450s ofresistance biotype AH-17increased.
     (9) The cross resistance of different biotypes of A. japonicus to different herbicides wasdetermined and showed that: there were high cross resistances to fenoxaprop-p-ethyl,clodinafop-propargyl and pinoxaden in AH-1, and this biotype was sensitive tomesosulfuron-methyl and pyroxsulam; there were high cross resistances tofenoxaprop-p-ethyl, clodinafop-propargyl, clethodim and sethoxydim in AH-18, and thisbiotype was sensitive to pinoxaden and quizalofop-p-ethyl; there were high cross resistancesto fenoxaprop-p-ethyl and clodinafop-propargyl and medium cross resistances to sethoxydim,haloxyfop-R-methyl and quizalofop-p-ethyl in AH-19, and this biotype was sensitive topinoxaden and clethodim; there were high cross resistances to fenoxaprop-p-ethyl,clodinafop-propargyl, clethodim and sethoxydim in SD-6, and this biotype was sensitive topinoxaden, haloxyfop-R-methyl and quizalofop-p-ethyl; there were high cross resistances tofenoxaprop-p-ethyl, clodinafop-propargyl, clethodim, sethoxydim, mesosulfuron-methyl andmedium cross resistance to pinoxaden in AH-15, and this biotype was sensitive tohaloxyfop-R-methyl; there were high cross resistances to fenoxaprop-p-ethyl,clodinafop-propargyl, clethodim, sethoxydim and medium cross resistance tohaloxyfop-R-methyl in AH-25, and this biotype was sensitive to pinoxaden andquizalofop-p-ethyl; there was high cross resistance to mesosulfuron-methyl in JS-5, and thisbiotype was sensitive to fenoxaprop-p-ethyl, clodinafop-propargyl, pinoxaden,haloxyfop-R-methyl, pyroxsulam and imazethapyr.
     This study illuminated the resistant level of A. japonicus to fenoxaprop-p-ethyl andmesosulfuron-methyl and the resistant mechanism showed that the high resistance of A.japonicus was mainly related to the mutations of plastid ACCase and ALS genes in its targetenzyme, while low resistance was possibly the reason that the activity of GSTs and P450sincreased.
引文
采俊香,闫春花.麦田化学除草若干问题探讨[J].作物杂志,2001,(2):33-35
    崔海兰.播娘蒿(Descurainia sophia)对苯磺隆的抗药性研究[D].中国农业科学院,2009.
    陈年春.农药生物测定技术.北京:北京农业大学出版社,1991:208-230
    陈万义,薛振祥,王能武.新农药研究与开发[M].北京:化学工业出版社,1997.
    董晓雯,王金信,毕建杰,等.不同玉米品种对烟嘧磺隆的敏感性差异[J].植物保护学报,2007,34(2):182-186
    冯文煦,陈碧莲,余敬堂,等.化学除草对麦田杂草生物型变化的影响[J].杂草学报,1990,4(1):23-29
    付仲文,张朝贤,钱益新,等.几种抗药性杂草的检测方法[J].植物保护,1999,25(4):40-42.
    韩庆莉,沈嘉祥.杂草抗药性的形成、作用机理研究进展[J].云南农业大学学报,2004,19(5):556-561.
    黄建中.农田杂草抗药性[M].北京:中国农业出版社,1995.
    黄媛媛,纪明山.抗磺酰脲类除草剂杂草检测方法研究进展[J].杂草科学,2008(2):5-9.
    冷欣夫,邱星辉.细胞色素P450酶系的结构、功能与应用前景[M].北京:科学出版社,2001,1
    李润枝,张娟,陈桂娴,贾芮康.农田杂草抗药性检测鉴定方法[J].中国农学通报.2010,26(18):289-292.
    李永丰,吴竞仑,王庆亚等.日本看麦娘对氯磺隆、异丙隆和骠马的抗药性[J].江苏农业学报,2005,21(4):283-287
    李永丰,吴竞仑,王庆亚,刘丽萍.日本看麦娘对氯磺隆的抗药性研究[J].杂草科学,2003,4:5-6.
    刘长令.世界农药大全—除草剂卷[M].北京:化学工业出版社,2002
    刘君良,王金信,刘伟堂,等.中国北方部分地区麦田荠菜对苯磺隆的抗性水平[J].农药学学报,2011,13(4):347-53.
    刘君良.我国北方部分地区麦田杂草荠菜对苯磺隆的抗药性水平[D].山东农业大学,2011,42-45
    刘伟,王金信,杨广玲,等.不同小麦品种对苯磺隆耐药性差异及其机理[J].植物保护学报,2005,32(3):300-304
    刘耀鸿,李筠,徐兴权,任立凯,王军.连云港地区麦田杂草防除[J].杂草科学,2009,1:38-39.
    卢宗志,张朝贤,傅俊范,等.稻田雨久花对苄嘧磺隆的抗药性[J].植物保护学报,2009a,36(4):354-358.
    卢宗志,张朝贤,傅俊范,等.抗苄嘧磺隆雨久花ALS基因突变研究[J].中国农业科学,2009b,42(10):3516-3521.
    彭学岗,王金信,段敏,等.中国北方部分冬麦区猪殃殃对苯磺隆的抗性水平[J].植物保护学报,2008,35(5):458-462.
    彭学岗,王金信,刘君良,等.麦田抗性生物型猪殃殃对苯磺隆的抗性机制[J].农药学学报,2009,11(2):191-196
    彭学岗,段敏,郇志博.杂草抗药性生物测定方法概述[J].农药科学与管理.2008,29(6):41-45.
    强胜主编.杂草学[M].北京:中国农业出版社,2001.
    强胜.我国杂草学研究现状及其发展策略[J].植物保护,2010,36(4):1-5.
    苏少泉.除草剂在植物体内的代谢与选择性及使用[J].现代农药,2003,2(6):14-17
    苏少泉.除草剂作用的靶标分类与使用[J].农药,1998,37(11):127
    苏少泉.杂草学[M].北京:农业出版社,1993A:55-150
    苏少泉.杂草学[M].北京:农药出版社,1993B,230-248
    孙健,王金信,张宏军,等.抗苯磺隆猪殃殃乙酰乳酸合成酶的突变研究[J].中国农业科学,2010,43(5):972-977.
    涂鹤龄.麦田长期化除后杂草群落的演变与对策[J].杂草学报,1987,1(2):13-17
    吴明根,曹凤秋,刘亮.磺酰脲类除草剂对抗、感性雨久花乙酰乳酸合成酶活性的影响[J].植物保护学报,2007a,34(5):545-548.
    吴明根,刘亮,时丹,等.延边地区稻田抗药性杂草的研究[J].延边大学农学学报,2007c,29(1):5-9.
    吴明根,吴松权,朴仁哲,等.磺酰脲类除草剂对抗、感性慈姑ALS活性的影响[J].2007b,46(10):701-703.
    吴明根,郑承志,李昕珈.抗苄嘧磺隆慈姑ALS基因突变位点[J].江苏农业学报,2010,26(1):222-224.
    吴小虎.山东部分市县麦田杂草麦家公对苯磺隆抗性初步研究[D].山东农业大学,2011,35-36
    王金信.山东省麦田杂草发生及其化学防除[J].农药,1998,37(2):11-12
    王庆亚,董立尧,娄远来,等.农田杂草抗药性及其检测鉴定方法[J].杂草科学,2002,2:1-5.
    徐汉虹.植物化学保护学[M].北京:中国农业出版社.2007,168-169.
    杨彩宏,董立尧,李俊,等.油菜田日本看麦娘对高效氟吡甲禾灵抗药性的研究[J].中国农业科学,2007,40(12):2759-2765.
    叶贵标.世界开发的除草剂新品种.面向二十一世纪中国农田杂草可持续治理.南宁,广西民族出版社,1999,29:341-355
    张朝贤,李香菊.杂草学学科发展2007-2008.植物保护学学科发展报告.北京:中国科学技术出版社,2008.2:75-86.
    张朝贤,倪汉文,魏守辉,黄红娟,刘延,崔海兰.杂草抗药性研究进展[J].中国农业科学,2009,42(4):1274-1289.
    赵善欢主编.植物化学保护(第三版)[M].北京:中国农业出版社,1999,263.
    Akagi T. Pesticide Science[J],1996,47:309-318
    Alcocer R.M., Thill D.C., Mallory S.C. Monitoring the occurrence of sulfonylurea-resistantprickly lettuce (Lactuca serriola). Weed Technol.,1992b,6:437–440.
    Alcocer R.M., Thill D.C., Shafii B. Seed biology of sulfonylurea-resistant and susceptiblebiotypes of prickly lettuce (Lactuca serriola)[J]. Weed Technol.,1992a,6(4):858-864.
    Amanda C B., Stephen R M., Zoe A W., and Linda M F. An isoleucine to leucine substitutionin the ACCase of Alopecurus myosuroides (black-grass) is associated with resistance tothe herbicide sethoxydim. Pesticide Biochemistry and Physiology,200272:160-168.
    Ashigh J,&Tardif F J. An Ala205Val substitution in acetohydroxyacid synthase of easternblack nightshade (Solanum ptychanthum) reduces sensitivity to herbicides and feedbackinhibition[J]. Weed Science,2007,55:558-565.
    Aubert S, Richard B. Induction of altrrnatisu oxidase synthesis by herbicids inhibitingbranched-chain amino acid synthesis. Plant Journal,1997,11:649-657
    Baerson S R, Rodriguez D J, Biest N A. Investigating the mechanism of glyphosate resistanein rigid ryegrass(Lolium ridigum). Weed Science,2002,50(6):721-730.
    Baldwin F L., Talbert R E., Carey III V F., Kitt M J., Helms R S., Black H L., Smith R J. Ahistorical review of propanil-resistant barnyardgrass in Arkansas and field advice for itsmanagement in dry-seeded rice. Reserch Series Arkansas Agricultural ExperimentStation,1996,453:1-8.
    Beckie H J, Friesen L F, Nawolsky K M, et al. A rapid bioassay to detect trifluralin-resistantgreen foxtail (Setaria viridis)[J]. Weed Technology,1990,4:505-508.
    Bhowmik P C. Herbicide resistance: A global concern//Mde. Fac. Landbouww. Univ. Gent.,65/2a,2000:19-27.
    Bolton P,Hawrood J L.. Eeffet of thiocarbamate herbieides on fatty acid synthesis by Potato.Planthcemistry,1976,15(10):1507-1509
    Boutsalis P. Syngenta quick-test: a rapid whole-plant test for herbicide resistance [J]. WeedTechnology,2001,15(2):257-263.
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72:248-254
    Brown H. M.. Mode of action, crop selectivity, and soil relations of the sulfonylureaherbicides. Pesticide Science,1990,29(3):263-281
    Chipman D, Barak Z, Scholss J V. Biosynthesis of2-aceto-2-hydroxy acids: acetolactatesynthase and acetohydroxy acid synthase[J]. Biophysica Biophys Acta,1998,1385(3):401-419
    Christopher J T, Powles S B, Liljegren D R, Holtum J A M. Cross resistance to herbicides inannual ryegrass (Lolium rigidum) II. Chlorsulfuron resistance involves a wheat-likedetoxification system. Plant Physio,1991,95(4):1036-1043.
    Christoffers M J. Genetic aspects of herbicide-resistant weed management. Weed Technology,1999,13:647-652.
    Cleschick W A, Costales M J, Dunbar J E, et al. New herbicidal derivatives od1,2,4-triazolo[1,5-a]pyrimidine[J]. Pestic Sci,1990,29(3):341-355
    Cui H.L., Zhang C.X., Zhang H.J., Liu X., Liu Y., Wang G.Q., Huang H.J., and Wei S.H.Confirmation of Flixweed (Descurainia sophia) Resistance to Tribenuron[J]. Weed Sci.2008,56:775–779.
    Cui H.L., Zhang C.X., Wei S.H., Zhang H.J., Li X.J., Zhang Y.Q., and Wang G.Q.Acetolactate Synthase Gene Proline (197) Mutations Confer Tribenuron-MethylResistance in Flixweed (Descurainia sophia) Biotypes from China. Weed Sci.,2011,59(3):376-379.
    Cui H., Li X., Wang G., Wang J., Wei S., Cao H. Acetolactate synthase proline (197)mutations confer tribenuron-methyl resistance in Capsella bursa-pastoris biotypes fromChina. Pestic. Biochem. Phys.,2012,102:229-232.
    Cocker K M, Moss S R, Coleman J O D. Multiple mechanisms of resistance tofenoxaprop-p-ethyl in United Kingdom and other European biotypes ofherbicide-resistant Alopecurus myosuroides (Black-Grass). Pest. Biochem. Physiol,1999,65:169-180.
    Cocker K M, Northcroft D S, Coleman J O D, Moss S R. Resistance to ACCase-inhibitingherbicides and isoproturon in UK biotypes of Lolium multiflorum: mechanisms ofresistance and implications forcontrol. Pest. Manag. Sci.,2001,57:587-597.
    Cocker K M., Coleman J O D., Blair A M., Clarke J H., Moss S R. Biochemical mechanismof cross-resistance to aryxyphenoxypropionate and cyclohexanedione herbicides inbiotypes of Avena spp. Weed Research,2000,40:323-334.
    Délye C., Pernin F., and Scarabel L. Evolution and diversity of the mechanisms endowingresistance to herbicides inhibiting acetolactate-synthase (ALS) in corn poppy (Papaverrhoeas L.). Plant Sci.,2011,180:333-342.
    Délye C., Matejicek A., Gasquez J. PCR-based detection of resistance in black-grass(Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest ManagementScience,2002.58:474-478.
    Délye C, Menchari Y, Michel S. A single polymerase chain reaction-based assay forsimultaneous detection of two mutations conferring resistance to tubulin-bindingherbicides in Setaria viridis [J]. Weed Research,2005,45(3):228-235.
    De Prado R., Gonzalez-Gutierrez J., Menendez J., Gasquez J., Gronwald J W.,Gimenez-Espinosa R. Resistance to acetyl CoA carboxylase-inhibiting herbicides inLolium multiflorum. Weed Sci.,2000,48:311-318.
    De Prado R A, Franco A R. Cross-resistance and herbicide metabolism in grass weeds inEurope: biochemical and physiological aspects. Weed Sci.,2004,52(3):441-447.
    DeRidder B. P., Dixon D. P., Beussman D. J, et al. Induction of glutathione s-transferases inArabidopsis by herbicide safeners. Plant Physiology,2002,130(3):1497-1505
    Devine M D and Shimabukuro R H. Resistance to acetyl coenzyme A carboxylase inhibitingherbicides, in: Powles S B and Holtum J A M, eds. Herbicide Resistance in Plants. BocaRaton, FL: CRC Press,1994,141-169.
    Devine M.D., Eberlein C.V. Physiological, biochemical and molecular aspects of herbicideresistance based on altered target sites. In: Roe, R.M, Burton, J.D., Kuhr, R.J.(Eds.),Herbicide Activity: Toxicology, Biochemistry and Molecular Biology.1997,159-185.
    Devine M.D., Shukla A. Altered target sites as a mechanism of herbicide resistance [J]. CropProtection,2000,19:881-889.
    Dewaele E., Forlani G., Degrande D., Nielsen E., and Rambour S. Biochemicalcharacterization of chlorsulfuron resistance in Cichorium intybus L. var. Witloof. J. PlantPhysiol.,1997,151:109-114.
    Dinelli G., Bonetti A., Marotti I., Minelli M., Catizone P. Possible involvement of herbicidesequestration in the resistance to diclofop-methyl in Italian biotypes of Lolium spp.Pesticide Biochemistry and Physiology,2005,81:1-12.
    Donn G., Tischer E., Smith J.A., and Goodman H.M. Herbicide-resistant alfalfa cells: anexample of gene amplification in plants. J. Mol. Appl. Genet.,1984,2(6):621-635.
    Doyle J. J., Doyle J. L. Isolation of plant DNA from fresh tissue. Focus,1990,12:13-15.
    Duggleby R.G., McCourt J.A., Guddat L.W. Structure and mechanism of inhibition of plantaceto-hydroxyacid synthase [J]. Plant Physiol. Biochem.,2008,46:309–324.
    Duggleby R. G., Pang S. S.. Acetohydroxyacid synthase. Biochemistry and MolecularBiology,2000,33(1):1-36
    Duke S O, Christy A L, Hess F D. Herbicide-Resistant Crops. Council of Agricultural Scienceand Technology, Ames, I. A.1991.
    Durán-prado M, Osuna M D, De Prado R, Franco A R. Molecular basis of resistance tosulfonylureas in Papaver rhoeas [J]. Pesticide Biochemistry and Physiology,2004,79(1):10-17.
    Durner J., Gailus V., Boger P. New aspects on inhibition of plant acetolactate synthase bychlorsulfuron and imazaquin. Plant Physiol.1991,95(4):1144-1149.
    Eastmond P J and Rawsthorne S. Coordinate changes in carbon partitioning and plastidialmetabolism during the development of oilseed rape embryo. Plant. Physiol.,2000,122:767-774.
    Eberlein C.V., Guttieri M.J., Berger P.H., Fellman J.K., Mallory-Smith C.A., Thill D.C.,Baerg R.J. and Belkmap W.R. Physiological consequences of mutation for ALS-inhibitor resistance. Weed Sci.,1999,47(4):383-392.
    Eberlein C.V., Guttieri M.J., Mallory-Smith C.A., Thill D.C., Baerg R.J. Altered acetolactatesynthase activity in ALS-inhibitor resistant prickly lettuce (Lactuca serriola). Weed Sci.,1997,45(2):212–217.
    Edwards R. and Cole D. J. Glutathione transferases in wheat (Triticum) species with activitytoward fenoxaprop-ethyl and other herbicides. Pestic. Biochem. Physiol.,1996,54:96-104.
    Elborouga K M., Winz R., Deka R K et al. Biotin carboxyl carrier protein andcarboxyltransferase subunits of the multi-subunit form of acetyl-CoA carboxylase fromBrassion napus: cloning and analysis of expression during oilseed rape embryogenesis.Biochem. J.,1996,315:103-112.
    Eleni K S, Avi T, Baruch R. Diclofop-resistant from Northern Greece with Cross-resistance toACCase Inhibitors and Multiple Resistance to Chlorsulfuron. Pest Manag. Sci.,2000,56:1054-1058.
    Fan Z J, Qian C F, Li Z M, et al. Specific activity determination of acetolactate synthase frommaize(Zea mays L.).In:Han W N, Zhen G Y. The Proceedings of the18th Asia-PacificWeed Science Society Conference.515-522. May28-June,2001. Beijing: StandardsPress of China
    Forlani G, Nielseren F, Landi P, Tuberosa R. Chlorsulfuron tolerance and acetolactatesynthase activity in corn (Zea mays L.) inbred lines [J]. Weed Science,1991,39:553-557.
    Frear D S, Swanson H R, Tanaka F S. N-demethylation of substituted3-(phenyl)-1-methylureas: isolation and characterization of a microsomal mixed function oxidase fromcotton[J]. Phytochemistry,1969,8:2157-2169
    Gaines T A, Preston C, Leach J E, Chisholm S T, Shaner D L. Gene amplification is amechanism for glyphosate resistance evolution. Proc. Natl. Acad. Sci. USA,2010,107:1029-1034.
    Gaston S, Ribas-Carbo M, Busquets S, et al. Changes in mitochondrial electron partitioning inresponse to herbicides inhibiting branched-chain amino acid biosynthesis in soybean[J].Plant Physiology,2003,133(3):1351-1359
    Gengenbach B G., Somers D A., Gronwald J W., Egli M A., Lutz S M. Transgenic plantsexpressing maize acetyl CoA carboxylase gene and method of altering oil content.United States Patent,6222099B1,2001-4-24.
    Gerwick B.C., Subramanian M.V., Loney-Gallant V.I. Mechanism of action of the1,2,4-triazolo[1,5-a] pyrimidines[J]. Pestic. Sci.1990,29:357-364.
    Glaser P., Frangeul L., Buchrieser C. Comparative genomics of listeria species. Science,2001,249:849-852.
    Gornicki P and Haselkorn R. Wheat acetyl-CoA carboxylase. Plant. Mol. Biol.,1993,22:547-552.
    Gronwald J W. Resistance to photosystem II inhibiting herbicides. In: Powles S E., Holtum JA M. Herbicide Resistance in Plants: Biology and Biochemistry. Boca Raton, FL. CRCPress, Inc.,1994:27-60.
    Gronwald J W., Eberlein C V., Betts K J., Baerg R J., Ehlke N J and Wyse D L. Mechanismof diclofop resistance in an Italian ryegrass (Lolium multiflorum Lam.) biotype. Pestic.Biochem. Physiol.,1992,44:126-139.
    Hall L M., Moss S R. and Powles S B. Mechanisms of resistance toaryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurusmyosuroides (black-grass): herbicide metabolism as a cross-resistance mechanism.Pestic. Biochem. Phys.,1997,57:87-98.
    Harnett M E, Chui C F, Falco S C, et al. MolecularAnalysis of Sulfonylurea HerbicideResistant ALS Gene, Herbicide Resistance in Weeds and Crops. USA:Butter worthHeinemannL td,1991.
    HAN X J,, DONG Y,, SUN, X N, et al. Molecular basis of resistance to tribenuron-methyl inDescurainia Sophia (L.) biotypes from China[J]. Pestic Biochem Phys,2012,104(1):77-81.
    Hashem A, Dhammu H S. Cross-resitance to imidazolinone herbicides inchlorsulfuron-resistant Raphanus raphanistrum. Pest Manag. Sci.,2002,58(9):917-919.
    Hatzios K.K.. Interactions between Selected Herbicides and Protectants on Corn (Zea mays).Weed Science,1984,32(1):51-58
    Heap I. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org.2013.
    Heap I, Knight R. The occurrence of herbicide cross resistance in a biotype of annual ryegrass,Lolium rigidum, resistant to diclofop-methyl. Australian Journal of AgriculturalResearch,1986,37(2):149-156.
    Herbert D., Walker K A., Price L J. Acetyl-CoA carboxylase-a graminicide target site. Pestic.Sci.,1997,50:67-71.
    Herbert D, Sasaki Y. Compartmentalization of two forms of acetyl-CoA carboxylase in plantsand the origin of their tolerance toward herbicides. Proceedings of the National Academyof Sciences of the USA,1994,91:3598-3601.
    Herbert D., Price L J., Alban C. Kinetic studies on two isoforms of acetyl-CoA carboxylasefrom maize leaves. Biochem. J.,1996,318:997-1006.
    Hidayat I and Preston C. Enhanced metabolism of fluazifop acid in a biotype of Digitariasanguinalis resistant to the herbicide fluazifop-P-butyl. Pestic. Biochem. Physiol.,1997,57:137–146.
    Jacques G, Prado D R., Menendez J. Management of herbicide-resistant grass weeds inEurope. In Second International Weed Control Congress Copenhagen,1996, pp:393-398.
    John J D., Goldsbrough P B., Weller S C. Stability and expression of amplified EPSPS genesin glyphosate resistant tobacco cells and plantlets. Plant. Cell. Rep.,1996,15:431-436.
    Kevin et al. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedioneherbicides in a johnsongrass biotype. Weed Science,2001,49:477-484
    Kleschick W A, Carson C M, Costales M J, et al.1,2,4–triazolo [1,5-a] pyrimidine-2-sulfonanilide herbicides: influence of alkoyl, heterocyclic substitution on in vitro and invivo biological activity and soil decomposition[J]. ACS Symposium Series,1992A,504:17-25
    Kleschick W A, Chem Plant Prot,1994,10,119
    Kleschick W A, Costales M J, Dunbar J E, et al. New herbicidal derivatives of1,2,4-triazolo-[1,5-a] pyrimidine[J]. Pesticide Science,1990,29(3):341-355
    Kleschick W A, Costales M J, Gerwick B C, et al.1,2,4-triazolo [1,5-a] pyrimidine-2-sulfonanilide herbicides: influence of alkoyl, haloalkyl, and halogen heterocyclicsubstitution on in vitro and in vivo biological activity[J]. ACS Symposium Series,1992B,504:10-16A
    Kleschick W A, Ehr R J, Gerwick B C, et al. Evr. Pat Appl EP0142152,1985; CHEM Abstr,1985,103,1961170
    Kolkman J M., Slabaugh M B., Bruniard J M., Berry S., Bushman B S., Olungu C., Maes N.,Abratti G., Zambelli A., Miller J F., Leon A., Knapp S J. Acetohydroxyacid synthasemutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower.Theoretical and Applied Genetics,2004,109(6):1147-1159.
    Kuk Y I, Kim K H, Kwon O D, Lee D J, Burgos N R, Jung S, Guh J O. Cross-resistancepattern and alternative herbicides for Cyperus difformis resistant to sulfonylureaherbicide in Korea. Pest Manag. Sci.,2004,60(1):85-94.
    Kuk Y I., Burgos N R., Talbert R E. Cross-and multiple resistance of diclofop-resistantLolium spp. Weed Science,2000,48:412-419.
    Kuk Y., Wu J., Derr J F and Hatzios K K. Mechanism of fenoxaprop resistance in anaccession of smooth crabgrass (Digitaria ischaemum). Pestic. Biochem. Physiol.,1999,64:112-123.
    Lamoureux G L, Rusness D G. The mechanism of action of BAS-145138as a safener forcholrimuron-ethyl in corn: Effect on hydroxylation, glutathione conjugation, glucosideconjugation and acetolactate synthase[J]. Pestic Biochem Physiol,1992,42:128-139
    LaRossa R. A.,Smulski D. R.. IlvB-encoded acetolactate snythase is resistant to the herbicidesulfometuron methyl. Journal of Bacteriology,1984,160(1):391-394
    Levitt G, Pestic Chem: Hum. Welfare and the Environ, ed. Mryamato, J; Kearney, P C,Pergamon Press New York,1983:243-250
    Letouzé A, Gasquez J. A rapid reliable test for screening aryloxyphenoxypropionic acidresistance within Alopecurus myosuroides and Lolium spp. biotypes. Weed Research,1999,39:37-48.
    Letouzé A, Gasquuez J. A Pollen Test to Detect ACCase Target-site Resistance WithinAlopecurus myosuroides Biotypes. Weed Research,2000,40:151-162.
    Letouzé A, Gasquze J. Un test pollen pour determiner la résistance du vulpin auxherbicides[A]. ANPP Dix-Sept ième Conference Du Columa-Journees InternationalesSur la Lutte Contre les Mauvaises Herbes[C]. Montpellier, France,1998,149-156
    Lichtner F. T., Dietrich R.F., Brown H.M.. Ethametsulfuron methyl metabolism and cropselectivity in spring oilseed rape (Brassica napus L.). Pesticide Biochemistry andPhysiology,1995,52(1):14-24
    Liu W J., Harrison D K., Chalupska D., Gornicki P., O’Donnell C C. Single-site mutations inthe carboxyl transferase domain of plastid acetyl-CoA carboxylase confer resistance tograss-specific herbicides. Proc. Natl. Acad. Sci. USA,2007,104:3627-3632.
    Livak K J and Schmittgen T D. Analysis of relative gene expression data using real-timequantitative PCR and the2-△△CT method. Methods,2001,25:402-408.
    Lorraine-Colwill D F, Powles S B, Hawkes T R. Investigations into the mechanism ofglyphosate resistane in Lolium rigidum. Pestic. Biochem. Physiol.,2003,74(1):62-72.
    Macherel D,Ravanel and Tissut M.. Effects of herbicidal carbamates on mitochondria andchloroplasts. Pesticide Biochemistry and Physiology,1982,18(3):280-288
    Malik R K. Herbicide resistant weed problems in developing world and methods to overcomethem. Second International Weed Control Congress Copenhagen,1996,665-673.
    Maneechote C., Holtum J A M., Preston C., Powles S B. Resistant acetyl-CoA carboxylase isa mechanism of herbicide resistance in a biotype of Avena sterilis ssp. ludoviciana. Plant.Cell. Physiol.,1994,35:627-635.
    Maneechote C., Preston C., and Powles S B. A diclofop-methyl resistant Avena sterilisbiotype with a herbicide-resistant acetyl-coenzyme A carboxylase and enhancedmetabolism of diclofop-methyl. Pestic. Sci.,1997,28:105-114.
    Manidool C.1992b. Echinochloa crusgalli (L.) P. Beauv. In: t' Mannetje, L., and R M Jones(eds.) Plant resources of south-east Asia. No.4. Forages. Pudoc Scientific Publishers,Wageningen, the Netherlands.303pp.
    Massa D., Krenz B., and Gerhards R. Target-site resistance to ALS-inhibiting herbicides inApera spica-venti biotypes is conferred by documented and previously unknownmutations [J]. Weed Res.,2011,51(3):294-303.
    Matthews J M, Holtum J A M, Liljegren D R. Cross-resistance to herbicides in annualryegrass(Lolium rigidum): I. Properties of the herbicide target enzymes acetyl-coenzymeA carboxylase and acetolactate synthase. Plant Physiology,1990,94:1180-1186.
    McCourt J.A., Pang S.S., Guddat L.W., Duggleby R.G. Elucidating the specificity of bindingof sulfonylurea herbicide to acetohydroxyacid synthase [J]. Biochemistry,2005,44(7):2330–2338.
    McCourt J.A., Pang S.S., King-Scott J., Guddat L.W., Duggleby R.G. Herbicide-binding sitesrevealed in the structure of plant acetohydroxyacid synthase [J]. P. Natl. Acad. Sci. USA,2006,103(3):569–573.
    McNaughton E.K., Letarte J., Lee A.E., and Tardif J.F. Mutations in ALS confer herbicideresistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth(Amaranthus powellii)[J]. Weed Sci.,2005,53(1):17-22.
    McNaughton K.E., Lee E.A., and Tardif F.J. Mutations in the ALS gene confering resistanceto group II herbicides in redroot pigweed (Amaranthus retroflexus) and green pigweed(A. powellii). Weed Science Society of America Abstracts,2001,41:97.139、
    Menéndez J, De Prado R. Characterization of two acetyl-Co A carboxylase isoforms indiclofop-methyl-resistant and susceptible biotypes of Alopecurus myosuroides. Pestic.Biochem. Phys.,1997,57(2):137-146.
    Milhomme H, Bastide J. Uptake and phtotxicity of the herbicide metsulfuron-methi in cornroot tissue in the resence of the safener1,8-naphthalic anhydride[J]. Plant Physiol,1990,93:730-738
    Mohammad A B, Eskandar Z, Saeid S, et al. Weed control and wheat (Triticum aestivum L.)yield under application of2,4-D plus carfentrazone-ethyl and florasulam plusflumetsulam: Evaluation of the efficacy[J]. Crop Protection,2007,26:1759-1764
    Moss S.R., Cussans G.W. Variability in the susceptibility of Alopecurus myosuroides(black-grass) to chlortoluron and isoproturon [J]. Aspects Appl. Biol.1985,9:91–98.
    Murray B G, Friesen L F, Beaulieu K J, et al. A seed bioassay to identify acetyl-CoAcarboxylase inhibitor resistant wild oat (Avena fatua) biotypes[J]. Weed Technology,1996,10:85-89.
    Nandula V K, Poston D H, Reddy K N, et al. Response of soybean to halosulfuron herbicide.International Journal of Agronomy,2009, Article ID754510,7pages
    Neighbors S., Privalle L. S.. Metabolism of primisulfuron by barnyard grass. PesticideBiochemistry and Physiology,1990,37(2):145-153
    Neve P and Powles S. High survival frequencies at low herbicide use rates in biotypes ofLolium rigidum result in rapid evolution of herbicide resistance. Heredity,2005,95:485-492.
    Nikolaos S K., Eleftherohorinos I G. Identification of a johnsongrass (sorghum halepense)biotype resistant to ACCase-inhibiting herbicides in Northern Greede. Weed. Tech.,2009,23:470-476.
    Ohlrogge J B and Jaworski J G. Regulation of fatty acid synthesis. Annu. Rev. Plant. Physiol.Mol. Biol.,1997,48:109-136.
    Ohlrogge. Methods of increasing oil content of seeds. United States Patent,5,925,805.1999-7-20.
    Olmstead Thomas A, Gonzales Michael A, Orvik Jon A, et al.(DowElanco, USA). PCT Int.Appl.(1995),31pp. wo9512596
    Pang S.S., Duggleby R.G., Guddat L.W. Crystal structure of yeast acetohydroxyacid synthase:a target for herbicide inhibitors [J]. J. Mol. Biol.,2002,317:249–262.
    Park K.W. and Mallory Smith C.A. Physiological and molecular basis for ALS inhibitorresistance in Bromus tectorum biotypes. Weed Res.,2004,44(2):71-77.
    Parker W. B., Somers A. D., Wyse D. L., Keith R. A., Burton J. D. Selection andcharacterization of sethoxydim-tolerant maize tissue cultures[J]. Plant Physiol.1990,92:1220-1225.
    Pascal S, Debrauwer L, Ferte M P, Anglade P, Rouimi P, Scalla R. Analysis andcharacterization of glutathione S-transferase subunits from wheat (Triticum aestivum L.).Plant. Sci.,1998,134:217-226.
    Passardi F, Penel C, Dunand C. Performing the paradoxical: How plant peroxidases modifythe cell wall. Trend. Plant. Sci.,2004,9:534-540.
    Pline W. A., Wu J. R., Hatzios K.. Effects of temperature and chemical additivies on theresponse of transgenic herbicide-resistant soybeans to glufosinate and glyphosateapplications. Pesticide Biochemistry and Physiology,1999,65:119-131
    Powles S. B., Preston C., Bryan I. Herbicide resistance: impact and management advances inagronomy. Pesticide Biochemistry Physiology,1997,58:57-93.
    Powles S B and Qiu Yu. Evolution in action: plants resistant to herbicides. Annu. Rev. PlantBiol.,2010,61:317-347.
    Preston C, Tardif F J, Christopher J T, Powles S B. Multiple resistance to dissimilar herbicidechemistries in a biotype of Lolium rigidum due to enhanced activity of several herbicidedegrading enzymes. Pestic. Biochem. Phys.,1996,54(2):123-134.
    Price L J., Herbert D., Moss S R., Cole J D and Harwood J L. Graminicide insensitivitycorrelates with herbicide-binding co-operativity on acetyl-CoA carboxylase isoforms.Biochem J.,2003a,375:415-423.
    Price L J., Moss S R., Cole D J and Harwood J L. Graminicide resistance in a blackgrass(Alopecurus myosuroides) biotype correlates with insensitivity of acetyl-CoAcarboxylase. Plant Cell and Environment,2003b,27:15-26
    Ray T B.. Sulfonylurea herbicides as inhibitors of amino acid biosynthesis in plants. Trends inBiochemical Sciences.1986,17:180-183
    Reade J P H, Milner L J, Cobb A H. A role for glutathione-S-transferases in resistance toherbicides in grasses. Weed Sci.,2004,52(3):468-474.
    Reiter J D, Berecz G V, Zsila G J, et al. Preparation of1,2,4-triazolo [1,5-a] pyrimidines asdrugs[P]. P500136,1992-08-26
    Renata K, Henryka Rola. Sensitivity of winter wheat cultivars to selected herbicides[J].Journal of plant protection research,2010,50(1):35-40
    Reverdatto S, Beilinson V, Nielsen N C et al. A multisubunit acetyl coenzyme A carboxylasefrom soybean. Plant Physiology,1999,961-978.
    R. Fonné-Pfister, J. Gaudin, K. Kreuz, et al. Hydroxylation of primisulfuron by an induciblecytochrome P450-dependent monooxygenase system from maize. PesticideBiochemistry and Physiology,1990,37(2):165-173
    Richter J, Powles S B. Pollen expression of herbicide target site resistance genes in annualryegrass (Lolium rigidum)[J]. Plant Physiology,1993,102:1037-1041
    Ritter R L, Menbere H. Distribution and management of triazine-resistant weeds in themid-Atlantic region of the U. S. A.1997Brighton crop protection conference: weeds.Proceedings of an international conference. Brighton, UK,17-20November1997,3:1147-1152.
    Ronald G. Duggleby, Jennifer A. McCourt, Luke W. Guddat.. Structure and mechanism ofinhibition of plant acetohydroxyacid synthase. Plant Physiology and Biochemistry,2008(46):309-324
    Ryan G F. Resistance of common groudsel to simazine and atrazine[J]. Weed Science,1970.18:614-616.
    Saari L.L., Cotterman J.C., Smith W.F., Primiani M.M. Sulfonylurea herbicide resistance incommon chickweed, perennial ryegrass, and Russian thistle [J]. Pestic. Biochem. Phys.,1992a,42(2):110-118.
    Saari L L, Eberlein L M. Mechanism of sulfonylurea herbicide resistance in the broadleafweed [J].Plant Physiol,1990,93:55-61.
    Saari L L, Josephine C. Mechanism of sulfonylurea herbicide resistance inStellariamedia,Loliam perenne andSalsola iberica[J].Plant physiol,1992b,97:102-111.
    Salas M L, Favier P, Claude J P. Quick test to characterize herbicide resistant blackgrass(Alopecurus myosuroides Huds.)[A]. Proceedings11th EWRS Symposium[C]. Basel,Switzerland,1999,160
    Samac D.A., Hironaka C.M., Yallaly P.E., and Shah D.M. Isolation and Characterization ofthe Genes Encoding Basic and Acidic Chitinase in Arabidopsis thaliana [J]. PlantPhysiol.1990,93(3):907–914.
    Santel H.J., Bowden B.A., Sorensen V.M., Mueller K.H. Flucarbazone-sodium a newherbicide for grass control in wheat. Weed Sci. Soc. Am. Abstr.1999,1:23-28.
    Saiki R K et al. Enzymatic amplification of b-globin genomic sequences and restriction siteanalysis for diagnosis of sickle cell anemia. Science,1985,230:1350-1354.
    Sasaki Y, and Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation,and gene manipulation for plant breeding. Biosci. Biotechnol. Biochem.2004,68(6):1175-1184.
    Scarabel L., Carraro N., Sattin M., and Varotto S. Molecular basis and geneticcharacterisation of evolved resistance to ALS-inhibitors in Papaver rhoeas [J]. Plant Sci.,2004,166:703-709.
    Schena M D et al. Quantitative monitoring of gene expression patterns with a complementaryDNA microarray. Science1995,270:467-470.
    Schleiff E and Soll J. Travelling of proteins through membranes: translocation intochloroplasts. Planta,2000,211:449-456.
    Schulte W., Topfer R., Stracke R. Multi-functional acetyl-CoA carboxylase from Brassicanapus encode by a multi-gene family: indication for plastidic calization of at least oneisoform. Proc. Natl. Acad. Sci. USA,1997,94:3465-3470.
    Seefeldt S S, Jensen J E, Fuerst E P. Log-logistic analysis of herbicide dose responserelationship. Weed Technology,1995,9(2):218-227.
    Shaner D.L., Lym R.G.. Mechanisms of resistance to acetolactate synthase acetohydroxyacidsynthase inhibitors. Proceedings of the Western Society of Weed Sci., Seattle,Washington, USA,1991,44:122-125.
    Shaner D.L., Anderson P.C., Stidham M. Imidazolinones potential inhibitors ofacetohydroxyacid synthase. Plant Physiol.1984,76:545-546.
    Shukla A., Dupont S and Devine M D. Resistance to ACCase-inhibitor herbicides in wild oat:evidence for target site-based resistance in two biotypes from Canada. Pestic. Biochem.Physiol.,1997a,57:147-155.
    Shukla A., Leach G E., and Devine M D. High-level resistance to sethoxydim conferred by analteration in the targe enzyme, acetyl-CoA carboxylase, in Setaria faberi and Setariaviridis. Plant. Physiol. Biochem.,1997b,35:803-807.
    Sikkema S. R., Soltani N, Sikkema P. H., et al. Response of sweet maize (Zea mays L.)hybrids to halosulfuron. Crop Protection,2008,27(3-5):695-699
    Sibony M, Michel A, Haas H U, Rubin B, Hurle K. Sulfometuron-resistant Amaranthusretroexus: cross-resistance and molecular basis for resistance to acetolactate synthase(ALS) inhibing herbicides, Weed Research,2001,41(6):509-522.
    Siminszky B, Corbin F T, Ward E R, et al. Expression of a soybean cytochrome P450monooxygenase cDNA in yeast and tobacco enhances the metaboliam of phenylureaherbicides[J]. Proc Natl Acad Sci USA,1999,96:1750-1755
    Siminszky B. Plant cytochrome P450-mediated herbicide metabolism. Phyto. Chem. Rev.2006,5:445-458.
    Singh B K, Stidham M A, Shaner D L. Assay of acetohydroxyacid synthase. AnalyticalBiochemistry,1988,171:173-179.
    Smith M. A. K.. Comparing weed and seedling response to pre-emergence pendimethalinapplication in Corchorus olitorius and Abelmoschus esculentus.Crop Protection,2006,25:1221-1226
    Sun J., Wang J., Zhang H., Liu J., and Bian S. Study on Mutations in ALS of Resistance toTribenuron-methyl in Galium aparine L. Agricultural Sciences in China,2011,10(1):86-91.
    Sweetser P. B., Schow G. S., Hutchison J.M.. Metabolism of chlorsulfuron by plants:Biological basis for selectivity of a new herbicide for cereals. Pesticide Biochemistry andPhsiology,1982,17(1):18-23
    Stidham M.A. Herbicides that inhibit acetohydroxyacid synthase [J]. Weed Sci.1991,39:428-434.
    Takahashi S, Shigematsu S, Morita A. KIH-2031, a New herbicide for cotton [C].Proceedings of the brighton crop protection conference, Farnham, U K: Brighton CropProtection Council,1991,57-62.
    Tal A, Kotoula-Syka E, Rubin B. Seed-bioassay to detect grass weeds resistant toacetylcoenzyme A carboxylase inhibiting herbicides[J]. Crop Protect,2000,19:467-472.
    Tal A, Rubin B. Molecular characterization and inheritance of resistance toACCase-inhibiting herbicides in Lolium rigidum. Pest Management Science,2004.60:1013-1018.
    Tal A., Zarka S and Rubin B. Fenoxaprop-P resistance in Phalaris minor conferred by aninsensitive acetyl-coenzyme A carboxylase. Pestic. Biochem. Physiol.,1996,56:134-140.
    Tamara M, Saito Y. Pesticide Science[J],1996,47:125-130
    Tan S, Evans R R, Dahmer M L, et al. Imidazolinone-tolerant crops: history, current statusand future[J]. Pest Management Science,2005,61(3):246-257
    Tardif F J and Powles S B. Herbicide multiple-resistance in a Lolium rigidum biotype isendowed by multiple mechanisms: isolation of a subset with resistant acetyl-CoAcarboxylase. Physiol. Plant.,1994,91:488-494.
    Tardif F J, Rajcan I, Costea M. A mutation in the herbicide target site acetohydroxyacidsynthase produces morphological and structural alterations and reduces fitness inAmaranths powellii. New. Phytol.,2006,169:251-264.
    Tardif F J., Holtum J A M., and Powles S B. Occurrence of a herbicide resistantacetyl-coenzyme A carboxylase mutant in annual ryegrass (Lolium rigidum) selected bysethoxydim. Planta,1993,190:176-181.
    Thompson A R, McReath A M, Carson C M, et al. Florasulam: a new low dose herbicide forbroadleaf weed control in cereals[J]. Brighton Conference-weeds, Brighton UK,1999,73-80
    Tranel P J, Wright T R, Heap I M. ALS mutations from herbicide-resistant weeds URLhttp://www.weedscience.org. Accessed: January2008.
    Tranel P J, Wright T R. Resistance of weeds to ALS inhibiting herbicides: what have welearned? Weed Science,2002,50(6):700-712.
    Tranel P.J., Wright T.R., Heap I.M. ALS mutations from herbicide-resistant weeds.http://www.weedscience.org.2012.
    Umbarger H.E.. Amino acid biosynthesis and its regulation [J]. Annu. Rev. Biochem.1978,47:533-606.
    Vandenbroucke I I., Vandesompele J., Paepe A D., and Messiaen L. Quantification of splicevariants using real-time PCR. Nucleic. Acids. Res.,2001,29:68.
    Van Heertum, John C, Gerwick. et al. Alkoxy-1,2,4-triazolo(1,5-c)pyrimidine-2-sulfonamides, process for their preparation and intermediates.(DowElanco, USA). U.S.(1992),17pp. us5163995
    Veldhuis L J, Hall L M, O’Donovan J T, Dyer W, Hall J C. Metabolism-based resistance of awild mustard (Sinapis arvensis L.) biotype to ethametsulfuron-methyl. Agricultural andFood Chemistry,2000,48:2986-2990.
    Vencill W K (Ed.). Herbicide handbook. Lawrence, KS: Weed Science Society of America,2002,369
    Wang G., Cui H. Zhang H., Zhang Y., Liu X., Li X., Fan C. Tribenuron-Methyl ResistantShepherd’s Purse (Capsella bursa-pastoris (L.) Medik.) in Hebei Province of China.Agricultural Sciences in China,2011,10(8):1241-1245.
    Wakils J. A malonic acid derivative as an intermediate in fatty acid synthesis. Journal of theamericam chemical socity,1958,80:64-65.
    Warwick SI, Xu R, Sauder C, Beckie HJ. Acetolactate synthase target-site mutations andsingle nucleotide polymorphism genotyping in ALS-resistant kochia(Kochib scoparia).Weed Sci.,2008,56:797-806.
    Whaley C.M., Wilson H.P., and Westwood J.H. Characterization of a new ALS-inhibitorresistance mutation from the ALS gene of smooth pigweed (Amaranthus hybridus)[J].Weed Sci. Soc. Am. Abstr.2004, no.161.[CD-ROM Computer File].
    White A.D, Graham M.A, Owen M.D.K. Isolation of acetolactate synthase homologs incommon sunflower [J]. Weed Sci.,2003,51(6):845-853.
    White A.D, Owen M.D.K., Hartzler R.G., Cardina J. Common sunflower resistance toacetolactate synthase-inhibiting herbicides[J]. Weed Sci.,2002,50(4):432-437.
    Wittenbach V. A., Koeppe M. K., Lichtner F. T., et al. Basis of Selectivity ofTriflusulfuron Methyl in Sugar Beets (Beta vulgaris). Pesticide Biochemistry andPhysiology,1994,49(1):72-81
    Wolt J D, Schwake J D, Batzer F R, et al. Anaerobic aquatic degradation of flumetsulam[N-(2,6-difluorophenyl)-5-methyl [1,2,4] triazolo [1,5-a] pyrimidine-2-sulfonamide][J]. JAgric Food Chem,1992,40(11):2302-2308
    Woodworth A.P., Bernasconi P., Subramanian M., and Rosen B. A second naturally occurringpoint mutation confers broad-based tolerance to acetolactate synthase inhibitors [J]. PlantPhysiol.,1996,111: S105.
    Xu X, Wang G Q, Chen S L, et al. Confirmation of Flixweed (Descurainia sophia) Resistanceto Tribenuron-Methyl Using Three Different Assay Methods. Weed Science,2010,58:56-60.
    Xu X, Wang G Q, Chen S L, et al. Confirmation of Flixweed (Descurainia sophia) Resistanceto Tribenuron-Methyl Using Three Different Assay Methods[J]. Weed Science,2010,58:56-60.
    Yang C H., Dong L Y., Li J., Stephen R M. Identification of Japanese foxtail (Alopecurusjaponicus) resistant to haloxyfop using three different assay techniques. Weed Science,2007,55:537-540.
    Ye B., Gressel J. Transient, oxidant-induced antioxidant transcript and enzyme levelscorrelate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis. Planta,2000,211(1):50-61.
    Yun M S, Deng F, Usui K. O-delkylation of coumarin ethers and effects of inducers,inhibitors, and sulfonylureas on rice cytochrome P450[J]. Journal of Weed Science andTechnology,1999,44(4):341-348
    Yun M S, Shi I S, Usui K. Involvement of cytochrome P450enzyme activity in the selectivityand safening action of pyrazosulfuron-ethyl[J]. Pest Management Science,2001,57(3):283-288
    Yu Q., Collavo A., Zheng M. Q., Owen M., Sattin M., and Powles S B. Diversity ofacetyl-coenzyme A carboxylase mutations in resistant Lolium biotypes: evaluation usingclethodim. Plant. Physiol.,2007b,145:547-558.
    Yu Q., Shane Friesen L J., Zhang X Q and Powles S B. Tolerance to acetolactate synthase andacetyl-coenzyme A carboxylase inhibiting herbicides in Vulpia bromoides is conferredby two co-existing resistance mechanisms. Pesticide Biochemistry and Physiology,2004,78:21-30.
    Yu Q., Abdallah I., Han H. P., Owen M., Powels S., Distinct non-target site mechanismsendow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multipleherbicide-resistant Lolium rigidum. Planta,2009,230:713-723.
    Yu Q., Zhang X Q., Hashem A., Walsh M J., Powles S B. ALS gene proline (197) mutationsconfer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum)biotypes. Weed. Sci.,2003,51:831-838.
    Yu Q., Han H. and Powles S.B. Mutations of the ALS gene endowing resistance toALS-inhibiting herbicides in Lolium rigidum biotypes [J]. Pest Manag. Sci.,2008,64(12):1229-1236.
    Yu Q., Nelson J.K., Zheng M.Q., Jackson M., Powles S.B. Molecular characterization ofresistance to ALS-inhibiting herbicides in Hordeum leporinum biotypes [J]. Pest. Manag.Sci.,2007a,63(9):918–927.
    Zagnitko O, Jelenska J, Tevzadze G, Haselkorn R, Gornicki P. An isoleucine/leucine residuein the carboxyltransferase domain of acetyl-CoA carboxylase is critical for interactionwith aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proc. Natl. Acad. Sci.USA.,2001,98:6617-6622.
    Zhang H., Benjamin T and Tong L. Molecular basis for the inhibition of thecarboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop anddiclofop. PNAS,2004,101:5910-5915.
    Zhang H., Yang Z., Shen Y and Tong L. Crystal Structure of the Carboxyltransferase Domainof Acetyl-Coenzyme A Carboxylase. Science,2003,299,2064-2067.
    Zhang X Q and Devine M D. A possible point mutation of plastidic ACCase gene conferringresistance to sethoxydim in green foxtail (setaria viridis). Weed. Sci. Soc. Am. Abstr.,2000, No.40.
    Zhang X Q and Powles S B. The molecular bases for resistance to acetyl coenzyme Acarboxylase (ACCase) inhibiting herbicides in two target-based resistant biotypes ofannual ryegrass (Lolium rigidum). Planta,2006a,223:550-557.
    Zheng D., Kruger G.R., Singh S., Davis V.M., Tranel P.J., Weller S.C., and Johnson W.G.Cross-resistance of horseweed (Conyza canadensis) biotypes with three different ALSmutations [J]. Pest Manag. Sci.,2011,67(12):1486-1492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700