化学粘合和热粘合加固的麻类非织造布性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用非织造方法即化学浸渍法和热粘合法,对纺织加工过程中的苎麻纤维和亚麻纤维的下脚料进行回收利用,并比较这两种不同方法加工的试样在性能与结构方面的异同。
     在这两种方法中,纤网制备均采用气流成网。
     在化学浸渍法中,粘合剂分别为淀粉浆和聚丙烯酸酯类,对两种相同浓度粘合剂的试样及其与玻璃纤维布复合产品的性能及结构进行对比研究,可得出:对于同一种粘合剂试样,纤维的强力不是影响化学浸渍法产品的主要因素,粘合剂的性质对产品的性能影响较大,苎麻纤维为原料的试样性能优于亚麻纤维为原料的试样性能;实验所采用的聚丙烯酸酯类粘合剂产品的性能优于淀粉粘合剂产品的性能,但用淀粉粘合剂的最大优点就是绿色环保;加玻璃纤维布后的复合产品,断裂强力显著增大,试样的透气性增加,保暖性降低;所有的试样抗紫外线性与透光性能都比较好,均可以满足农业用覆盖材料的要求。
     在热粘合法中,主要对亚麻纤维与ES纤维的热轧法的工艺进行了探讨。本实验采用正交设计,利用方差分析法,对影响试样物理—机械性能指标的参数即ES纤维含量、加热温度、加热时间、压力对产品性能的影响进行了分析。经研究表明:ES纤维含量对产品的各项性能影响最大,ES纤维含量增大,样品的纵横向单位断裂强度增加显著。
     本论文还有选择地对一些试样进行电镜分析,发现ES纤维含量越高,粘合点的数目越多,粘合面积越大,这些粘合点将各个方向杂乱的亚麻纤维连接起来形成粘结区;温度不同则ES纤维的熔融程度不同,即粘结效果不同,从而导致断裂强力不同,过低和过高的温度均不利于形成良好的粘合结构。如果温度太低,在没有达到ES纤维的熔点之前,ES纤维没有充分熔融,不能很好地连结亚麻纤维。当温度和时间不变时,压力小会导致粘合不良,产品强力很低。增加压力有助于ES纤维的流动和扩散,对于形成良好的粘合有重要作用。
     对比用两种不同方法生产的试样,化学浸渍法试样的断裂强度要优
    
    于热粘合试样的断裂强度,透气性接近。ES纤维与亚麻纤维的粘合属于
    非极性粘合。与亚麻纤维和ES纤维的点状粘合相比,化学浸渍法试样中
    纤维与粘合剂的粘合属于片膜状粘合。
     本论文所采用的两种方法对开发麻纤维下脚料非织造布是有价值
    的,部分试样经浙江萧山麻研究所植物试种实验,结果表明,植物长势
    良好,其它的应用还有待进一步研究。
In this paper, the waste fibers of ramie and flax produced during the textile processes have been used in nonwovens which are chemical-bond and thermal-bond. At the same time, the products' mechanical properties and structures are discussed.
    Air-laying are used for the fibers web in the test.
    During the chemical-bond processes, two different adhesives, namely the starch and the polyacrylic ester, are used. Their products with the same density and the same adhesive and the products contained the glass fabrics are analyzed. The products with the same adhesive have the similar tenacity, which shows that the fibers' strength is not the main reason to the products' tenacity. The adhesive has the effects on the products' properties. The products bound by the polyacrylic ester have the excellent features than the products bound by the starch. The tenacity of the products with the ramie fibers is larger than that with the flax fibers. And the products with the polyacrylic ester is better than the products with the starch. However, the products bound by the starch are suitable for environmental protection. The products contained the glass fabrics have the stronger tenacity, the air permeability is added and the heat retention is reduced. Both the ramie and flax products have the excellent resistance to ul
    traviolet radiation and light transparence, which can meet the requirement of agricultural application.
    The thermal-bond processing of the flax fibers and ES fibers are studied through the orthogonal layout and variance analysis. Some parameters such as the content of ES fibers, the heating temperature, the heating time and the
    
    
    pressure, which have the great effect to the products physics and mechanical performance, are discussed. The study shows that the content of the ES fibers is the main factor to the products' performance. With the increasing of the ES fibers, the breaking tenacity both longitudinal and crosswise are raised greatly.
    Some scanning electron microscope pictures have been taken. The number of the adhesive points and the adhesive area increase with the ES content increasing. These adhesive points connect all flax fibers to form the adhesive area. With the different temperature, the ES fibers have the different melt performance. Because of the different adhesive effect, the tenacity is different. Too high or too low temperature is not suitable for better adhesive structure. If the temperature is too low, which can not reach the ES fibers' melt point, the ES fibers can not melt fully and can not bind flax fibers. When the heating temperature and the time do not change, the lower pressure will result in the poor bind and the strength of the product is low. The higher pressure can help to the flow and diffusion of ES fibers, which are important to form better binding.
    To the different products which made by different ways, the breaking tenacity in the chemical-bond product is larger than that of the thermal-bond and their air permeability is similar. The bond between the flax fibers and the ES fibers belongs to non-polarity. Compared with the point-bond between flax fibers and ES fibers, the binding types of the chemical-bond product belong to the binder film. Both of the two binding ways belong to the mechanical binding.
    The two ways are suitable for the ramie and the flax waste fibers. Some of the products are tested by Zhejiang Xiaoshan Hemp Research Institute. The result shows that the plant growing is good.
引文
[1] 王廷熹,非织造布生产技术,上海:中国纺织大学出版社,1998.4
    [2] 姚穆等,纺织材料学,北京:纺织工业出版社,1996.4
    [3] 曲丽君,麻纤维在汽车用装饰材料中的应用,产业用纺织品,2002,20,8,36~38
    [4] 曲丽君,亚麻纤维在造纸非织造布成形中的研究,纺织学报,1999,20,6,372~373
    [5] 汪在芹等,黄麻土工布对土壤抗侵蚀性能的影响,长江科学院院报 1998,15,3,31~34
    [6] 亚麻纤维在医用非织造布生产中的应用,产业用纺织品,1999.17(102):30
    [7] Debnath-CR,Roy-AN.. Thermal Insulation Behaviour of Jute Needle Punched Nonwoven Textiles. Man Made textiles in India, 2001,44(12): 481~483
    [8] S.Debnath,A.K.Mazumder and M.Madhusoothanan. Study of Polypropylene wollenised Jute Blended Needle-punched Non-wovens Using a Factorial Design. Man Made textiles in India,2001,2:53~58
    [9] Mieck.K-P, Lutzkendorf R, Reussmann T. Needle-punched Hybrid Nonwovens of Flax and PP fibers-textile Semiproducts for Manufacturing of Fiber Composites. Polymer composites, 1996,17(6):873~878
    [10] Bottcher P. 8 th nonwovens seminar in Internationak Textile Bulletin Nonwovens/Industrial-Textiles, 1994,40,1,23-24
    [11] Dr.C.R.Debnath. Influence of Manufacturing Factors on Tensile Behaviour of Acrylan and Acrylan-Woollenised Jute Non-wovens. Man-made Textiles In India 2001,11,443-447
    [12] 董汉生,含化纤废混纺织物回用新方法的研究,国外纺织技术,1996,1,34~40
    [13] 张卓,国内外纺织品回收业的现状,国外纺织技术,2001,2,37~39
    [14] J.W.S.Hearle, A.Newon. The Application of the fiber network theory, Textile Res.J, 1968
    [15] Joachim Lunenschloss, V.P.Gupta, New development in needling techniques, Congress Papers 4, Advances in Needling
    [16] Mansour H.monhamed,Elsayed M.Afify, Needle punched fabrics in filtration,
    
    Technical Symposium, Nonwoven Product
    [17] R Sivaramakrishnan. Jute Geotextiles, an Environment Friendly Engineering Material. The India Textile Journal, 1993,6:86~90
    [18] Drela b, Arthur. Thermal Bonding with Fusible Fibers Nonwovens Industry, Sept. 1985.12
    [19] 赵书经主编,纺织材料实验教程,中国纺织出版社 1994.2
    [20] Christine(Qin)Sun,Dong Zhong,双组分纤维熔喷非织造布及其潜在应用,第九届上海国际非织造材料研讨会,295~302
    [21] 王琼华,陈必梅,热粘合复合纤维PP/PE的研究,合成技术及应用,1997.12.3.31~35
    [22] 邱平善,王桂芳,郭立伟编著,材料近代分析测试方法实验指导,哈尔滨工程大学出版社,哈尔滨,2001,8.
    [23] 汪锡安,胡宁先,粘合剂及其应用,上海:上海科学技术文献出版社
    [24] 徐光进,商承杰,纺织品防紫外整理的探讨和实践,针织工业,1999.3:53~55
    [25] 钱程,储才元,非织造布絮片保暖性能的研究,非织造布,1999,V13(3),14~16
    [26] 朱世林,纤维素纤维制品的染整,北京:中国纺织出版社,446~450
    [27] 丁颖等,苎麻织物免烫整理研究,上海纺织科技,2002.30.4.43~46
    [28] 孟繁杰,亚麻纤维的内部结构及其服用性能的探讨,黑龙江纺织,1997,4,10~11
    [29] 吴贵生,试验设计与数据处理,北京:冶金工业出版社,1997
    [30] 李汝勤等,纤维和纺织品的测试原理与仪器,上海:中国纺织大学出版社,1995
    [31] 庄楚强,吴亚森编,应用数理统计基础,华南理工大学出版社,1999
    [32] 中国科学院数学研究所统计组编,方差分析,科学出版社,1977
    [33] R.M.Hoffman, L.F.Beste. Some Relation of Fiber Properties to Fabric Hand Text.Res.J., 1951 21:66
    [34] 陈龙敏,非织造材料的农业应用和发展,中国产业用纺织品行业协会会员大会暨研讨会论文集,2002.118~123
    [35] 储才元等,粘结点分布对热粘合非织造布性能影响的实验研究,非织造布1998,2,34~37
    [36] 赵广兴,热轧非织造布的结构和力学性能的研究,博士研究生学位论文,中国
    
    纺织大学
    [37] 温建明,热熔纤维在复合纺织品中的作用研究,研究生学位论文,中国纺织大学
    [38] 王国和,热粘合加固技术与非织造布性能关系的探讨,江苏丝绸,2002,4,11~12
    [39] 钱晓明等,影响热粘合非织造布性能的因素分析,非织造布,1996,4,15~18
    [40] 郭秉臣,非织造布学,北京:中国纺织出版社,2002
    [41] 赵广兴,严灏景,热轧非织造布粘合结构的形成,非织造工艺技术研究论文集,上海:中国纺织大学出版社,1996
    [42] P.Philipp Thermal Bonding of Nonwovens by Means of Copolyester Melt Adhesive Fibres Nonwovens Conference 1986 117
    [43] 刘世春,姚穆,兔毛织物防掉毛的研究,西北纺织工学院学报,1999.13.2.150~154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700