羟基查尔酮类似物的合成及其体内体外抗自由基活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     据报道,查尔酮类化合物具有抗肿瘤、抑制和清除氧自由基、抗菌、抗病毒、抗寄生虫、抗胃溃疡及抗过敏等多种药理活性。然而,相关文献报道较多集中在人工合成查尔酮的合成工艺讨论,抑或具有查尔酮结构的天然植物提取物的药理活性分析,而对于查尔酮及其类似物构效关系的阐述则并不多见。据报道,具有酚结构的羟基查尔酮类化合物具良好的抗氧化、清除自由基等药理作用,可有效抑制化学诱导剂缩氨酸、酵母聚糖调理素、大戟二萜醇氨基苯二酰肼醋酸酯等三种刺激物刺激多形核白细胞释放氧自由基。在本研究中,拟合成一系列羟基查尔酮类似物,并对其进行体内体外抗自由基活性测试,试图发现该类化合物活性构效关系以及具有优良抗自由基活性的新结构。
     研究目的
     发现羟基查尔酮类化合物抗自由基活性构效关系以及具有优良抗自由基活性的新结构。
     研究方法
     ①合成部分
     以羟基苯甲醛类似物和羟基苯乙酮类似物为原料、以哌啶为催化剂,通过Claisen-Schmidt反应得到羟基查尔酮类似物。
     ②药理部分
     用邻二氮菲-Fe2+氧化法测定羟基查尔酮类似物清除羟自由基(·OH)的活性,用DPPH法中的静力学法测定其清除1,1-二苯基苦基苯肼自由基(DPPH? )的活性,通过超氧化物歧化酶(SOD)、丙二醛(MDA)、谷胱甘肽过氧化物酶(GSH-PX)水平测试考察东莨菪碱所致阿尔茨海默病小鼠脑组织过氧化损伤的保护作用。
     研究结果
     ①合成部分
     合成出9个羟基查尔酮类似物,分别为乳白色、黄色或橙色晶体,结构均经IR、1H-NMR、MS分析确证。
     ②药理部分
     在体外抗自由基活性测试中,C_1、C_2、C_3、C_4、C_5、C_7、C_8、C_9清除DPPH?的IC_50分别为2.1928 mmol/L、6.3533 mmol/L、1.8967 mmol/L、5.7809 mmol/L、0.5623 mmol/L、0.2344 mmol/L、0.2339 mmol/L、0.2547 mmol/L,其中C_6无清除能力,C_2、C_4清除能力较弱,C_1、C_3、C_5清除能力尚好,而C_7、C_8、C_9清除能力较优,在较高浓度下清除率可达90%以上,几与阳性对照药VC(IC_50=0.2234 mmol/L)相当。C_1、C_2、C_3、C_4、C_5、C_7、C_8、C_9清除OH?的IC_50分别为2.1429 mmol/L、4.5709 mmol/L、4.8641 mmol/L、10.2565 mmol/L、0.9528 mmol/L、0.4721 mmol/L、0.4634 mmol/L、0.5129 mmol/L,其中C_6无清除能力,C_4清除能力较弱,C_2、C_3次之,C_1、C_5清除能力尚好,而C_7、C_8、C_9清除能力较优,与阳性对照药VC相当(IC_50=0.4550 mmol/L)。体内抗自由基过氧化损伤活性测试结果表明,化合物C_7、C_8可升高东莨菪碱所致阿尔茨海默病脑过氧化损伤小鼠全脑SOD(P<0.05)、GSH-PX水平(P<0.05),降低MDA水平(P<0.05)。
     结论
     ①找到一步法合成羟基查尔酮类似物的工艺。②发现各化合物OH·的清除活性与DPPH·自由基清除活性大小排序基本一致,这表明,羟基查尔酮类似物对两种自由基可能有着相同的清除机理。③发现以下构效关系:4位酚羟基邻位取代基类型与化合物抗自由基活性密切相关:邻位取代以供电子基团,活性明显增强;邻位取代以吸电子基团,活性明显减弱;且两边取代位点的取代基效应通常具有叠加性。④化合物C_7、C_8具有优良的拮抗东莨菪碱所致阿尔茨海默病小鼠脑过氧化损伤的作用,但并未得出相应量效关系。
Background
     Chalcones are reported to be pharmacologically active in anti-cancer, anti-free radical, anti-bacteria, anti-virus, anti parasite, anti-gastric ulcer and anti-allergy. However, there are many references concerning the synthesis routes of chalcone derivatives or plant abstracts analysis containing them, rather than structure-activity relationship illustrations of a series of structurally identified chalcones. It is also reported that hydroxyl substituted chalcones, a kind of phenol, show capacities in anti-oxidation and clearing free radicals, some of which are released from polymorphonuclear leukocytes stimulated by peptide and zymosan opsonin. In this study, we attempt to synthesize a series of hydroxyl substituted chalcones and have further tests on their free radical-clearing activities in vivo and vitro, hoping to discover the structure-activity relationships of hydroxyl substituted chalcones and find out some new structures with high anti-free radical activities.
     Objective
     To discover the structure-activity relationships of hydroxyl substituted chalcones and find out some new structures with high anti-free radical activities.
     Methods
     ①Synthesis
     To synthesize a series of hydroxyl substituted chalcones via Claisen-Schmidt Condensation with hydroxyl substituted benzaldehydes and hydroxyl substituted acetophenones as reactants and piperidine as catalyst.
     ②Pharmacology
     To determine DPPH free-radical and OH free-radical clearing efficiencies via DPPH-Static Force Method and Ferrosin-Fe2+ Oxidation Method. To detect the influences of the compounds, whose activities excel the others in vitro-anti-free radical tests, on SOD, MDA , GSH-PX levels in whole brains of scopolamine induced-Alzheimer’s mice with peroxidation injuries.
     Results
     ①Synthesis
     A series of hydroxyl substituted chalcones (C_1~C_9)were synthesized via Claisen-Schmidt Condensation with IR,1H-NMR,MS identifications. All of the compounds had a milk-white ,or yellow, or orange crystal appearance.
     ②Pharmacology
     IC_50 values of C_1~C_9 (except C_6)on DPPH free radical clearing were 2.1928 mmol/L、6.3533 mmol/L、1.8967 mmol/L、5.7809 mmol/L、0.5623 mmol/L、0.2344 mmol/L、0.2339 mmol/L、0.2547 mmol/L respectively and C_7、C_8、C_9 > C_1、C_3、C_5> C_2、C_4>C_6 , ranked by clearing-activity ,where C_6 hardly showed any activity and C_7、C_8、C_9 excel the others and are able to clear more than 90% DPPH free radicals in high concertrations with IC_50 values similar to Positive Control Drug -VC(IC_50=0.2234 mmol/L); IC_50 values of C_1~C_9 (except C_6)on OH free radical clearing were 2.1429 mmol/L、4.5709 mmol/L、4.8641 mmol/L、10.2565 mmol/L、0.9528 mmol/L、0.4721 mmol/L、0.4634 mmol/L、0.5129 mmol/L respectively and C_7、C_8、C_9 > C_1、C_5> C_2、C_3>C_4>C_6, ranked by clearing-activity ,where C_6 hardly showed any activity and C_7、C_8、C_9 excel the others with IC_50 values similar to Positive Control Drug -VC(IC_50=0.4550 mmol/L);Results in vivo test of detections on SOD, MDA , GSH-PX levels in whole brains of scopolamine induced-Alzheimer’s mice with peroxidation injuries, revealed that C_7、C_8 are able to elevate Glutathione peroxidase (GSH-PX) (P<0.05), Super Oxide Dismutase(SOD) (P<0.05)level and lower Malonaldehyde (MDA) (P<0.05)level in certain extents.
     Conclusion
     ①A practical way to synthesize hydroxyl substituted chalcones was found.
     ②The fact that the compounds showed similar rankings by activity in clearing DPPH-free-radical and OH-free-radical, demonstrated that hydroxyl substituted chalcones may clear these two kinds of free-radicals in similar mechanisms.
     ③Structure-Activity Relationship illustrations: Anti-free radical activities varied a lot in hydroxyl substituted chalcones with different ortho-position-substitutions of 4- phenolic hydroxyls. Activities rose when an electron-donating-group substituted ortho positions of 4- phenolic hydroxyls while activities fell when an electron-withdrawing-group substituted ortho positions of 4- phenolic hydroxyls , and the two effects seem to stack when both ortho-positions were substituted.④Compound C_7、C_8 successfully antagonized peroxidation injuries of scopolamine induced-Alzheimer’s disease in mice brains, but no dose-effect relationships were found.
引文
[1] Shibata S.Anti-tumorigenic chalcone[J].Stem Cell,1994,12(1):44~52.
    [2]郭昌月,韩锐.第三代维甲类化合物R8923及全反式维甲酸的癌化学预防作用的研究[J].中华肿瘤学杂志,1994,16(3):163~166.
    [3] Devi MA,Das NP.In vitro effects of natural plant polyphenols on the proliferation of normal and abnormal human lymphocytes and their secretions of interleukin-2[J].Cancer Lett,1993,69(3):191~196.
    [4] Er-Bin Yang et al.Butein,a specific protein tyrosine kinase inhibitor[J]. Biochemical and biophysical research communications.1998,245(2):435~438.
    [5] Limasset B, Doucen C, Dore JC, et al.Effects of flavonoids on the release of reactive oxygen species by stimulated human neutrophils[J].Biochem Pharmacol,1993,46(7):1257~1271.
    [6] Inamori Y,Baba K,Tsujibo H, et al. Antibacterial activity of two chalcones, xanthoangelol and 4-hydroxyderricin,isolated from the root of Angelica keishet Koidzumi[J]. Chem Pharm Bull.1991,39(6):1604~1605.
    [7] Lopez A,Ming DS,Towers GH.Antifungal activity of benzoic acid derivatives from Piper lanceaefolium[J].JNatProd,2002,65(1):62.
    [8]杨立,沈凤嘉.甘草素与异甘草素的合成[J].药学学报,1994,29(11):877~880.
    [9] Harborne JB.Nature,distribution,and function of lant flavonoids.In:Cody V,Middleton E, Ha-rborne J, eds.Plant flavonoids in biology and medicineⅡ[J]. Biochemical,celluar and medicinal properties,1988:388~402.
    [10] Adewunmi CO et al.Molluscicidal activities of some synthetic chalcones[J]. Planta Med,1987,53(1):110~121.
    [11]耿辉,徐明星.植物杀螺剂的研究概况[J].实用寄生虫病杂志,2002,10(2):85~87.
    [12] Murakami S,Muramatsu M,Aihara H,et al.Inhibition of gastric H+ /K+-ATPase by the antiulcer agent Sofalcone [J]. Biochem Pharmacol,1991,42(7):1447~1451.
    [13]何克勤,程桂芳,奚凤德等.查耳酮类化合物对过敏性慢反应物质拮抗作用的构效药关系[J].药学学报,1996,31(11):878~880.
    [14]黄华永,沈海星,郑锦鸿.阿魏酸及其类似物的合成及其清除自由基活性研究[J].中国新药杂志,2006,15(6):454~458
    [15]陈万木,郭宏雄.环上取代基对苯乙酮和苯甲醛缩合反应的影响[J].合成化学,1999,7(4):422~426.
    [16] OGNYAN P,YORDANKA I,MARIANA G. SOCl2/EtOH:Catalytic system for synthesis of chalcones[J].Catalysis Communications,2008,9,315~316.
    [17] Ognyan Petrov, Yordanka Ivanova, Mariana Gerova. SOCl2/EtOH: Catalytic system for synthesis of chalcones[J]. Catalysis Communications,2008,9,315~316
    [18] Qiong Xu, Zhigao Yang, Dulin Yin , Feng Zhang.Synthesis of chalcones catalyzed by a novel solid sulfonic acid from bamboo. Catalysis Communications,2008,1579~1582.
    [19] Ebitani K, Motokura K, Mori K, et al. Reconstructed hydrotalcite as a highly active heterogeneous base catalyst for carbon-carbon bond formations in the presence of water[J]. Journal of Organic Chemistry, 2006,71(15):5440~5447 .
    [20] Patra A, BandyopadhyayM, Ghorai S K, et al . A simple and efficient method for the epoxidation ofα,β-unsaturated aldehydes and ketones using aqueous hydrogen peroxide sodium ethoxide [J]. Organic Preparations and Procedures International,2003,35(5):515~520 .
    [21] Choudary B M, Kantam M L, Kavita B, et al . Catalytic C—C bond formation promoted by Mg-Al-O-tBu hydrotalcite[J]. Tetrahedron,2000,56(47):9357~9364 .
    [22] Kantam,M.L.; Prakash,B.V.; Reddy,C.V.; Efficient Synthesis of Chalcones by a Solid Base Catalyst. Synthesis Communications,2005,35(14),1971~1978
    [23] Shimada K,Fujikawa K,Yahara K,et al.Antioxidative properties of xanthan on the antioxidantion of soybean oil in cyclodextrin emulsion[J]. Journal of Agricultural and Food Chemistry,1992,40:945~948.
    [24] Da Porto C , Calligaris S , Celotti E ,et al. Antiradical properties of commercial cognacs assessed by the DPPH test [J] .J Agric Food Chem ,2000, 48:4241~4245.
    [25] Standley L , Winterton P , Marnewick J L , et al. Influence of processingstages on antimutagenic and antioxidant potentials of rooibos tea [J]. J Agric Food Chem,2001,49:114~117.
    [26]许申鸿,杭瑚.二苯代苦味肼基自由基分光测定法及其应用的初步研究[J].植物生理学通讯,1999,35(6):474~477.
    [27]彭长连,陈少薇.用清除有机自由基法评价植物抗氧化能力[J].生物化学与生物物理进展,2000,27(6):658~661.
    [28]陈丛瑾,黄克瀛等.香椿叶提取物清除DPPH·能力的测定方法[J].林产化学与工业, 2006,26(3):69~72.
    [29]宋怀恩,闻韧.抗氧化剂筛选方法的研究进展[J].中国药物化学杂志,2003,13(2): 119~124.
    [30]郑晶泉.抗氧化剂抗氧化实验研究进展[J].国外医学:卫生学分册,2000,27(1): 37~40.
    [31]翁新楚,吴侯.抗氧化剂的抗氧化活性的测定方法及其评价[J].中国油脂,2000,25 (6):119~122.
    [32] BORSW,VAN BEEK TA. Sereening of plant extracts for antioxidant activity: a comparative study on three testingmethods [J]. Phytochemical Anaiysis, 2002,13(1):8~17.
    [33] MIRELLA N, GAULEJAC N. Comparative study of polyphenol scavenging activities assessed by different methods[J]. J Agric Food Chem,1999,47(2):425~431.
    [34]夏向东,吕飞杰,台建祥.抗氧化剂的功效及抗氧化活性的体外分析评价[J].食品研究与开发,2001,22(1):38~42.
    [35] HIDEYUKIL, KAHARA T. Superoxide and 1, 1-dipheny1,2-pieryhydrazyl radical- scavenging activities of soyasaponin related to gallic acid [J]. Biosci Biotechnol Biochem,2001,65(10): 2162~2165.
    [36] OSTRAKHOV ICH E A, CARLES C. Evaluation of scavenging activity assessed by Co (2) EDTA-induced luminol chemilumescence and DPPH(2, 2-dipheny1-1 picrydrazy) free radical assay[J]. Journal of Pharmacological and ToxicologicalMethods,2000,44(3):507~512.
    [37]刘国辉.自由基清除剂研究进展[J].国外医学·老年医学分册,2004,25(5):210~216.
    [38]唐灵芝,黄华勇,张鲁勉等.4-羟基肉桂酸衍生物清除羟自由基活性的构效关系[J].汕头大学医学院学报,2007,20(1):18~20.
    [39]黄华永,沈星海,郑锦鸿.阿魏酸及其类似物的合成及其清除自由基活性研究[J].中国新药杂志,2006,15(6):454~458.
    [40]金鸣,蔡亚欣,李金荣等.邻二氮菲-Fe2+氧化法检测H2O2/ Fe2+产生的羟自由基[J].生物化学与生物物理进展,1996,23(6):553~555.
    [41]庞战军,周玫,陈瑗.自由基医学研究方法[M].北京:人民卫生出版社,2000.14~15.
    [42]唐灵芝.1-阿魏酰基-4-苄基哌嗪盐酸盐类似物的合成及体外清除羟自由基活性研究.汕头大学硕士学位论文.2003.
    [43]韩煜,等焕彩.基础化学实验[M].昆明:云南科技出版社,1992.68~71.
    [44]吕秋军.新药药理学研究方法[M].北京:化学工业出版社,2007.149~151.
    [45]李俊松,王敏.老年性痴呆动物模型研究概况[J].长春中医学院学报,2003,19(1): 58~59.
    [46]徐剑文,俞昌喜.阿尔茨海默病实验动物模型的研究进展[J].国外医学?老年医学分册,2008,29(3):97.
    [47]周瑾.老年性痴呆的发病机制和中枢胆碱能系统的关系[J].实用老年医学,1998,12(3):1221.
    [48]于滨,胡继身,李电东.增智乌鸡宝对小鼠学习记忆作用的影响[J].医学研究通讯,2000,29(3):12~14.
    [49] M. D. Mashkovskii, V. A. Parshin and R. B. Parimbetova. Effect of aceclidine on scopolamine- and electroshock-induced amnesia in rats[J]. Bulletin of Experimental Biology and Medicine,1997,123(3):296~298.
    [50] Chang-Kyun Han, Yang Hae Park, Da-Qing Jin, et al. SK-PC-B70M from Pulsatilla koreana improves scopolamine-induced impairments of memory consolidation and spatial working memory[J],2007,1184(12):254~259
    [51] Bartolomeo A C,Morris H,Buccafusco J J,et al.The preclinical pharmacological profile of WAY-132983, a potent M1 preferring agonist[J]. The Journal of pharmacology and experimental therapeutics.2000,292(2):584~596.
    [52] Julie Espallergues,Laurie Galvan,Laurence Lepourry,et al. Hyposensitivity to the amnesic effects of scopolamine or amyloidβ25–35 peptide in heterozygousacetylcholinesterase knockout (AChE+/?) mice[J]. Chemico-Biological Interactions,2008,175:131~134.
    [53] MI JEONG KIM, SOO JUNG CHOI,LIM Seung-Taik. Zeatin Supplement Improves Scopolamine-Induced Memory Impairment in Mice[J]. Bioscience、biotechnology and biochemistry,2008,72(2):577~581.
    [54] Domenico Praticò. Evidence of Oxidative Stress in Alzheimer's Disease Brain and Antioxidant Therapy [J]. Annals of the New York Academy of Sciences,2008,1147:70~78.
    [55] Mark A. Smith, Catherine A. Rottkamp, Akihiko Nunomura, et al. Oxidative stress in Alzheimer’s disease[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease,2000,1502,(1):139~144.
    [56] Ying Fan,Jinfeng Hu,Jing Li,et al. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms[J].Neuroscience Letters,2005,374(3):222~226.
    [57] M Raghavendra,Rituparna Maiti,Shafalika Kumar,et al. Role of Ocimum sanctum in the experimental model of Alzheimer's disease in rats[J].Original Article,2009,3(1):6~15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700