大豆蛋白纤维/棉混纺产品开发及服用性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了纱线捻度、混纺比、纺纱方法和细度对大豆蛋白纤维/棉混纺纱线的条干、毛羽和强伸性能的影响,及混纺比和纺纱方法对织物的服用性能的影响。
     诞生于本世纪初的大豆蛋白纤维,是迄今为止唯一由我国自主开发,具有完全知识产权的纤维材料。大豆蛋白纤维吸湿、透气性好,穿着舒适。纤维柔韧、蓬松,比重轻,具有羊绒般外观和手感。纤维光泽柔和,具有桑蚕丝的天然光泽和悬重感。目前,我们已经对该纤维及织物的性能有了一些基本了解,但仍需要系统进行大豆蛋白纤维及其纱线和织物的性能的研究。
     本文测试了大豆蛋白纤维/棉混纺纱线的条干、毛羽和强伸性能。通过比较和分析,研究捻度、混纺比、纺纱方法、细度对大豆蛋白纤维/棉混纺纱线性能的影响。结果表明:(1)条干:捻度、细度和纺纱方法相同时,混纺纱条干随着大豆蛋白纤维含量的增加先改善而后恶化;总体上,Sirospun纱线的条干优于相同捻度、细度和混纺比的环锭纺纱线;32支混纺纱的条干优于相同捻系数、混纺比和纺纱方法的45支纱线。(2)毛羽:捻度、细度和纺纱方法相同时,混纺纱的毛羽随着大豆蛋白纤维含量的增大而逐渐增多;Siropun大豆蛋白纤维/棉混纺纱的毛羽少于相同捻度、细度和混纺比环锭混纺纱;32支大豆蛋白纤维/棉混纺纱的毛羽多于相同捻系数、混纺比和纺纱方法45支混纺纱。(3)强伸性能:大豆蛋白纤维/棉混纺纱断裂强度随着捻系数的增加先增加后减小;纱线的临界捻系数大体上随着大豆纤维含量的增加而降低,32支纱线的临界捻系数大于相同捻系数、混纺比和纺纱方法的45支纱线,环锭纱临界捻系数大于相同捻系数、混纺比和支数的Sirospun纺纱。随着大豆蛋白纤维含量的增多,45支环锭大豆蛋白纤维/棉混纺纱的断裂强力逐渐降低,其它系列纱线的断裂强力先降低后增大。捻度和混纺比相同条件下,32支混纺纱在大豆蛋白纤维含量在中、低比例时,环锭纱断裂强度大于Sirospun纱,高比例时,环锭纱断裂强度小于Sirospun
    
    东华大学研究生论文
    摘要
    纱;45支sirospun纱的断裂强度大于环锭纱。相同捻系数和混纺比的
    条件下,环锭混纺纱,32支纱线断裂强度大于45支;Sirospun混纺
    纱,45支纱线断裂强度大于32支。
     对不同混纺比和纱线结构织物的悬垂性、抗皱回复性和抗起毛起
    球性进行了测试。通过分析,建立混纺比与织物各性能之间的回归方
    程。结果表明:基本上,织物的悬垂系数随着大豆纤维含量的增加而
    逐渐增大;当大豆蛋白纤维的含量在中、低比例时,环锭织物的悬垂
    系数要大于相同混纺比的Sirospun织物,大豆蛋白纤维的含量在高比
    例时,sirospun织物的悬垂系数大于相同混纺比的环锭织物。环锭织
    物的折皱回复角随着大豆纤维含量的增加先增大后减小,而Sirospun
    织物恰恰相反;大豆蛋白纤维含量在中、低比例时,环锭织物的折皱
    回复性优于相同混纺比的sirospun织物;高比例时,Sirospun织物的
    折皱回复性优于相同混纺比的环锭织物。环锭织物的抗起毛起球性能
    随着大豆纤维含量的增加先得到提高然后逐渐降低,sirospun织物的
    抗起毛起球性能规律性不太明显,总体上,低比例环锭大豆蛋白纤维
    织物的抗起毛起球性能优于高比例织物;Sirospun织物的抗起毛起球
    性能略好于相同混纺比环锭织物。
     用KES检测系统测试各织物的拉伸、弯曲、剪切、压缩和表面性
    能性能,经过分析得到结论:(l)混纺比的影响。除大豆蛋白纤维含
    量超过65%的环锭织物的拉伸线性度随着大豆蛋白纤维含量的增多
    而逐渐降低外,其它织物的拉伸线性度随着大豆蛋白纤维含量的增加
    而增大。环锭混纺织物在大豆蛋白纤维含量为20%到80%之间时,弯
    曲刚度随着大豆蛋白纤维含量的增加而逐渐增大;Sirospun混纺织物
    的弯曲刚度随着大豆蛋白纤维含量的增加而逐渐增大。大豆蛋白纤维
    为低比例时,环锭织物的剪切刚度随着大豆蛋白纤维含量的增加略有
    降低,中间比例时,环锭织物的剪切刚度变化比较平缓,大豆蛋白纤
    维含量较高时,织物的剪切刚度下降较明显;sirospun织物的剪切刚
    度随着大豆蛋白纤维含量的增加先缓慢增大后减小。中、低比例大豆
    蛋白纤维织物比高比例大豆蛋白纤维织物更蓬松、柔软。纯棉织物的
    
    东华大学研究生论文
    摘要
    平均摩擦系数较小,当大豆蛋白纤维含量大于20%时,随着大豆蛋白
    纤维含量的增加,织物的平均摩擦系数先降低,达到最小值后,再逐
    渐增大。(2)纺纱方法的影响。大豆蛋白纤维含量在中、低比例时,
    环锭织物的拉伸线性度和弯曲刚度均大于相同混纺比的Sirospun织
    物;大豆蛋白纤维含量在高比例时,环锭织物小于相同混纺比的
    Sirospun织物。环锭织物的剪切刚度大于相同混纺比的sirospun织物,
    压缩性能与sirospun织物接近。大豆蛋白纤维含量在中、低比例时,
    相同混纺比的Sirospun织物的平均摩擦系数大于环锭织物;当大豆蛋
    白纤维含量在高比例时,环锭织物大于Sirospun织物。
     用KES测得的16项风格指标,加之织物平方米重量共14个力学
    指标和2个物理指标作为影响各织物风格的主要因子。利用灰关联度
    值表征并比较不同混纺比和纺?
In this dissertation we studied the influence of yarn twist, blending ratio, yarn count and yarn construction to the properties of soybean /cotton blended yarn such as evenness and tensile property and the effect of blending ratio and yarn construction on wearing characteristics of soybean /cotton blended fabric.
    The soybean protein fiber, born in the 21st century, is the only chemical fiber developed by Chinese researchers by far. It has many fine performances such as excellent moisture vapor transmission, comfortability, lofty, bulk, light specific density and high heat retention. Its appearance and handle is as good as cashmere while its subdued luster and drape is as beautiful as silk. Though we have known some of its properties, we still need to study the performance and structure of the textile production of soybean protein fiber systematiclly. Firstly, we tested the evenness, hairiness, and tensile property of soybean /cotton blended yarn of different twist, blending ratio, count and spinning system. Through comparing and analysis, we got the results as following. (1) Evenness. The evenness of soybean /cotton blended yarn with same twist, count and yarn construction increased initially and then decreased with the increasing percentage of soybean protein fiber; Generally speaking, the evenness of Sirospun yarn
    was better than that of ring yarn with same twist, count and blending ratio; 32 English count yarn was better than 45 English count yarn with same twist factor, blending ratio and spinning system. (2) Hairiness. The hairiness of soybean /cotton blended yarn with same twist, count and yarn construction increased gradually with the increasing percentage of soybean protein fiber; the evenness of Sirospun yarn was better than that of ring yarn with same twist, count and blending ratio; 32 English count yarn was worse than 45
    
    
    
    English count yarn with same twist factor, blending ratio and spinning system. (3) With the increasing percentage of soybean protein fiber, the tensile strength of soybean /cotton blended yarn with same twist, count and yarn construction rose initially and then fell, and its critical twist factor declined. The critical twist factor of low count yarn was higher than that of high count yarn with same twist factor, blending ratio and spinning system; While for same twist factor, blending ratio and count blend yarn, the critical twist factor of ring spun yarn was higher than that of Sirospun yarn. The higher the count was, the bigger the difference was. The tensile strength of soybean /cotton blended yarn improved initially and then declined with the increasing percentage of soybean protein fiber, with the exception that the tensile strength of the 45 count blended yarn decreased all long, when the percentage of soybean protein fiber was low and middle, for 32 count blend yarn under the same twist and blending ratio, the tensile strength of ring spun yarn was higher than that of Sirospun yarn. But when the percentage of soybean protein fiber became high, ring spun yarn was lower than Sirospun yarn; for 45 count blend yarn, Sirospun yarn was higher than ring spun yarn. Under the same twist factor and blending ratio, the tensile strength of 32 count ring spun yarn n was higher than that of 45 count ring spun yarn, while for 45 and 32 count Sirospun yarn, the result was opposite.
    The properties of soybean/cotton blended fabric, including the drapability, credibility and pilling were measured. The influence of blending ratio and yarn spinning system to the blended fabric were studied and the conclusion wad reached: Basically, with the increase of the proportion of the soybean protein fiber, the drape coefficient would increase; the drape coefficient of ring spun fabric was higher the that of Sirospun fabric with the same blending ratio as the proportion of the soybean protein fiber was low and middle, and Sirospun fabric was higher than ring spun fabric as
    
    the proportion of the soybean fiber was high. With the increase of the proportion of soybean protein fiber, the credibil
引文
[1] 翁卸元,大豆蛋白纤维优越特性及制造技术,产业用纺织品,2002,Vol.20(3):35—38;
    [2] Soybean Textiles on the Rise, Asian Textile Business, 2002. 2: 63;
    [3] 赵博,大豆蛋白纤维与有色涤纶混纺工艺研究,上海纺织科技,2002,Vol.30(4):10-12;
    [4] 宋东鹏,大豆蛋白纤维纯纺及混纺生产实践,中国纺织经济,2001(6):32—33;
    [5] 张岩昊,大豆蛋白纤维及其产品开发,棉纺织技术,2000,Vol.18(9):28—30;
    [6] 姚穆,关于大豆蛋白纤维引发的思考和建议,棉纺织技术,2001,Vol.29(9):5—6;
    [7] 韩光亭等,大豆蛋白纤维性能分析研究,中国纺织经济,2001(6):36—37;
    [8] 王华杰、杨旭红,大豆蛋白纤维性能及产品开发新动向,江苏丝绸,2002.3:1—4;
    [9] 梅士英等,再生大豆蛋白纤维及其织物的染整加工技术,江苏丝绸,2002(5):1—3;
    [10] 李宁、臧英名,大豆蛋白质纤维及其产品性能,山东纺织科技,2002(1):50—51;
    [11] 王其、冯勋伟,大豆纤维性能研究(下),北京纺织,2002,Vol.23(2):48—50;
    [12] 刘海洋,新纤维——大豆蛋白纤维,人造纤维,2003,Vol.33(2):25—27;
    [13] 赵伟玲等,大豆蛋白纤维性能测试分析,棉纺织技术,2002,Vol.30(8):33—37;
    [14] 侯祖龄,大豆蛋白纤维与羊毛混纺开发精纺产品,中国纺织经济,2001(6):36—37;
    
    
    [15] 王其、冯勋伟,大豆蛋白纤维织物摩擦弯曲悬垂性能研究,棉纺织技术,2001,Vol.29(9):18—20;
    [16] 崔瑞芳等,大豆蛋白纤维及其织物的性能研究,上海纺织科技,2003,31(2):56—57;
    [17] 杨旭红等,棉毛型大豆蛋白纤维织物的风格研究,纺织学报,2002,Vol.23(2):20—21;
    [18] 杨旭红、王华杰,大豆蛋白纤维织物风格的测试分析,棉纺织技术,2001,Vol.29(9):12—15;
    [19] 杨旭红、王华杰,丝绸型大豆蛋白纤维织物的服用性能分析,丝绸,2002(7):35—37;
    [20] 吕德宽,棉纺工程,1951,纤维工业出版社,上海;
    [21] M. N. Sun and K. P. S Chen, Structure and Properties of Cotton Sirospun Yarn, Textile Res. J., 2000, 3, 261-268;
    [22] 毕松梅等,Sirospun纺单纱纱线结构和捻度分布的分析,纺织学报,2000.10;
    [23] K. P. S. Cheng, Y. L. How and M. N. Sun, Siro-spun Charicteristics, Textile Asia, 1992. 12: 70-71;
    [24] K. P. S. Cheng, Y. L. How and M. N. Sun, Siro-spun Charicteristics, Textile Asia, 1993. 2: 67-70;
    [25] M. N. Sun and K. P. S. Cheng, Structure and Properties of Cotton Sirospun Yarn, T. R. J, 2000, Vol70 (3): 261-268;
    [26] 邢明杰,复合纺纱技术的探讨,上海纺织科技,2002,Vol.30(3):15-16;
    [27] 贾舜华,毛/麻120/2Nm赛络纺成纱质量的理论研究与实践,上海毛麻科技,2001.1:10—13;
    [28] 赵书经,纺织材料试验教程,1989,中国纺织出版社,北京;
    [29] 姚穆,纺织材料学,1993,第二版,纺织工业出版社,北京;
    [30] 于伟东、储才元,纺织物理,东华大学出版社,上海,2001;
    [31] 程樊丰、黄康道,细旦涤棉混纺纱的性能及强度预测,上海纺织
    
    科技,1996,4:11—13;
    [32] 蒋国华,混纺比与涤/麻混纺纱性能关系探讨,纺织学报,2002,Vol.23(2):41—42;
    [33] 俞雯,混纺比对麻涤纱线性能的影响,中国麻业,2001,Vol.23(3):30—33;
    [34] 练军,长丝短纤复合纱线强伸性能与加捻关系研究,棉纺织技术,2003.Vol.31(3):21—24;
    [35] 彭俊艳等,长丝短纤并捻复合纱拉伸力学性能与捻度关系,北京纺织,2001,Vol.23(4):26—28;
    [36] 张美忠、姚穆等,涤/棉混纺股线拉伸力学性能与捻度关系的研究,棉纺织技术,1997,Vol.25(12):6—10;
    [37] 侯秀良等,羊绒及混纺纱拉伸力学性能与捻度关系的研究,毛纺科技,2001(6):38—41;
    [38] 董红明、王善元,加捻对芳纶纱线强伸性能的影响,中国纺织大学学报,1999,Vol22(3):100—104;
    [39] K. P. S. Cheng and M. N. Sun, Effect of Strand Spacing and Twist Multiplier on Cotton Sirospun Yarn, T. R. J, 1998, Vol68 (7): 520-527;
    [40] R C D Kaushik &G K Tyagi, Properties of Ployester-viscose Ringand Rotor-spun Yarn in Relation to Polyester Fiber Denier and Twist, Indian Fibre Text. Res., 1993, Vol. 18 (9): 110-115;
    [41] Louis A. Fiori, John J. Brown, and Jack E. Sands, Effect of Single and Ply Twists on the Properties of a 15.5/2 Carded Cotton Yarn, T. R. J,1954. 5: 428-433;
    [42] J. Gregory, 3-Cotton Yarn Structure. Part Ⅲ: The Strength of Artificial Yarn Elements In Relation To Bulk and Twist, J. T. I, 1950,Vol(41): 30-52;
    [43] 华东纺织工学院(现东华大学)纺材教研组,纱布力学,1983;
    [44] A. Barella, the optimum twist in cotton open-end-spun yarns, J. T. I,1972, Vol. 63: 226-228;
    
    
    [45] 靳悦敬,产业用纺织品股线捻度与最佳强力关系的回归分析,棉纺织技术,1996.4;
    [46] 沈丕华等,苎麻/棉混纺纱的拉伸性能及混纺比选择,纺织学报,2002,23(3):24-25;
    [47] 严灏景、李再清,各种混纺比混纺纱的强力,纺织学报,1981.3:31—34;
    [48] 郁崇文、张元明、姜繁昌,苎麻纱线生产工艺与质量控制,中国纺织大学,上海,1997:307;
    [49] 赵博、石陶然,大豆蛋白纤维针织物风格的测试分析,四川纺织科技,2002.6:43—45;
    [50] 常英健,苎麻混纺织物产品开发及其性能风格评析,东华大学研究生论文,2002;
    [51] 李艰、严灏景,织物风格及其测试新技术,江苏丝绸,1997(1):40-42;
    [52] 姜陪武邓,评价织物风格理论的研究进展,纺织学报,1991(2):54—56;
    [53] 陈东生等,织物物理力学性能及其与风格关系研究,麻纺织科技,1998(4):41—46;
    [54] S. C. Harlock, Fabric Objective Measurement, Text Asia, 1989(7): 72-81;
    [55] 松尾,Study on Hand,(日)纤机志,1972,25:242;
    [56] Mastuo T、 Harada T, Saito M, Interpreting Handle, Text Horizons, 1990, 10(5): 45;
    [57] 邓聚龙,灰色系统基本方法,1987,华中理工大学出版社,武汉:5—32;
    [58] 陈东生等,织物风格评价的灰色研究,吉林工学研学报,1999,Vol20(1):56—61;
    [59] 马艺华等,各种整理苎麻织物风格的灰色评定,广西纺织科技,2000,Vol29(1):11—14;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700