用户名: 密码: 验证码:
基于粘土的木薯块根仿生拔起机构基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,关于木薯块根收获机械设计理论及方法的研究成果较少。木薯块根收获机械的研究,国内还处于起步阶段,国外,虽然研制出了适合当地使用的木薯块根收获机械,但适合粘性土壤和中国木薯生长状况的未见有报道。木薯块根机械收获机理复杂,作业质量影响因素多,因此,以中国有代表性的木薯品种和粘土作为主要研究对象,采用先进的研究方法和技术,系统建立木薯块根拔起模型和机械拔起速度控制模型,研究块根的拔起机理及块根的损失规律和机理,探索木薯块根收获机械的设计原理和系统参数优化方法,形成木薯块根收获机械设计理论,成为了具有挑战性和重要性的前沿课题。
     本文结合国家自然基金项目“丘陵地区木薯块根收获机械基础理论与设计方法”,针对基于粘土的木薯块根仿生拔起机构设计基础理论及难于模拟的土壤大变形和破裂现象,开展木薯块根拔起机理、土壤剪切机理及块根拔起力的力学模型、数学模型和块根拔起速度模型研究,为木薯块根仿生拔起机构设计提供依据。本文主要的研究内容及结论如下:
     (1)参考木材力学特性参数的测定方法,通过物理试验,测定了块根、茎秆的径向与轴向剪切、拉压强度和弹性模量。
     (2)采用SPH和FEM的耦合算法及修正的莫尔-库仑屈服准则,建立了木薯块根拔起过程耦合计算模型,克服块根拔起时产生的土壤大变形和破裂难于进行数值模拟计算问题及有效减少了计算时间。同时,通过数值模拟,在细观层次上探明了块根的拔起过程、土壤破裂过程及块根的应力变化规律,表明在块根拔起过程中,块根对土壤的向上挤压作用表现为逐渐加强和由内向外扩展过程,当这种挤压作用达到一定值时,土壤产生环形剪切破裂;最大拔起力出现时,土壤开始产生明显的环形剪裂面,但块根出现最大有效应力值迟于出现最大拔起力的时刻,在土壤产生环形剪切破裂到土体分离阶段,块根拔起速度不宜过快,否则块根应力过大被拉断,造成机械收获损失。同时,木薯块根可等价成一个圆盘与该圆盘外围接-定长度的块根,建立便于分析的块根拔起力力学模型。
     (3)采用SPH和FEM相结合的方法及修正的莫尔-库仑屈服准则,建立了土壤直剪试验数值计算模型,进行了4种不同性质土壤的直剪数值模拟试验和回归分析,探明了土壤剪切破裂过程及剪切速度对土壤剪切强度的影响机理,表明土壤被挤压产生变形,土壤粒子连结直接拉裂和土壤粒子间摩擦与挤压引起的土粒拉裂是土壤直剪断裂的主要原因;剪切速度ν增大,瞬间拉裂土粒数增多,剪切强度τ增大。剪切模量小时,τ和ν是三次方关系,剪切模量大时,τ和v是对数关系。土壤的剪切模量大,较难变形,以土粒连结直接拉裂为主,瞬间拉裂粒子数多,τ大;剪切模量小,比较容易变形,拉裂粒子数较少,τ小。
     (4)根据土壤动力学和植物根系摩擦理论,建立了块根拔起的力学模型及多因素耦合的块根最大拔起力数学模型,且进行了物理试验验证,表明该数学模型有较高的预测精度,同时,分析了各因素对块根最大拔起力的影响规律。
     (5)根据仿生学原理,选择有丰富块根收获经验的薯农,实地测定了其块根拔起加速度的变化过程,采用统计分析和非线性拟合方法,通过研究人拔起块根的速度变化规律,优选出了较优的人的块根拔起速度模型,建立了机械较优的块根拔起速度模型形式,为机械拔起机构拔起速度模型的优化提供了基础。
Researches on the design theory and methods of cassava harvester are not too much. The research on cassava root harvesting machinery in China is still in its infancy. Harvesting in the growth situation of cassava in China specifically in the clay by machine have not been reported in literatures. The mechanism of cassava root mechanical harvesting and the influencing factors of harvesting are complex. Therefore, with representative cassava variety and clay in China as the main research object, by the advanced research methods and techniques, the model of uprooting of cassava root and the control model of mechanical uprooted speed are established. The uprooted mechanism of cassava root and the laws and mechanism of cassava root loss are studied. The design principle and system parameters optimization method of cassava root harvester are discovered. The design theory of cassava root harvester is formed. It becomes a challenging and importance subject in the forefront. The authors are grateful for the financial supported by the National Natural Science Foundation of China "The basic theory and design method of cassava root harvesting machinery in hilly region"(Grant No.51065003). Aiming at the basic theory of bionic uprooted mechanism design of cassava root based on clay and calculation difficulty in the soil deformation and rupture phenomenon, the mechanism of soil shearing and uprooting of root are discovered,and that the mechanical and mathematical model of uprooted force on cassava root and the optimum model of uprooted speed are established. The design foundation is provided for bionic uprooted mechanism. The main conclusions are as follows:
     (1)Mechanical properties of cassava's root and stem (South China205) are tested experimentally, such as axial tensile strength, axial and radial compression strength, axial and radial shear strength, axial and radial elastic modulus.
     (2)Based on the methods including Smoothed Particle Hydrodynamics(SPH)and FEM coupling algorithm, modified Mohr-Coulomb yield criterion, the coupling calculation model of uprooting of cassava root is established. The interaction mechanisms between uprooted cassava root and soil are discovered. The processes of soil shearing and the changing processes of root's stress are analyzed. The studies show that:the effects of soil being extruded by the root expand gradually from inside to outside in the process of uprooting, and the uprooted force reaches the maximum value when the soil appears ring shear rupture; after the uprooted force reaches the maximum value, the root's effective stress still increases gradually with the increasing of its bending deformation until the soil is separated, so the uprooted speed should be small after the soil appears the shear rupture surface, otherwise the root is very easy to be broken; when the maximum uprooted force on cassava root is analyzed, the interaction of a disc and its extension on the soil is regarded as the mechanical model of maximum uprooted force on cassava root.
     (3)Based on the methods including Smoothed Particle Hydrodynamics(SPH)and FEM, modified Mohr-Coulomb yield criterion, the numerical calculation model of direct shear test is established. The numerical simulation experiments of direct shear on four kinds of soil are carried out. The mathematic models of soil shear strength and shearing speed are established by regression analysis. The process of soil shear failure and the influence law and mechanism of shearing speed on shear strength are discovered. The studies show that:the main reason for soil fracture are that in the process of shearing, the extrusion deformation appears on the soil, and that the links among the soil particles are directly stretched fracture, and that extrusion and friction among the soil particles; with shearing speed increasing, the number of the soil particles which are stretched fracture in a moment increases so that shear strength increases; third-order relationship exits between shear strength and shearing speed with small shear modulus, and logarithm relationship exits between shear strength and shearing speed with large shear modulus; the effect of shear modulus on shear strength is large, and with large shear modulus, the soil is difficult to be deformed, because the links among the soil particles are directly stretched fracture and the number of the soil particles which is stretched fracture in a moment increases resulting in the large shear strength.
     (4)The mechanical model of uprooted force and mathematical model of multifactor coupling maximum uprooted force on cassava root are established by the soil dynamics theory and the friction theory of roots, and then the models are verified. The mathematical model of maximum uprooted force on cassava root has higher precision in uprooted force of cassava root, which distribution and growth both are like disc-shaped. The influence laws of factors on maximum uprooted force on cassava root are analyzed.
     (5)According to the principle of bionics, the acceleration curves of cassava root uprooted by the farmers with rich harvesting experience are tested. The changing laws of the curves are studied by statistical analysis and nonlinear fitting method. The optimized uprooted speed model manually is selected by the laws. The basis of the mechanical optimized uprooted speed model is established.
引文
[1]方佳,濮文辉,张慧坚.国内外木薯产业发展近况[J].中国农学通报,2010,26(16):353-361.
    [2]黄洁,李开绵,叶剑秋,等.中国木薯产业化的发展研究与对策[J].中国农学通报,2006,22(5):421-426.
    [3]黄洁,李开绵,叶剑秋,等.我国的木薯优势区域概述[J].广西农业科学,2008,39(1):104-108.
    [4]罗兴录.广西木薯产业化发展对策[J].中国农学通报,2004,20(6):376-379.
    [5]Du Dai, Zhiyuan Hu, Gengqiang Pu, et al.Energy efficiency and potentials of cassava fuel ethanol in Guangxi region of China [J]. Energy Conversion and Management,2006,47 (13):1686-1699.
    [6]Reinhardt Howeler. Cassava in asia:trends in cassava production, processing and marketing[C]//Workshop on Partnership in Modern Science to Develop a Strong Cassava Commercial Sector in Africa and Appropriate Varieties by 2020,Bellagio, Italy, May 2-6,2006.
    [7]Adeniyi O D, Kovo A S, Abdulkareem A S, et al. Ethanol fuel production from cassava as a substitute for gasoline[J]. Journal of Dispersion Science and Technology,2007,28(4):501-504.
    [8]Jansson Chirster, Westerbergh Anna, Zhang Jiaming, et al. Cassava, a potential biofuel crop in(the) People's Republic of China[J].Applied Energy,2009(86):95-99.
    [9]严良政,张琳,王士强等.中国能源作物生产生物乙醇的潜力及分布特点[J].农业工程学报,2008,24(5):213-216.
    [10]董丹丹,赵黛青,廖翠萍,等.木薯燃料乙醇生产的技术提升及全生命周期能耗分析[J].农业工程学报,2008,24(7):160-164.
    [11]袁成宇,梁栋,廖宇兰,等.浅谈我国木薯种收机械化技术[J].现代农业装备,2010(1):79-81.
    [12]蒋志国,黄晖,李明,等.我国研发木薯收获机械的必要性[J].中国热带农业,2008(6):34-35.
    [13]Peter O Kolawole, Leo Agbetoye, Simeon A Ogunlowo.Sustaining world food security with improved cassava processing technology:the Nigeria experience[J].Sustainability,2010,2:3681-3694.
    [14]廖宇兰,孙佑攀,林大春,等.小薯收获机械研究进展[J].热带农业工程,2009,33(1):54-56,60.
    [15]Odigboh E U. Single-row model Ⅱ Cassava harvester[J].Agriculture Mechanization In Asia, Africa and Latin America,1991,22(3):63-66.
    [16]Bernardo Ospina, Luis Fernando Cadavid, Martha Garcia, et al.Mechanization of cassava production in Colombia[C]//7th ASIAN CASSA VA RESEARCH WORKSHOP-Cassava Research and Development in Asia:Exploring New Opportunities for an Ancient Crop,Bangkok, Thailand, Oct 28-Nov 1, 2002:277-287.
    [17]Julian Buitrago Arbelaez, Jorge Luis Gil Llanos. Bernardo Ospina Patino.Cassava in poultry nutrition[R].International Center for Tropical Agriculture, Cali, Colombia,2002.
    [18]Akhir H Md, Sukra A B.Mechanization possibilities for cassava production in Malaysia[C]//7th ASIAN CASSAVA RESEARCH WORKSHOP-Cassava Research and Development in Asia:Exploring New Opportunities for an Ancient Crop, Bangkok, Thailand, Oct 28-Nov 1,2002:271-276.
    [19]Engr K C Oni, M C C Eneh. Strategies for reducing cost of production/processing of cassava[C]//The facilitation and sensitization workshop for cassava producing states under the presidential initiatives on cassava production and export, Federal Ministry of Agriculture and Rural Development, Abuja,8th-12th November,2004:1-12.
    [20]Strengthening the competitiveness and eco-efficiency of SMEs in Thailand——market assessment of mechanization potential for cassava production. Bangkok:AgriSource Co. Ltd.,2007.
    [21]Gupta C P, Stevens W F, Paul S C.Development of a vibrating cassava root harvester[J]. Agricultural Mechanization in Asia, Africa and Latin America,1999,30 (1):51-55.
    [22]Technical Memorandum TM 29-2e——Cassava plantation. Denmark:International Starch Institute, 2002.
    [23]Mohd Hudzari Hj Razali, Hasbullah Hj Muhammad, Noordin Asimi Mohd, et al.A review on farm mechanization and analysis aspect for dioscorea hispida[J]. Journal of Crop Science,2011,2(l):21-26.
    [24]Odigboh E U, Moreira Claudio A. Development of a complete cassava harvester:Ⅱ-Design and development of the uprooter/lifter system[J].Agricultural Mechanization in Asia, Africa and Latin America,2002,33(4):50-58.
    [25]Sukra A B.Performance of API cassava root digger elevator[R]. Report No.187, MARDI,1996.
    [26]Agbetoye L A S, Kilgour J, Dyson J. Performance evaluation of three pre-lift soil loosening devices for cassava root harvesting[J]. Soil&Tillage Research,1998,48(4):297-302.
    [27]Agbetoye L A S, Dyson J, Kilgour J. Prediction of the lifting forces for cassava harvesting [J]. Journal of Agricultural Engineering Research,2000,75(1):39-48.
    [28]蒋志国.小薯收获机挖掘部件的研究设计[D].湛江:广东海洋大学,2010年
    [29]薛忠,黄晖,李明,等4UMS-390Ⅱ型木薯收获机的研制[J].农机化研究,2010(8):79-81,85.
    [30]廖宇兰,孙佑攀,林大春,等.挖拔式小薯收获机[P].中国专利:201010196911,2010-05-24.
    [31]孙佑攀,廖宇兰,陈丹萍4UMS-1型木薯收获机的设计[J].农机化研究,2012(2):89-92.
    [32]王建波,樊啟洲,田延庆,等.马铃薯挖掘机关键部件的研究现状与展望[J].农机化研究,2011(1):244-248.
    [33]计福来, 张会娟, 胡志超,等.甜菜种植与机械化收获概况[J].农机化研究,2009(4):234-240.
    [34]滕美茹,田立忠,陈广成.花生收获机的现状与展望[J].农机化研究,2011(10):211-215.
    [35]苏工兵.苎麻茎秆力学建模及有限元模拟分析研究[D].武汉:华中农业大学,2007.
    [36]蒋汇川,韦鹏练,李宁,等.木薯粗根纤维形态、组织比重及化学成分分析[J].广西林业科学,2009,38(4):218-222.
    [37]张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展[J].计算力学学报,1997,14(1):91-102.
    [38]王泽鹏,胡仁喜,康士廷,等ANSYS 13.0/LS-DYNA非线性有限元分析实例指导教程[M].北京:机械工业出版社,2011.
    [39]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [40]宋康祖,陆明万,张雄.固体力学中的无网格方法[J].力学进展,2000,30(1):55-65.
    [41]顾元通,丁桦.无网格法及其最新进展[J].力学进展,2005,35(3):323-337.
    [42]李九红,程玉民.无网格方法的研究进展与展望[J].力学季刊,2006,27(1):143-152.
    [43]张雄,刘岩,马上.无网格法的理论及应用[J].力学进展,2009,39(1):1-36.
    [44]Liu G R,Liu M B.光滑粒子流体动力学——一种无网格粒子法[M].韩旭,杨刚,强洪大译.长沙:湖南大学出版社,2005.
    [45]Lucy L B. A numerical approach to the testing of the fission hypothesis[J].Astronomical Journal, 1977,8(12):1013-1024.
    [46]Lancaster P, Salkauskas K. Surfaces generated by moving least square methods[J]. Math comput, 1981,37:141-158.
    [47]Babuska I, Melenk J M. The partition of unity method[J]. International Journal for Numerical Method in Engineering,1997,40:727-758.
    [48]Liu W K, Jun S, Zhang Y F. Reproducing kernel particle methods[J]. International Journal for Numerical Method in Engineering,1995,20:1081-1106.
    [49]Nayroles B, et al. Generalizing the finite element method:diffuse approximation and diffuse elements[J].Computational Mechanics,1992,10:307-318.
    [50]Belytschko T, et al. Element-free galerkin methods[J]. International Journal for Numerical Method in Engineering,1994,37:229-256.
    [51]Duarte C A, Oden J T. Hp clouds-a meshless method to solve boundary-value problems[R]. Technical Report 95-05. Texas Institute for Computational and Applied Mathematics, University of Texas at Austin, 1995.
    [52]Onarte E. A finite point method in computational mechanics[J]. International Journal for Numerical Method in Engineering,1996,39:3839-3866.
    [53]Atluri S N, Zhu T L. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J]. Computational Mechanics,1998,22:117-127.
    [54]Atluri S N, Zhu T L. The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics[J]. Computational Mechanics,2000,25:169-179.
    [55]Atlur i S N, Zhu T L. New concepts in meshless methods[J]. International Journal for Numerical Method in Engineering,2000,47(1/3):537-556.
    [56]Monoghan J J. Smoothed particle hydrodynamics[J].Annual review of astronomy and astrophysics, 1992,30:543-574.
    [57]Monoghan J J, Lattanzio J C. A refined particle method for astrophysical problems[J]. Astronomy and Astrophysics,1985,149(1):135-143.
    [58]孔德森,栾茂田.岩土力学数值分析方法研究[J].岩土工程技术,2005,19(5):249-253.
    [59]徐泳,孙其诚,张凌,等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [60]郝亮.基于SPH方法的土体大变形数值模拟研究[D].上海:同济大学,2008.
    [61]高建民,周鹏,张兵,等.基于光滑粒子流体动力学的土壤高速切削仿真系统开发及试验[J].农业工程学报,2007,23(8):20-26.
    [62]黄雨,郝亮,谢攀,等.土体流动大变形的SPH数值模拟[J].岩土工程学报,2009,31(10):1520-1524.[63]黄雨,郝亮,野々山泶人.SPH方法在岩土工程中的研究应用进展[J].岩土工程学报,2008,30(2):256-262.
    [64]Curir A, Mazzei P. SPH simulations of galaxy evolution including chemo-photometric predictions[J]. New Astronomy,1999,4(1):1-20.
    [65]Sekine H, Ito R, Shintate K. A single energy-based parameter to assess protection capability of debris shields[J]. International Journal of Impact Engineering,2007,34(5):958-972.
    [66]Michel Y, Chevalier J M, Durin C, et al.Hypervelocity impacts on thin brittle targets:experimental data and SPH simulations[J]. International Journal of Impact Engineering,2006,33(1/12):441-451.
    [67]Cleary P W, Sinnott M, Morrison R. Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media[J]. Minerals Engineering,2006,19(15):1517-1527.
    [68]Fang J N, Owens R G, Tacher L, et al. A numerical study of the SPH method for simulating transient viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics,2006,139(1/2):68-84.
    [69]张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理,1996,13(4):385-397.
    [70]贾光辉,黄海,胡震东.超高速撞击数值仿真结果分析[J].爆炸与冲击,2005,25(1):47-53.
    [71]乐莉,闫军,钟秋海.超高速撞击仿真算法分析[J].系统仿真学报,2004,16(9):1941-1943.
    [72]贾建东,李志强,杨建林,等.用SPH和有限元方法研究鸟撞飞机风挡问题[J].航空学报,2010,31(1):136-142.
    [73]Gordon R. Johnson, Robert A. Stryk, Stephen R. Beissel.SPH for high velocity impact computations [J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):347-373.
    [74]Zhichun Zhang, Hongfu Qiang, Weiran Gao.Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation[J].Engineering Structures,2011,33(1):255-264.
    [75]王吉,王肖钧,卞梁.光滑粒子法与有限元的耦合算法及其在冲击动力学中的应用[J].爆炸与冲击,2007,27(6):522-528.
    [76]武玉玉,何远航,李金柱.耦合方法在超高速碰撞数值模拟中的应用[J].高压物理学报,2005,19(4):385-389.
    [77]宿崇,唐亮,侯俊铭,等.基于FEM与SPH耦合算法的金属切削仿真研究[J].系统仿真学报,2009,21(16):5002-5005.
    [78]Belytschko Ted, Liu Wing Kam, Moran Brian连续体和结构的非线性有限元[M].庄茁译.北京:清华大学出版社,2002.
    [79]郭乙木,陶伟明,庄茁.线性与非线性有限元及其应用[M].北京:机械工业出版社,2003.
    [80]王勖成.有限单元法[M].北京:清华大学出版社,2003.
    [81]Zienkiewicz O C, Taylor R L有限元方法.第一卷,基本原理[M].曾攀等译.北京:清华大学出版社,2008.
    [82]Hallquist J O.LS-DYNA theory manual[M]. Livermore Software Technology Corporation.Livermore, 2006.
    [83]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003.
    [84]白金泽LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005.
    [85]李裕春,时党勇,赵远ANSYS 11.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社,2008.
    [86]尚晓江,苏建宇ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社, 2005.
    [87JLSTC.LS-DYNA 970 keyword user's manual[M].Livermore Software Technology Corporation.Livermore,2003.
    [88]Lewis B A. Manual for LS-DYNA soil material model 147[R]. Department of Transportation: Federal Highway Administration, U.S.A.,2004.
    [89]丁峻宏,金先龙,郭毅之,等.土壤切削大变形的三维数值仿真[J].农业机械学报,2007,38(4):118-121.
    [90]马爱丽,廖庆喜,田波平,等.基于(?)NSYS/LS-DYNA的螺旋刀具土壤切削的数值模拟[J].华中农业大学学报,2009,28(2):248-252.
    [91]周明,张国忠,许绮川,等.土壤直角切削的有限元仿真[J].华中农业大学学报,2009,28(4):491-494.
    [92]钟江,蒋建东,姜涛,等.基于光滑粒子流体动力学仿真的板结土壤深旋耕技术[J].机械工程学报,2010,46(19):63-69.
    [93]蒋建东,高洁,赵颖娣,等.士壤旋切振动减阻的有限元分析[J].农业机械学报,2012,43(1):58-62.
    [94]Shen J Q, Jin XL, Li Y, et al. Numerical simulation of cutterhead and soil interaction in slurry shield tunneling[J]. Engineering Computations,2009,26(8):985-1005.
    [95]Weijia Wu, Robert Thomson.A study of the interaction between a guardrail post and soil during quasi-static and dynamic loading[J].International Journal of Impact Engineering,2007,34 (5):883-898.
    [96]刘海.沥青混凝土本构模型及实验研究[D].长沙:国防科技大学,2007.
    [97]沈建奇.盾构掘进过程数值模拟方法研究及应用[D].上海:上海交通大学,2009.
    [98]Abbo A J, Sloan S W. A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion[J]. Computers & Structures,1995,54(3):427-441.
    [99]Simo J C, Ju J W. Stress-and strain-based continuum damage models, Parts Ⅰ and Ⅱ[J]. International Journal of Solids and Structures,1987,23(7):841-869.
    [100]Ju J W. Energy-based coupled elastoplastic damage models at finite strains[J].Journal of Engineering Mechanics,1989,115(11):2507-2525.
    [101]袁聚云.土工试验与原理[M].上海:同济大学出版社,2003.
    [102]朱思哲,刘虔,包承纲,等.三轴试验原理与应用技术[M].北京:中国电力出版社,2003.
    [103]曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995
    [104]吉尔W R,范德伯奇G E.耕作和牵引土壤动力学[M].耕作和牵引土壤力学翻译组,译.北京:中国农业机械出版社,1983.
    [105]姬长英,潘君拯.湿软土壤剪切应力-剪切速度-时间关系及其应用(第2报)湿软土壤的剪切应力-剪切速度-时间关系[J].农业工程学报,1994,10(4):26-31.
    [106]Blunden B G.McLachlan C B, Kirby J M. A high-speed shear box machine[J]. Journal of Agricultural Engineering Research,1993,56(1):81-87.
    [107]Wheeler P N, Godwin R J. Soil dynamics of single and multiple tines at speeds up to 20 km/ h[J]. Journal of Agricultural Engineering Research,1996,63:243-250.
    [108]Onwualu A P, Watts K C.Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools[J].Soil & Tillage Research,1998,48:239-253.
    [109]Mootaz Abo-Elnor, Hamilton R, Boyle J T.3D dynamic analysis of soil-tool interaction using the finite element method[J]. Journal of Terramechanics,2003,40:51-62.
    [110]Karmakar S, Ashrafizadeh S R, Kushwaha R L. Experimental validation of computational fluid dynamics modeling for narrow tillage tool draft[J].Journal of Terramechanics,2009,46:277-283.
    [111]孙一源,高行方,余登苑.农业土壤力学[M].北京:农业出版社,1985.
    [112]薛守义.高等土力学[M].北京:中国建材工业出版社,2007.
    [113]周德培,张俊云.植被护坡工程技术[M].北京:人民交通出版社,2003.
    [114]Lu Y X. Significance and progress of bionics[J]. Bionics Eng,2004, 1(1):1-3.
    [115]F.V. Julian, L.M Darrell. Systematic technology transfer from biology to engineering [J]. Phil. Trans. R. Soc. Lond. A,2002,360:159-173.
    [116]L.Q. Ren. Progress in bionic study on anti-adhesion and resistance reduction of terrain machines [J]. Science in China Series E:Technological Sciences,2009,52:1-12.
    [117]Luquan Ren, Zhiwu Han, Jianqiao Li, et al. Effects of non-smooth characteristics on bionic bulldozer blades in resistance reduction against soil[J]. Journal of Terramechanics,2003, (39):221-230.
    [118]Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature, 2000,405(8):681-685.
    [119]Praker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature,2001,414:33-34.
    [120]J. Z. Yu, L. Wang, M. Tan. Geometric optimization of relative link length for biomimetic robotic fish[J]. IEEE Transactions on Robotics,2007,23(2):382-386.
    [121]S. E. Hieber, P. Koumoutsakos. An Immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmer[J]. Journal of Computational Physics,2008,227:8636-8654.
    [122]M. A. Rapo, H. Jiang, M. A. Grosenbaugh.et al. Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still waterfJ], Journal of Experimental Biology,2009,212: 1494-1505.
    [123]G. V. Lauder, E. J. Anderson, J. Tangorra. Fish biorobotics:kinematics and hydrodynamics of self-propulsion[J]. Journal of Experimental Biology,2007,210:2767-2780.
    [124]S. A. Stoeter, N. Papanikolopoulos. Autonomous stair-climbing with miniature jumping robots[J]. IEEE Transactions on Systems, Man, and Cybernetics,2005, Part B,35(2):313-325.
    [125]Li Hongkai, Dai zhendong, Shi aiju et al. Angular observation of joints of geckos moving on horizontal and vertical surfaces[J]. Chinese Science Bulletin,2009,54(4):592-598.
    [126]Wang Meng, Zang Xizhe, Fan Jizhuang, et al. Biological jumping mechanism analysis and modeling for frog robot[J]. Journal of Bionic Engineering,2008,5(3):181-188.
    [127]Shih A J. Biomedical manufacturing:a new frontier of manufacturing research[J]. Journal of Manufacturing Science and Engineering,2008,130(2):021009-1-021009-8.
    [128]George M. Whitesides, Bartosz Grzybowski. Self-assembly at all scales[J]. Science,2002,295: 2418-2421.
    [129]McGuigan A P, Sefton M V. The thrombogenicity of human umbilical vein endothelial cell seeded collagen modules[J]. Biomaterials,2008,29(16):2453-2463.
    [130]Boland T, Xu T, Damon B, et al. Application of inkjet printing to tissue engineering^]. Biotechnology Journal,2006,1:910-917.
    [131]Santhanam G, Ryu SI, Yu B M, et al. A high-performance brain-computer interface[J]. Nature, 2006,442:195-198.
    [132]许宏岩,付宜利,王树国,等.仿生机器人的研究[J].机器人,2004,26(3):283-288.
    [133]孙久荣,戴振东.仿生学的现状和末来[J].生物物理学报,2007,23(2):109-115.
    [134]卢纹岱SPSS for Windows统计分析[M].北京:电子工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700