Serratia sp.SYBC H发酵产蛋白酶,酶学性质,应用及其基因克隆研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白酶是一类水解肽键的酶,其广泛应用于食品、饲料、医药、化工等行业,因此研究其发酵产酶、酶学特性及应用具有一定的理论价值和潜在的商业价值。本论文以从腐烂蓝藻中分离的一株沙雷氏菌为蛋白酶生产菌株,研究了以下内容:采用三种统计方法进行Serratia sp. SYBC H发酵浮萍产蛋白酶的摇瓶优化。先采用单因素实验,对影响Serratia sp. SYBC H发酵浮萍生产蛋白酶的因素进行筛选;接着用正交试验筛选出影响产酶的主要因素;最后挑选出三个主要因素进行响应面水平优化以及考察这三个主要因素之间是否存在交互性。实验结果表明:主要因素小麦粉20 g/L、浮萍43.9 g/L、NaCl 0.08 mol/L对蛋白酶生产的贡献最大,同时发现主要因素浮萍和小麦粉之间存在交互作用。
     通过5 L发酵罐放大发酵,对操作条件如pH控制、通风量和搅拌转速进行了研究。结果发现,发酵过程中控制pH,蛋白酶的生产高于发酵过程中不控制pH的对照,通风量和搅拌转速为6.0 vvm和800 r/min时,发酵液的蛋白酶活最高(1450.4 U/mL)。培养基中添加吐温80的主要作用是改善细胞膜的渗透性,促进蛋白酶向胞外排放。
     采用三种统计方法对Serratia sp. SYBC H摇瓶发酵蓝藻生产蛋白酶进行优化。先采用单因素实验,对影响产酶的因素进行筛选,接着用正交试验筛选出主要因素;最后对主要因素进行响应面水平优化以及考察它们之间是否存在交互性。结果发现当主要因素蓝藻50 g/L、尿素0.05 mol/L和硫酸锌1.5 mmol/L时,蛋白酶活最高,达到704.7U/mL.另外,发现主要因素(蓝藻、尿素和硫酸锌)之间不存在交互作用。
     发酵上清液中的粗酶通过硫酸铵分级盐析、阴离子交换和凝胶过滤三步分离纯化,得到电泳纯蛋白酶。经过SDS-PAGE电泳检验,发现该纯蛋白酶的分子量经估算大约为59 kDa。该酶的最佳反应pH为8.0左右,在pH 5-11范围内,蛋白酶活相对较高。该蛋白酶的最适反应温度为40°C左右,在30-80°C之间,酶活相对较高。该酶受Mn~(2+)和Na~+显著激活,而其它金属离子抑制酶活,尤其是5 mmol/L Co~(2+)可以完全抑制该丝氨酸蛋白酶。在60°C下锰离子可提高该酶的热稳定性。与常见的丝氨酸蛋白酶不同的是,该Serratia sp. SYBC H丝氨酸蛋白酶不受Ca~(2+)激活,且酶的热稳定性下降。此酶不仅在亲水性有机溶剂(50%, v/v)如丙酮、甲醇、二甲基亚砜和二甲基甲酰胺中稳定而且在疏水性有机溶剂如正己烷庚烷,辛烷中稳定。另外,该丝氨酸蛋白酶耐受非离子表面活性剂(20%,v/v)吐温80、(25%, v/v) Triton X-100和甘油,但对阴离子表面活性剂SDS (1%)却较敏感。此酶受PMSF显著抑制,表明该蛋白酶是丝氨酸蛋白酶。
     Serratia sp. SYBC H蛋白酶有显著的去血污能力;对富含β型蛋白结构的羽毛粉也有很强的降解作用,水解上清液中的可溶性多肽均3-5倍地增长。然而,该酶对于富含α型蛋白结构的头发,羊毛即使在其最适反应温度40°C下作用24 h都不催化降解。
     该酶可在多种有机溶剂如吡啶、二甲基亚砜、二甲基甲酰胺、甲醇和丙酮中催化蔗糖酯合成,该酶既可催化酰基供体乙酸酐也可催化酰基供体乙酸乙烯酯。该酶既可非定向催化,合成多种取代酯;也可定向催化,合成单一产物,如在溶剂吡啶与正己烷(1:1, v/v)中,该酶催化乙酸酐与蔗糖合成蔗糖八乙酸酯,在30°C下反应24 h左右,蔗糖八乙酸酯的产率可达90%。
     该丝氨酸蛋白酶核酸序列长1,288 bp,编码429个氨基酸残基。序列中疏水性氨基酸残基比例(43.62%)大于亲水性氨基酸残基比例(28.64%)。尤其是位于成熟肽C端的活性中心Ser残基附近存在较多的疏水性氨基酸残基,推测这可能与蛋白酶的有机溶剂稳定性有关,从分子水平上论证了Serratia sp. SYBC H丝氨酸蛋白酶一级结构与有机溶剂稳定性功能之间的关系。
Proteases are a kind of enzymes which catalyze the hydrolysis of peptide bonds. They are widely used in food, feed, medicine, chemical industries and so on. They have theoretical and potential commercial values to study on proteases production, enzymatic properties and applications. The strain Serratia sp. SYBC H isolated from decayed Cyanobacteria in Taihu Lake (Jiangsu, China) was used as the protease producer. The contents in this thesis are as follows:
     Three statistical methods were used for shaken flask optimization for the protease production by Serratia sp. SYBC H with duckweed as nitrogen source. At first, a variety of variables influencing protease production were investigated with one-variable-at-a-time approach. Then, orthogonal design was applied to find the significant variables. Finally, response surface methodology (RSM) including Box-Behnken central composite experiments was used to determine the optimal concentrations and interaction of the three significant variables. The optimal level of the significant variables for the maximum protease production was duckweed 43.9 g/L, wheat flour 20 g/L, and sodium chloride 0.08 mol/L, respectively. The interaction between duckweed and wheat flour was significant.
     The operating conditions such as pH, aeration, stirring speed were studied in 5-liter fermentor, respectively. It is found that the yield of the protease was higher when pH value was controlled in fermentation process than that of control experiments with no pH control. The maximum protease activity (1450.4 U/mL) was observed from the ventilation rate at 6.0 vvm, and stirring speed at 800 r/min. The effect of Tween 80 supplemented in fermentation medium is to improve the permeability of Serratia sp. SYBC H cell membranes, and to promote the protease secretion into supernatant.
     Three statistical methods were used for shaken flask optimization for proteases production by Serratia sp. SYBC H with cyanobacteria as nitrogen source. At first, a variety of variables influencing protease production were investigated with one-variable-at-a-time approach. Orthogonal design was then applied to find the significant variables. Finally, response surface methodology (RSM) including Box-Behnken central composite experiments was used to determine the optimal concentrations and interaction of the significant variables. The optimal level of the significant variables for the maximum protease production was cyanobacteria 50.0 g/L, ZnSO4.7H2O 1.5 mmol/L and Urea 0.05 mol/L. The maximum protease activity reached 704.7 U/mL in the optimized medium. There was no interaction between the significant factors.
     The crude protease from fermentation supernatant was purified through three steps involving (NH4)2SO4 salt precipitation, DEAE-cellulose anion-exchange chromatography, and gel filtration. The molecular mass of the purified protease is about 59 kDa as assayed via SDS-PAGE. The protease is highly active over the pH ranges between 5.0 and 11.0, with the maximum activity at about pH 8.0. It is also fairly active over the temperature ranges between 30°C and 80°C, with the maximum activity at about 40°C. The protease activity was substantially stimulated by Mn~(2+) and Na+ (5mmol/L), respectively. Other metal ions inhibited the protease activity, especially, 5 mmol/L Co~(2+) can completely inhibit the protease activity. In addition, Mn~(2+) enhanced the thermostability of the protease significantly at 60°C. However, different from other serine proteases, the activity and stability of serine protease from Serratia sp. SYBC H were inhibited by Ca~(2+). The protease not only remained relatively high activity in 50% (v/v) hydrophilic organic solvents such as DMF, DMSO, acetone and MeOH, but also showed high stability in hydrophobic solvents such as hexane, heptane and octane. The protease retained relatively high initial activity in the presence of nonionic surfactants 20% (v/v) Tween 80, 25% (v/v) glycerol and Triton X-100, respectively. But, there was obvious reduction in protease activity in the presence of the anionic surfactant SDS at 1% (w/v) concentration. The protease is strongly inhibited by PMSF, suggesting that it is a serine protease.
     It is found that the protease from Serratia sp. SYBC H has significant capacity to remove blood. The protease efficiently catalyzed the degradation of the feather meal rich inβ-structure of proteins. In the hydrolytic supernatant, soluble polypeptides were 3-5 times that of control with the inactivated protease. However, the protease can not catalyzeα-rich proteins as hair and wool, even at its optimal temperature of 40°C for 24 h..
     The protease can catalyze sucrose esters syntheses in a variety of organic solvents such as pyridine, DMSO, DMF, methanol, acetone. As far as acyl donors were concerned, acetic anhydride and vinyl acetate can be catalyzed by the protease from Serratia sp. SYBC H. The protease can catalyze the formation of sucrose esters with varying degrees of substitution (DS), with the performance of non-directed catalysis. It is also catalyze the synthesis of a single product, exhibiting directed catalysis. For example, in pyridine and hexane (1:1, v/v), the protease catalyzed the acylation of sucrose with acetic anhydride to form sucrose octaacetate. The yield of sucrose octaacetatecan can reach 90% under 30°C, 200 r/min and 24 h.
     The serine protease from Serratia sp. SYBC H comprised of 1,288 bp encoding 429 amino acid residues. The proportion of the hydrophobic amino acids residues (43.62%) was higher than that of hydrophilic amino acids residues (28.64%) in the mature peptides of the serine protease from Serratia sp. SYBC H. Especially, the presence of high content of hydrophobic amino acid residues surrounding the catalytic residue Ser in C-terminal mature peptide may be related to the solvents stability of protease, which demonstrated the relationship between structure and function of the solvent-stable serine protease from Serratia sp. SYBC H.
引文
[1] Rao MB, Aparna M, Tankasle MS, et al. Molecular and Biotechnological aspects of microbial protease [J]. Microbiol Mol Biol R, 1998, 62:597-635.
    [2] Godfrey T, West S. Industrial enzymology[M], 2nd ed., Macmillan Publishers Inc, New York, N.Y. 1996, 3.
    [3]胡学智,张树政.酶制剂工业[M].北京:科技出版社,1984, 387-440.
    [4]徐家立,张树政,王修恒,等.工业微生物学成就[M].北京:科学出版杜,1988,79.
    [5]胡学智,熊振平,等,酶工程[M].北京:化工出版社,2000, 301.
    [6] Barrett AJ. Proteolytic enzymes:serine and cysteine peptidases[J]. Methods Enzymol, 1994, 244:1-15.
    [7] Adinarayana K, Ellaiah P. Production of alkaline protease by immobilized cells of alkalophilic Bacillus sp[J]. J Sci Indust Res (India), 2003, 62:589~592.
    [8] Gilbert C. Activating enpassant[J]. Science, 2007, 315:1638.
    [9] Ashdown LR, Koehler JM. Production of hemolysin and other extracellular enzymes byclinical isolates of Pseudomonas pseudomallei[J]. J Clin Microbioh, 1990, 28: 2331-2334.
    [10] Mizuno K, Matsuo H. A novel protease from yeast with specificity towards paired basic residues[J]. Nature, 1984, 309:558-560.
    [11] Manavalan A, Kalaichelvan A, Kalyanasundaram V, et al. Purification and partial characterization of serine protease from thermostable alkalophilic Bacillus laterosporus-AK1[J]. World J Microbiol Biotechnol, 2007, 23: 475-481.
    [12]郭杰炎.微生物酶[M].北京:科学出版社,1986
    [13] Xu H, Allison R, Kermode X. Proteases associated with programmed cell death of megagametophyte cells after germination of white spruce (Picea glauca) seeds[J]. Plant Molecular Biology, 2003, 52:729-744.
    [14] Fox JW, Shannon JD, Bjarnason JB. Proteinases and their inhibitors in biotechnology enzymes in biomass conversion[J]. ACS Symp Ser, 1991, 460: 62-79.
    [15] Ajoy B. Inhibitors of proprotein convertases[J]. Journal of Molecular Medicine, 2005, 83:844-848.
    [16] Swarna S, Per S. Degradation of Saccharomyces cervisiae Rck2 upon exposure of cells to high levels of zinc is dependent on Pep4[J]. Molecular Genetics and Genomics, 2005, 273:433-439.
    [17] Boyer EW, Byng GS. Bacillus proteolyticus species which produce an alkaline protease. US Patent No. 5518917. 1996.
    [18] Sitkey V, Minarik M, Michalik P. Recovery of an alkaline proteinase from fermentation broth using flocculation for cell removal[J]. Biotechnol Tech, 1992, 6:49–52.
    [19] Kim W, Choi K, Kim Y, et al. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang[J]. Appl Environ Microbiol, 1996, 62:2482–2488.
    [20] Kumar CG. Purification and characterization of a thermostable alkaline proteases from alkalophilic Bacillus pumilus[J]. Lett applied Microbiol, 2002, 34:13-17.
    [21] Yamagata Y, Ishiki K, Ichishima E. Subtilisin Sendai from alkalophilic Bacillus sp.: Molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, apr S[J]. Enzyme Microb Technol, 1995, 17: 653–663.
    [22] Larcher G, Cimon B, Symoens F, et al. A 33 kDa serine proteinase from Scedosporium apiospermum[J]. Biochem J, 1996, 315:119–126.
    [23] Bell DJ, Hoare M, Dunnill P. The formation of protein precipitates and their centrifugal recovery[J]. Adv Biochem Eng Biotechnol, 1983, 26:1–72.
    [24] Aunstrup K. Proteinases[M]. In: Rose AH, editor. Economic Microbiology: Microbial Enzymes and Bioconversions, Vol. 5. New York: Academic Press, 1980, 50–114.
    [25] Bohdziewicz J, Bodzek M. Ultrafiltration preparation of pectinolytic enzymes from citric acid fermentation[J]. Process Biochem, 1994, 29:99–107.
    [26] Bohdziewicz J. Ultrafiltration of technical proteolytic enzymes[J]. Process Biochem, 1994, 29:109–118.
    [27] Bohdziewicz J. Ultrafiltration of technical amylolytic enzymes[J]. Process Biochem, 1996, 31:185–191.
    [28] Tsuchiya K, Nakamura Y, Sakashita H, et al. Purification and characterization of thermostable alkaline protease from alkalophilic Thermoactinomyces sp. HS682[J]. Biosci Biotechnol Biochem, 1992, 56:246–250.
    [29] Keay L, Wildi BS. Proteases of the genus Bacillus. I. Neutral proteases[J]. Biotechnol Bioeng, 1970, 12:179–212.
    [30] Kobayashi T, Hakamada Y, Hitomi J, et al. Purification of alkaline proteases from a Bacillus strain and their possible interrelationship[J]. Appl Microbiol Biotechnol, 1996, 45:63–71.
    [31] Manachini PL, Fortina MG, Parini C. Thermostable alkaline protease produced by Bacillus thermoruber—a new species of Bacillus[J]. Appl Microbiol Biotechnol, 1988, 28:409-413.
    [32] B?ckle B, Galunsky B, Müller R. Characterization of a keratinolytic serine proteinase from Streptomyces pactum DSM 40530[J]. Appl Environ Microbiol, 1995, 61: 3705-3710.
    [33] Blackshear PJ. System for polyacrylamide gel electrophoresis [J]. Meth Enzymol, 1984,104:237-255.
    [34] Laemmi UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227:680-685.
    [35]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2002.
    [36]郭尧君.SDS电泳技术的实验考虑及最新进展[J].生物化学与生物物理进展,1991, 18(1):32-37.
    [37]邓军卫,游学科,汤虹,等.滤纸条方法SDS电泳[J].湖南医科大学学报,1996, 21(3):259-261.
    [38]何海伦.适冷蛋白酶与中温蛋白酶温度适应的分子基础及其在海洋生物蛋白资源高值化加工中的应用研究[D]: [博士论文].山东大学, 2005
    [39]Jacobs M, Elia M, Uhlen M. Cloning,Sequence and expression of subtilisin Carlsberg from Bacillus licheniformis[J]. Nucleic Acids Res, 1985, 13: 8913-8926.
    [40]李安娜.嗜热毛壳菌热稳定蛋白酶的纯化,基因克隆与表达[D]: [博士论文],山东大学, 2007
    [41] Sareen R, Bornscheuer UT, Mishra P. Cloning,Functional Expression and characterization of an alkaline protease from Bacillus licheniformis[J]. Biotechnol Lett, 2005, 27:1949-1963.
    [42]Takahashi M, Sekine T, Kuba NS, et al. The production of recombinant APRP, an alkaline protease derived from Bacillus pumilus TYO-67, by in vitro refolding of nro-enzyme fixed on a solid surface[J]. J Biochem, 2004, 136:549-556.
    [43] Caballero A,Thibodeaux B, Marquart M, et al. Pseudomonas keratitis:protease IV gene conservation, distribution, and production relative to virulence and other Pseudomonas proteases[J]. Invest Ophthalmol Vis Sci, 2004, 45:522-530.
    [44] Fu Z, Hamid SB, Razak CN, et al. Secretory expression in Escherichia coli and single-step purification of a heat-stable alkaline protease[J]. Protein Expr Purif, 2003, 8:63-68.
    [45]Wu SX, Geoffrey J. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol[J]. USA BioTechniques, 2004, 36: 152-154.
    [46] Joan LC, James MC. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiol Reviews, 2000, 24: 45-66.
    [47] Hu SY, Li WF, Lan C, et al. Expression of a recombinant anticoagulant C-type lectin-like protein ACFI in Pichia pastoris:Heterodimerization of two subunits is required for its function[J]. Toxicon, 2005, 46:716-724.
    [48] Feng YY,Yang WB, Ong SL, et al. Fermentation of starch for enhanced alkaline protease production by constructing an alkalophilic Bacillus pumilus strain[J]. Appl MicrobiolBiotechnol, 2001, 57:153-160.
    [49] Zaghloul TI, Abdel Wahab AE, Mostafa MH. Enhanced alkaline protease production in addition to alpha-amylase via constructing a Bacillus subtilis strain[J]. Appl Biochem Biotechnol, 2000, 84:319-327.
    [50]王贤舜,王培之.用蛋白质工程的方法改良枯草杆菌蛋白酶E的热稳定性[J].生物化学与生物物理学报,1993, 25:51-57.
    [51]唐雪明,邵蔚蓝,沈微,等.地衣芽孢杆菌2709和6816碱性蛋白酶基因在大肠杆菌中的克隆、表达及序列分析[J].应用与环境生物学报, 2002, 8:209-214.
    [52]Takagi H. Protein engineering on subtilisin[J]. Int J Biochem, 1993, 25:307–312.
    [53]毕汝昌,储乃明.枯草杆菌蛋白酶与蛋白质工程[J].生物化学与生物物理进展, 1991, 18(5):329-334
    [54]王凡强,马美荣,王正祥,等.枯草芽孢杆菌蛋白酶基因工程的研究进展[J].微生物学通报, 2000, 27:218-220.
    [55] Wells JA, Estell DA. Subtilisin--An Enzyme Designed to be Engineered[J]. TIBS, 1998,13:291-297.
    [56] Walasek P, Honek JF. Nonnatural amino acid incorporation into the methionine 214 position of the metzincin Pseudomonas aeruginosa alkaline protease[J]. BMC Biochem, 2005, 6:21-27.
    [57] Ikegaya K, Sugio S, Murakami K, et al. Kinetic analysis of enhanced thermal stability of an alkaline protease with engineered twin disulfide bridges and calcium-dependent stability[J]. Biotechnol Bioeng, 2003, 81:187-192.
    [58] Jang JW, Ko JH, Kim EK, et al. Enhanced thermal stability of an alkaline protease, AprP, isolated from a Pseudomonas sp. by mutation at an autoproteolysis site, Ser-331[J]. Biotechnol Appl Biochem, 2001, 34: 81-84.
    [59] Cooper JB, Khan G, Taylor G, et al. X-ray analyses of aspartic proteinases II.Three dimensional structure of the hexagonal crystal form of porcine pepsin at 2.3 A resolution[J]. J Mol Biol, 1990, 214:199-222.
    [60] Koszelak S, Ng J, Day DJ, et al. The crystallographic structure of the subtilisin protease from Penicillium cyclopium[J]. Biochem, 1997, 36:6597-6604.
    [61]Pickersgill RW, Sumner IG, Goodenough PW. Preliminary crystallographic data for protease[J]. Eur J Biochem, 1990, 190:443-444.
    [62] Sobek H, Hecht HJ, Hoffman B, et al. Crystal structure of an alkaline protease from Bacillus alkalophilus at 2.4°A resolution[J]. FEBS Lett, 1990, 274:57-66.
    [63] Kole MM, Draper I, Gerson DF. Production of protease by Bacillus subtilis using simultaneous control of glucose and ammonium concentrations[J]. J Chem Technol Biotechnol, 1988, 41:197–206.
    [64] Hanlon GW, Hodges NA, Russel AD. The influence of glucose, ammonium andmagnesium availability on the production of protease and bacitracin by Bacillus licheniformis[J]. J Gen Microbiol, 1982, 128:845–851.
    [65] Frankena J, van Verseveld HW, Stouthamer AH. A continuous culture study of the exocellular protease in Bacillus licheniformis[J]. Appl Microbiol Biotechnol, 1985, 22:169–176.
    [66] Frankena J, Koningstein GM, van Verseveld HW, et al. Effect of different limitations in chemostat cultures on growth and production of exocellular protease by Bacillus licheniformis[J]. Appl Microbiol Biotechnol, 1986, 24:106–112.
    [67] Vingorodova KA, Valsova II, Sharkova TS, et al. L-Glutamate oxidase from Streptomyces cremeus 510 MGU: effect of nitrogen sources on enzyme secretion[J]. Antibiot Khimioter, 2003, 48:3–8.
    [68] Mehta VJ, Thumar JT, Singh SP. Production of alkaline protease from alkaliphylic actinomycete[J]. Bioresour Technol, 2006, 97:1650–1654.
    [69] Sen S, Satyanarayana T. Optimization of alkaline protease production by thermophilic Bacillus licheniformis S-40[J]. Ind J Microbiol, 1993, 33:43–47.
    [70] Chandrasekaran S, Dhar SC. A low cost method for the production of extracellular alkaline proteinase using tapioca starch[J]. J Ferment Technol, 1983, 61:511–514.
    [71] Chaphalkar S, Dey S. Some aspects of production of extracellular protease from Streptomyces diastaticus[J]. J Microb Biotechnol, 1994, 9:85–100.
    [72] Cruegar W, Cruegar A. Biotechnology—A Textbook for Industrial Microbiology[M]. Madison, WI: Science Tech Inc, 1984.
    [73] Giesecke UE, Bierbaum G, Rudde H, et al. Production of alkaline protease with Bacillus licheniformis in a controlled fed-batch process[J]. Appl Microbiol Biotechnol, 1991, 35:720–724.
    [74] Nehete PN, Shah VD, Kothari RM. Isolation of a high yielding alkaline protease variant of Bacillus licheniformis[J]. Enzyme Microb Technol, 1986, 8:370–372.
    [75] Sinha N, Satyanarayana T. Alkaline protease production by thermophilic Bacillus licheniformis[J]. Indian J Microbiol, 1991, 31:425–430.
    [76] Banerjee R, Bhattacharyya BC. Optimisation of multiple inducers effect on protease biosynthesis by Rhizopus oryzae[J]. Bioprocess Eng, 1992, 7:225–728.
    [77] Phadatare SU, Deshpande VV, Srinivasan MC. High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): Enzyme production and compatibility with commercial detergents[J]. Enzyme Microb Technol, 1993,15:72–76.
    [78] Fujiwara N, Yamamoto K. Production of alkaline protease in a low-cost medium by alkalophilic Bacillus sp. and properties of the enzyme[J]. J Ferment Technol, 1987, 65:345–348.
    [79] Malathi S, Chakraborty R. Production of alkaline protease by a new Aspergillus flavus isolate under solid substrate fermentation conditions for use as a depilation agent[J]. Appl Environ Microbiol, 1991, 57:712–716.
    [80] Tsai YC, Juang RY, Lin SF, et al. Production and characterization of an alkaline elastase produced by alkalophilic Bacillus strain Ya-B[J]. Appl Environ Microbiol, 1988, 54:3156–3161.
    [81] Cheng SW, Hu HM, Shen SW, et al. Production and characterization of keratinase of a feather-degrading Bacillus licheniformis[J]. Biosci Biotechnol Biochem, 1995, 59:2239–2243.
    [82] Takagi H, Tsai YC, Nakamori S, et al. Improved production and recovery of alkaline elastase from alkalophilic Bacillus strain by a change of medium composition[J]. Biosci Biotechnol Biochem, 1995, 59:1591–1592.
    [83] Ong PS, Gaucher M. Production, purification and characterization of thermomycolase, the extracellular serine protease of the thermophilic fungus Malbranchea pulchella var. sulfurea[J]. Can J Microbiol, 1976, 22:165–176.
    [84] Ikura Y, Horikoshi K. Effect of amino compounds on alkaline amylase production by alkaliphilic Bacillus sp[J]. J Ferment Technol, 1987, 65:707–709.
    [85] Donaghy JA, McKay AM. Production and properties of an alkaline protease by Aureobasidium pullulans[J]. J Appl Bacteriol, 1993, 74:662–666.
    [86] McKay AM. Production of an alkaline protease by Fusarium graminearum grown on whey[J]. Milchwissenschaft, 1992, 47:147–148.
    [87] Gusek TW, Wilson DR, Kinsella JE. Influence of carbon source on production of a heat-stable protease from Thermomonospora fusca YX[J]. Appl Microbiol Biotechnol, 1988, 28:80–84.
    [88]肖怀秋,林亲录,李玉珍,等.微生物碱性蛋白酶研究进展[J].中国食品添加剂, 2005, 5:60-64.
    [89] Dumusois C, Priest FG. Extracellular serine protease synthesis by mosquito-pathogenic strains of Bacillus sphaericus[J]. J Appl Bacteriol, 1993,75:416–419.
    [90] Durham DR, Stewart DB, Stellwag EJ. Novel alkaline and heat-stable serine proteases from alkalophilic Bacillus sp. strain GX6638[J]. J Bacteriol, 1987, 169:2762–2768.
    [91] Moon SH, Parulekar SJ. A parametric study of protease production in batch and fed-batch cultures of Bacillus firmus[J]. Biotechnol Bioeng, 1991, 37:467–483.
    [92] Takii Y, Kuriyama N, Suzuki Y. Alkaline serine protease produced from citric acid by Bacillus alcalophilus sub sp. halodurans KP1239[J]. Appl Microbiol Biotechnol, 1990, 34:57–62.
    [93] Ferrero MA, Castro GR, Abate CM, et al. Thermostable alkaline proteases of Bacillus licheniformis MIR 29: isolation, production and characterization[J]. Appl MicrobiolBiotechnol, 1996, 45: 327–332.
    [94] Chu IM, Lee C, Li TS. Production and degradation of alkaline protease in batch cultures of Bacillus subtilis ATCC 14416[J]. Enzyme Microb Technol, 1992, 14:755–761.
    [95] Priest FG. Extracellular enzyme synthesis in the genus Bacillus[J]. Bacteriol Rev, 1977, 41:711–753.
    [96] Power SD, Adams RM. In: Ganesain A, Hoch J, editors. Bacillus: Molecular Genetics and Biotechnology Applications[M]. New York: Academic Press, 1986, 101–108.
    [97] Godfrey NYT. Industrial Enzymology[J].The nature press.1983, 545.
    [98]胡学智.蛋白酶的生产和应用(上).江苏调味副食品, 2006, 23(6): 1-4.
    [99] Masse FWJL, van Tilburg R. The benefit of detergent enzymes under changing washing conditions[J]. J Am Oil Chem Soc, 1983, 60:1672–1675.
    [100] Glover FA. Ultrafiltration and Reverse Osmosis for the Dairy Industry[M], Technical Bulletin, The National Institute for Research in Dairying (Reading), 1985.
    [101] Cheryan M. Ultrafiltration Handbook[M]. Lancaster, PA: Technomic Publishing Co. Inc, 1986.
    [102] Durham DR. Utility of subtilisin GX as a detergent additive[J]. J Appl Bacteriol, 1987, 63:381–386.
    [103] Bhosale SH, Rao MB, Deshpande VV, et al. Thermostability of high-activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20) [J]. Enzyme Microb Technol, 1995, 17:136–139.
    [104] Samal BB, Karan B, Stabinsky Y. Stability of two novel serine proteinases in commercial laundry detergent formulations[J]. Biotechnol Bioeng, 1990, 35: 650–652.
    [105] Ward OP. Proteolytic enzymes[M]. In: Blanch HW, Drew S, Wang DI, editors. Comprehensive Biotechnology- The Principles, Applications and Regulations of Biotechnology in Industry, Oxford and New York: Pergamon Press, 1985, 3: 709–818.
    [106] Dhar SC, Sreenivasulu S. Studies on the use of dehairing enzyme for its suitability in the preparation of improved animal feed[J]. Leather Sci, 1984, 31: 261–267.
    [107] Chandrasekaran S, Dhar SC. Utilization of a multiple proteinase concentrate to improve the nutritive value of chicken feather meal[J]. J Leather Res, 1986, 4: 23–30.
    [108] B?ckle B, Müller R. Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feather[J]. Appl Environ Microbiol, 1997, 63:790–795.
    [109] Nam GW, Lee DW, Lee HS, et al. Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe[J]. Arch Microbiol, 2002, 178:538–547.
    [110] Ghosh A, Chakrabarti K, Chattopadhyay D. Degradation of raw feather by a novel high molecular weight extracellular protease from newly isolated Bacillus cereusDCUW[J]. J Ind Microbiol Biotechnol, 2008, 35:825–834.
    [111] Ramnani P, Singh R, Gupta R. Keratinolytic potential of Bacillus licheniformis RG1: structural and biochemical mechanism of feather degradation[J]. Can J Microbiol, 2005, 51:191–196.
    [112] Pillai P, Archana G. Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate[J]. Appl Microbiol Biotechnol, 2008, 78:643–650.
    [113] Bressollier P, Letourneau F, Urdaci M, et al. Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus [J]. Appl Environ Microbiol, 1999, 65: 2570–2576.
    [114] Elmayergi HH, Smith RE. Influence of growth of Streptomyces fradiae on pepsin–HCl digestibility and methionine content of feather meal[J]. Can J Microbiol, 1971, 17:1067–1072.
    [115] Friedrich AB, Antranikian G. Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales[J]. Appl Environ Microbiol, 1996, 62: 2875–2882.
    [116] Gradi?ar H, Kern S, Friedrich J. Keratinase of Doratomyces microsporus[J]. Appl Microbiol Biotechnol, 2000, 53:196–200.
    [117] Brandelli A. Hydrolysis of native proteins by a keratinolytic protease of Chryseobacterium sp[J]. Ann Microbiol, 2005, 55 (1): 47-50.
    [118] Mukhopadhyay RP, Chandra AL. Protease of a keratinolytic Streptomycete to unhair goat skin[J]. Indian J Exp Biol, 1993, 31:557–558.
    [119] George S, Raju V, Krishnan MRV, et al. Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins[J]. Process Biochem, 1995, 30: 457–462.
    [120] Hameed A, Natt MA, Evans CS. Production of alkaline protease by a new Bacillus subtilis isolate for use as a bating enzyme in leather treatment[J]. World J Microbiol Biotechnol, 1996, 12:289–291.
    [121] Varela H, Ferrari MD, Belobrajdic L, et al. Skin unhairing proteases of Bacillus subtilis: Production and partial characterization[J]. Biotechnol Lett, 1997, 19:755–758.
    [122] Takagi H, Kondou M, Hisatsuka T, et al. Effects of an alkaline elastase from an alkalophilic Bacillus strain on the tenderization of beef meat[J]. J Agric Food Chem, 1992, 40:2364–2368.
    [123] Wilson SA, Young OA, Coolbear T, et al. The use of proteases from extreme thermophiles for meat tenderization[J]. Meat Sci, 1992, 32:93–103.
    [124] Bernholdt HF. Meat and other proteinaceous foods[M]. In: Reed G editor. Enzymes in Food Processing. 2nd edition. New York: Academic Press. 1975.
    [125] Warren SJ. Method of tenderising meat before slaughtering. European Patent Appl EP 0471470. 1992.
    [126] Adler-Nissen J. Enzymic Hydrolysis of Food Proteins[M]. New York, NY: Elsevier Applied Science Publishers, 1986.
    [127] Nakamura T, Syukunobe Y, Sakarai T, et al. Enzymatic production of hypoallergenic peptides from casein[J]. Milchwissenschaft, 1993, 48:11–14.
    [128]Considine T, Healy A, Kelly AL, el al. Proteolytic specificity of elastase on Bovine as1-casein[J]. Food Chem, 2000, 69(1):19-26.
    [129]ConsidineT, Healy A, Kelly AL, et a1, Proteolytic specificity of elastase on bovineβ-casein[J]. Food Chem, 1999, 66:463-470.
    [130] Barthomeuf C, Pourrat H, Pourrat A. Collagenolytic activity of a new semi-alkaline protease from Aspergillus niger[J]. J Ferment Bioeng, 1992, 73:233–236.
    [131] Kudrya VA, Simonenko IA. Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subtilis[J]. Appl Microbiol Biotechnol, 1994; 41: 505–509.
    [132] de Boer AS, Diderichsen B. On the safety of Bacillus subtilis and B. amyloliquefaciens: a review[J]. Appl Microbiol Biotechnol, 1991, 36:1–4.
    [133]Borges MR, Balaban R. Sucrose-Branched polymer synthesized by protease from Bacillus Subtilis[J]. 2007, 258: 25-29.
    [134]Torres S, Baigori MD, Pandey A, et al. Production and purification of a solvent-resistant esterase from Bacillus licheniformis S-86[J]. Appl Biochem Biotechno1, 2008, 151: 221-232.
    [135] Ogino H, Katou Y, Akagi R, et al. Cloning and expression of gene, and activation of an organic Solvent-stable lipase from Pseudomonas aeruginosa LST-03[J]. Extremophiles, 2007,11:809-817.
    [136] Rahman RN, Baharum SN, Salleh AB, et al. S5 Lipase: an organic solvent tolerant enzyme[J]. J Microbio1, 2006, 44: 583-590.
    [137] Fang Y, Lu Z, Lv F, et a1. A newly isolated organic solvent tolerant Staphylococcus saprophyticus M36 produced organic solvent-stable lipase[J]. Curr Microbio1, 2006, 53:510-515.
    [138] Sulong MR, Abdul Rahman RN, Salleh AB, et a1. A novel organic solvent tolerant lipase from Bacillus sphaericus 205y:extracellular expression of a novel OST-lipase gene[J]. Protein Expr Purif, 2006, 49:190-195.
    [139] Takeda Y, Aono R, Doukyu N. Purification,characterization,and molecular cloning of organic-solvent-tolerant cholesterol esterase from cyclohexane-tolerant Burkholderia cepacia strain ST-200[J]. Extremophiles, 2006,10: 269-277.
    [140] Ogino H, Nakagawa S, Shinya K, et a1. Purification and characterization of organicsolvent—stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03[J]. J Biosci Bioeng, 2000, 89:451-457.
    [141] Rahman RN, Baharum SN, Basri M, et a1. High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5[J]. Anal Biochem, 2005, 341:267-274.
    [142] Rahman RN, Chin JH, Salleh AB, el al. Cloning and expression of a novel lipase gene from Bacillus sphaericus 205y[J]. Mol Genet Genomics, 2003, 269: 252-260.
    [143]袁红玲,汤鲁宏,许正宏,等.产有机相催化酯合成活性的脂肪酶菌株的筛选[J].微生物学通报, 2007, 34(1): 19-23.
    [144]郭华颖,唐良华,苏敏,等.高选择性脂肪酶的筛选及其拆分布洛芬[J].过程工程学报, 2007, 7(6):1169-1174.
    [145] Ruchi G, Gupta A, Khare SK. Lipase from solvent tolerant Pseudomonas aeruginosa strain: Production optimization by response surface methodology and application[J]. Bioresour Techno1, 2008, 99:4796-4802.
    [146] Zhao LL, Xu JH, Zhao J, et a1. Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010[J]. Process Biochem, 2008, 43:626-633.
    [147] Doukyu N, Shibata K, Ogino H, et al. Purification and characterization of Chromobacterium sp. DS-l cholesterol oxidase with thermal, organic solvent, and detergent tolerance[J]. Appl Microbio1 Biotechno1, 2008, 80:59-70.
    [148] Doukyu N, Aono R. Purification of extracellular cholesterol oxidase with high activity in the presence of organic solvents from Pseudomonas sp. Strain ST-200[J]. Appl Environ Microbio1, 1998, 64:1929-1932.
    [149] Doukyu N, Kuwahara H, Aono R. Isolation of Paenibacillus illinoisensis that produces cyclodextrin glucanotransferase resistant to organic solvents [J]. Biosci Biotechnol Biochem, 2003, 67:334-340.
    [150] Fukushima T, Mizuki T, Echigol A, et al. Organic solvent tolerance of halophilic a-amylase from a Haloarchaeon, Haloarcula sp. strain S-1[J]. Extremophiles, 2005, 9:85-89.
    [151] Doukyu N,Yamagishi W, Kuwahara H, et al. Purification and characterization of a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents, from dimethylsulfoxide-tolerant Brachybacterium sp. strain LB25[J]. Extremophiles, 2007, 11:781-788.
    [152]黄小红,陈清西,王君,等.有机溶剂对苏云金芽孢杆菌(Bacillus thuringiensis)几丁质酶的影响[J].应用与环境生物学报, 2005,11(1):71-73.
    [153] Zaks A, Klibanov AM. Enzymatic catalysis in organic media at 1008C[J]. Science, 1984, 224:1249–1251.
    [154] Wong CS. Enzymatic catalysts in organic synthesis[J]. Science, 1989, 244: 1145–1152.
    [155] Zaks A. Enzymes in organic solvents[M]. In: Dordick JS, editor. Biocatalysts for Industry. New York: Plenum Press. 1991, 161–180.
    [156] Chen ST, Hsiao SC, Wang KT. Stable industrial protease catalysed peptide bond formation in organic solvent[J]. Bioorg Med Chem Lett, 1991, 1:445–450.
    [157] Nagashima T, Watanabe A, Kise H. Peptide synthesis by proteases in organic solvents: Medium effect on substrate specificity[J]. Enzyme Microb Technol, 1992, 14:842–847.
    [158] Gololobov MY, Stepanov VM, Voyushina TL, et al. Side reactions in enzymatic peptide synthesis in organic media: Effects of enzyme, solvent and substrate concentration[J]. Enzyme Microb Technol, 1994,16:522–528.
    [159] Watanabe T, Matsue R, Honda Y, et al. Differential activities of a lipase and protease towards straight- and branched-chain acyl donors in transesterification to carbohydrates in an organic medium[J]. Carbohydr Res, 1995, 275:215–220.
    [160] Patil DR, Rethwisch DG, Dordick JS. Enzymatic synthesis of a sucrose-containing linear polyester in nearly anhydrous organic media[J]. Biotechnol Bioeng, 1991, 37:447–450.
    [161] Klibanov AM. Improving enzymes by using them in organic solvents[J]. Nature, 2001, 409: 241–246.
    [162] Kumar D, Bhalla TC, Microbial proteases in peptide synthesis: approaches and applications[J]. Appl Microbiol Biotechnol, 2005, 68: 726–736.
    [163] Sardessai Y, Bhosle S. Tolerance of bacteria to organic solvents[J]. Res Microbiol, 2002, 153: 263-268.
    [164] Geok LP, Razak CAN, Rahman RNZA, et a1. Isolation and Screening of an Extracellular Organic Solvent—tolerant Protease Producer[J]. J Biochem Eng, 2003,13(1):73-77.
    [165] Gupta A, Khara SK. A Protease Stable in Organic Solvents from Solvent Tolerant Strain of Pseudomonas aeruginosa[J]. Bioresour Techno1, 2006, 97(15):1788-1793.
    [166]Tang XY, Pan Y, Li S, et al. Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease[J]. Bioresour Technol, 2008, 99: 7388–7392.
    [167] Ghorbel B, Kamoun AS, Nasri M. Stability Studies of Protease from Bacillus cereus BG1[J]. Enzyme Microb Techno1, 2003, 32(5):5l3-5l8.
    [168] Rahman RNZRA, Mahamad S, Salleh A B, et al. A new organic solvent tolerant protease from Bacillus pumilus 115b[J]. J Ind Microbiol Biotechnol, 2007, 34: 509–517.
    [169]杨君,朱丽云.有机相中酶催化活性研究进展[J].四川化工与腐蚀控制, 2000, 3(3): 20-24.
    [170] Klibanov AM, Why are enzymes less active in organic solvents than in water? [J]. Trends Biotechnol, 1997, 15(3), 97–101.
    [171] Klibanov AM. Improving enzymes by using them in organic solvents[J]. Nature, 2001, 409: 241–246.
    [172] Laune C, Boeren S, Vos K, et al. Rules for optimization of biocatalysts in organic solvents[J]. Biotechnol Bioeng, 1987, 30:81-87.
    [173] Dey G, Mitra A, Banerjee R, et al. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology[J]. Biochem Eng J, 2001, 7:227-231.
    [174] Chauhan B, Gupta R. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14[J]. Process Biochem, 2004, 39:2115-2122.
    [175] Kirk O, Borchert TV, Fuglsang CC. Industrial enzyme application[J]. Curr Opin Biotechnol, 2002, 13: 345-351.
    [176] Chen X, Chen SW, Sun M, et al. High yield of poly-Υ-glutamic acid from Bacillus subtilis by solid-state fermentation using swine manure as the basis of a solid substrate[J]. Bioresource Technol, 2005, 96:1872–1879.
    [177] Escamilla EM, Dendooven L, Magana IP, et al. Optimization of gibberellic acid production by immobilized Gibberella fu jikuroi mycelium in fluidized bioreactors[J]. J Biotechnol, 2000, 76: 147-155.
    [178] Xu CP, Kim SW, Wang HJ, et al. Optimization of submerged culture conditions for mycelial growth and exo-biopolymer production by Paecilomyces tenuipes C240[J]. Process Biochem, 2003, 38: 1025-1030.
    [179] Puri S, Beg QK, Gupta R. Optimization of alkaline protease production from Bacillus sp. by response surface methodology[J]. Curr Microbiol, 2002, 44: 286-290.
    [180] Roberto P, David A, Naresh M. Medium optimization for the production of the secondary metabolite squalestatin S1by a phoma sp. combining orthogonal design and response surface methodology[J]. Enzyme Microb Technol, 2005, 37: 704-711.
    [181] De Coninck J, Bouquelet S, Dumortier V, et al. Industrial media and fermentation processes for improved growth and protease production by Tetrahymena thermophila BIII[J]. J Ind Microbiol Biotechnol, 2000, 24: 285-290.
    [182] Li J, Ma C, Ma Y, et al. Medium optimization by combination of response surface methodology and desirability function: an application in glutamine production[J]. Appl Microbiol Biotechnol, 2007, 74: 563-571.
    [183] Tacon AG. Standard methods for the nutrition and feeding of farmed fish and shrimp, vol.2. Nutrient Sources and Composition[M]. Argent Laboratories Press, Redmond, WA, USA, 1990, 84-89.
    [184] Ray AK, Das I. Apparent digestibility of some aquatic macrophytes in rohu, labeo rohita (Ham.), fingerlings[J]. J Aquacult Trop, 1994, 9:335-342.
    [185] Joo HS, Chang CS, Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties[J]. Process Biochem, 2005, 40: 1263–1270.
    [186] Tsuchiya K, Sakashita H, Nakamura Y, et al. Production of thermostable alkaline protease by alkalophilic Thermoactinomyces sp. HS682[J]. Agric Biol Chem, 1991, 55:3125–3127.
    [187] Tari C, Genckal H, Tokath F. Optimization of a growth medium using a statistical approach for the production of an alkaline protease from a newly isolated Bacillus sp. L21[J]. Process Biochem, 2006, 41: 659–665.
    [188] Wang Q, Hou Y, Xu Z, et al. Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface methodology[J], Bioresour Technol, 2008, 99:1926–1931.
    [189] Michalik I, Szabova E, Polakova A, et al. The selection of Bacillus licheniformis strains for protease production: Characterization of bacterial alkaline protease[J]. Biologia, 1995, 50:249–252.
    [190]高政权,孟春晓.淡水水体中蓝藻水华研究进展[J].安徽农业科学, 2009, 37(16):7597–7598.
    [191]刘广建,汪洁,全卫丰.蓝藻作为主要氮源栽培蘑菇的硏究初报[J].食用菌, 2009, 38(3):38-39.
    [192]张维昊,肖邦定,方涛.天然水华蓝藻中微囊藻毒素的提取和净化研究[J].环境污染与防治, 2003, 25(5): 265-267.
    [193] Proteau PJ, Gerwick WH, Garciapichel F. The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria[J]. Experientia, 1993, 49(9): 825-829.
    [194] Ostensvic O. Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria: A comparative study of bacterial bioassays[J]. J Applied Microbiol, 1998, 84(6):1117-1124.
    [195]董诗旭,董锦艳,宋洪川.滇池蓝藻发酵产沼气的研究[J].可再生资源, 2006, 2(126): 16-18.
    [196]李克朗,张玲,刘洋.太湖蓝藻培养单细胞蛋白的可行性[J].食品与生物技术学报, 2009, 28(4):569-572.
    [197]姜继辉,严少华,陈巍.太湖蓝藻发酵后沼渣和沼液的肥效研究[J].江苏农业学报, 2009, 25 (5): 1025-1028.
    [198]李玉祥,刘和,堵国成.碱性条件促进太湖蓝藻厌氧发酵产挥发性脂肪酸[J].环境工程学报, 2010, 4(1): 209-213.
    [199] Grimont PAD, Grimont FD, de Rosnay HLC. Characterization of Serratia marcescens, S. liquefaciens, S. plymuthica and S. marinorubra by electrophoresis of their proteinases[J]. J Gen Microbiol, 1977, 9:301–310.
    [200] Grimont PAD, Grimont F. Proteinase zymograms of Serratia marcescens as an epidemiological tool[J]. Curr Microbiol, 1978, 1:15–18.
    [201] Miyazaki H, Yanagida N, Horinouchi S, et al. Specific excretion into the medium of a serine protease from Serratia marcescens[J]. Agric Biol Chem, 1990, 54(10): 2763-2765.
    [202] Ellouz Y, Bayoudh S, Kammoun N, et al. Production of protease by Bacillus substilis grown on sardinelle heads and viscera flour[J]. Biores Technol, 2001, 80(1): 49–51.
    [203] Johnvesly B, Naik GR. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium[J]. Process Biochem, 2001, 37(2):139–144.
    [204] Banerjee R, Bhattacharyya BC. Extracellular alkaline protease of a newly isolated Rhizopus oryzae[J]. Biotechnol Lett, 1992, 14:301–304.
    [205] Gupta A, Roy I, Khare SK, et al. Purification and characterization of solvent stable protease from Pseudomonas aeruginosa PseA[J]. J Chromatogr A, 2005,1069:155-161.
    [206] Ogino H, Watanabe F, Yamada M, et al. Purification and characterization of organic solvent-stable protease from organic solvent-tolerant Pseudomonas aeruginosa PST-01[J]. J Biosci Bioeng, 1999, 87: 61–68.
    [207] Persson M, Wehtje E, Adlercreutz P. Factors governing the activity of lyophilised and immobilized lipase preparations in organic solvents[J]. Chem Biochem, 2002, 3:566-571.
    [208] Gupta MN, Roy I. Enzymes in organic media[J]. Eur J Biochem, 2004, 271: 2575-2583.
    [209] Chen KQ, Robinson AC, Van Dam ME, et al. Enzyme engineering for nonaqueous solvents, II. Additive effects of mutations on the stability and activity of subtilisin E in polar organic media[J]. Biotechnol Prog, 1991, 7:125–129.
    [210] Kamiya N, Inoue M, Goto M, et al. Atalytic and structural properties of surfactant-horseradish peroxidase complex in organic media[J]. Biotechnol Prog, 2000, 16: 52-58.
    [211] Laemmli UK. Cleavage of structural proteins during assembly of head of bacteriophage T4[J]. Nature.1970, 227:680–685.
    [212] Davis BJ. Disc electrophoresis, II. Methods and application to human serum protein[J]. Ann NY Acad Sci, 1964, 121:404–427.
    [213] Morita Y, Kondoh K, Hasan Q, et al. Purification and characterization of a cold-activeprotease from psychrotrophic Serratia marcescens AP3801[J]. JAOCS, 1997, 74:1377-1383.
    [214] Tao K, Long Z, Liu K, et al. Purification and properties of a novel insecticidal protein from the locust pathogen Serratia marcescens HR-3[J]. Curr Microbiol, 2006, 52:45–49.
    [215] Romero FJ, Garcia LA, Salas JA, et al. Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey[J]. Process Biochem, 2001, 36:507–515.
    [216] Doddapaneni KK, Tatineni R, Vellanki RN, et al. Purification and characterization of two novel extra cellular proteases from Serratia rubidaea[J]. Process Biochem, 2007, 42:1229–1236.
    [217] Ulrich B. Crystal structure of the 50 kDa metallo protease from Serratia marcescens[J]. J Mol Biol, 1994, 242:244–251.
    [218] Salamone PR, Wodzinski RJ. Production, purification and characterization of a 50-kDa extracellular metalloprotease from Serratia marcescens[J]. Appl Microbiol Biotechnol, 1997, 48:317–324.
    [219] Kaska M, Lysenko O, Chaloupka A. Exocellular proteases of Serratia marcescens and their toxicity to larvae of Galleria mellonella [J]. Folia Microbiol, 1976, 21: 465–473.
    [220] Wang SL, Lin CL, Liang TW, et al. Conversion of squid pen by Serratia ureilytica for the production of enzymes and antioxidants [J]. Bioresour Technol, 2009, 100:316–323.
    [221] Gupta MN.Enzyme Function in Organic Solvents [J]. Eur J Biochem,1992,203:25-32.
    [222]姚忠,孙蓓蓓,李霜,等.高强度耐有机溶剂蛋白酶的纯化及性质[J].过程工程学报, 2008, 8(6):1195-1199.
    [223] Wan MH, Wu B, Ren W, et al. Screening, characterization, and cloning of a solvent-tolerant protease from Serratia marcescens MH6 [J]. J Microbiol Biotechnol, 2010, 20:881–888.
    [224] Wang SL, Chang TJ, Liang TW. Conversion and degradation of shellfish wastes by Serratia sp. TKU016 fermentation for the production of enzymes and bioactive materials[J]. Biodegradation, 2010, 21:321–333.
    [225] Haddar A, Bougatef A, Agrebi R, et al. A novel surfactant-stable alkaline serine-protease from a newly isolated Bacillus mojavensis A21. Purification and characterization[J]. Process Biochem, 2009, 44:29–35.
    [226] Singh J, Batra N, Sobti RC. Serine alkaline protease from a newly isolated Bacillus sp. SSR1[J]. Process Biochem, 2001, 36:781-785.
    [227] Tunga R, Shrivastava B, Banerjee R. Purification and characterization of a protease from solid state cultures of Aspergillus parasiticus[J]. Process Biochem, 2003, 38:1553-1558.
    [228] Mukherjee AK, Adhikarl H, Rai SK. Production of alkaline protease by a thermophilic Bacillus subtilis under solid-state fermentation (SSF) condition using imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation[J]. Biochem Eng J, 2008, 39:353-361.
    [229] Kumar CG, Takagi H. Microbial alkaline proteases: From a bioindustrial viewpoint[J]. Biotechnol Adv, 1999, 17:561-594.
    [230] Kwon YT, Kim JO, Moon SY, et al. Extracellular alkaline protease from alkalophilic Vibrio metschnikovii strain RH530[J]. Biotechnol Lett, 1994, 16: 413–418.
    [231] Mei C, Jiang X. A novel surfactant-and oxidation-stable alkaline protease from Vibrio metschnikovii DL33-51[J]. Process Biochem, 2005, 40: 2167-2172.
    [232]王镜岩,朱圣庚,徐长法.生物化学[M],第3版上册.北京:高等教育出版社,2002年9月第一版, 221.
    [233] Onifade AA, Al Sane NA, Al Musallam AA, et al. A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources[J]. Bioresource Technol, 1998, 66: 1-11.
    [234] Gupta R, Ramnani P. Microbial keratinases and their prospective applications: An overview[J]. Appl Microbiol Biotechnol, 2006, 70: 21–33.
    [235] Lee GG, Ferket PR, Shih JCH. Improvement of feather digestibility by bacterial keratinase as a feed additive[J]. FASEB J, 1991, 59: 1312.
    [236] Odetallah NH, Wang JJ, Garlich JD, et al. Keratinase in starter diets improves growth of broiler chicks[J]. Pourltry Sci, 2003, 82: 664-670.
    [237]Yamamura S, Morita Y, Hasan Q, et al. Characterization of a new keratin-degrading bacterium isolated from deer fur[J]. J Bioscien Bioengin, 2002, 93: 595-600.
    [238] Macedo AJ, Silva WOB, Gava R, et al. Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities [J]. Appl Environ Microbiol, 2005, 71: 594-596.
    [239] Lal S, Rajak RC, Hasija SK. In vitro degradation of keratin by two species of Bacillus[J]. J Gen Appl Microbiol, 1999, 45:283-287.
    [240] Kurbanoglu EB, Kurbanoglu NI. Utilization for lactic acid production with a new acid hydrolysis of ram horn waste[J]. FEMS Microbiol Lett, 2003, 225: 29-34.
    [241] Gousteroval A, Braikova D, Goshev I, et al. Degradation of keratin and collagen containing wastes by newly isolated thermoactinomycetes or by alkaline hydrolysis[J]. Lett Appl Microbiol, 2005, 40: 335-340.
    [242] Coward-kelly G, ChangVS, Agbogbo FK, et al. Lime treatment of keratinous materials for the generation of highly digestible animal feed:1. Chicken feathers[J]. Bioresour Technol, 2006, 97: 1337-1343.
    [243] Zacks A, Klibanov M. Enzyme catalysis in organic media at 100°C[J]. Science, 1984, 224: 1249—1251.
    [244]叶蕴华.在有机溶剂中进行的酶催化反应[J].大学化学, 1992, 7(4): 17-21.
    [245] Riva S, Chopineau J , Kieboom APG, et al. Protease-catalyzed regioselective esterification of sugars and related compounds in anhydrous dimethylformamide[J]. J Am Chem Soc, 1988, 110 (2): 584-589.
    [246] Riva S, Klibanov AM. Enzymochemical regioselective oxidation of steroids without oxidoreductase[J]. J Am Chem Soc, 1988, 110 (10): 3291-3295.
    [247] Margolin AL, Tai DF, Klibanov AM. Incorporation of D-amino acids into peptides via enzymic condensation in organic solvents[J]. J Am Chem Soc, 1987, 109 (25): 7885-7887.
    [248] Haruc S, Kunihiko I, Eiko T, et al. Enzymatic coupling ofα,α-dialkyl amino acids using inverse substrates as acyl donors[J]. Tetrahedron Lett, 1997, 38 (10): 1777-1780.
    [249] Toshifumi M, Kayoko T, Eiichi E, et al. Remarkable effects of donor esters on theα-chymotrypsin-catalyzed couplings of inherently poor amino acid substrates[J]. Tetrahedron Lett, 1998, 39: 997-1000.
    [250] Moree WJ, Sears P, Kawashiro K, et al. Exploitation of Subtilisin BPN as Catalyst for the Synthesis of Peptides Containing Noncoded Amino Acids, Peptide Mimetics and Peptide Conjugates[J]. J Am Chem Soc, 1997, 119 (17): 3942-3947.
    [251] Cerovsky V, Jakubke HD. Enzymic approach to the synthesis of taurine-containing peptides[J]. Int J Pept Protein Res, 1994, 44: 466-471.
    [252]沈鸿雁,田桂玲,闰爱新,等.有机溶剂性质及其水含量对酶催化合成含D-氨基酸残基的二肽衍生物的影响[J].化学学报, 2003, 61(7): 1144-1148.
    [253] Wang X, Parsons CM. Effect of processing systems on protein quality of feather meal and hair meals[J]. Poultry Science, 1997, 76: 491-496.
    [254] Latshaw JD, Musharf N, Retrum R. Processing of feather to maximize its nutritional value for poultry[J]. Anim Feed Sci Technol, 1994, 47:179-188.
    [255] Shigh JCH, Williams CM. Feather-lysate, a hydrolyzed feather feed ingredient and animal feeds containing the same.US Patent No.4908220, 1990.
    [256] Williams CM, Lee CG, Garlich JD, et al. Evaluation of a bacterial feather fermentation product, feather lysate, as a feed protein[J]. Poultry Science, 1991, 70: 85-90.
    [257] Polat T, Linhardt RJ. Syntheses and applications of sucrose-based esters[J]. J Surfactants Deterg, 2001, 4: 415-421.
    [258] Pedersen NR, Halling PJ, Pedersen LH. Efficient transesterification of sucrose catalysed by the metalloprotease thermolysin in dimethylsulfoxide[J]. FEBS Lett, 2002, 519: 181-184.
    [259] Ferrer M, Cruces MA, Bernabe M, et al. Lipase-catalyzed regioselective acylation of sucrose in two-solvent mixtures[J]. Biotechnol Bioeng, 1999, 65: 10-16.
    [260] Mao D, Wang Y, Hu L, et al. Progress in application of enzyme-catalyzed regioselective acylation in synthesis of sucrose esters[J]. China Surfact Deterg Cosmet, 2006, 36:369-373.
    [261]王一尘.蔗糖酯的合成与应用[M].北京:轻工业出版社,1988, 2-3.
    [262] Garti N, Clement V, Leser M, et al. Sucrose ester microemulsions[J]. J Mol Liq, 1999, 80: 253–296.
    [263] Thevenin MA, Grossiord JL, Poelman MC. Sucrose esters cosurfactant microemulsion systems for transdermal delivery-assessment of bicontinuous structures[J]. Int J Pharm, 1996, 137: 177-186.
    [264]Desai NB. Esters of sucrose and glucose as cosmetic materials[J]. Cosmet Toiletries, 1990, 105: 99-107.
    [265] Patil YH, Swift G. Polysaccharides as raw materials for the detergent industry[J]. Chem Ind, 1995, 2: 55-59.
    [266] Chortik OT, Pomonis JG, Johnson AW. Syntheses and characterizations of insecticidal sucrose esters[J]. J Agric Food Chem, 1996, 44: 1551-1557.
    [267] Plou FJ, Cruces MA, Ferrer M, et al. Enzymatic acylation of di- and trisaccharides with fatty acids: choosing the appropriate enzyme, support and solvent[J]. J Biotechnol, 2002, 96:55-66.
    [268] Yoo IS, Park SJ, Yoon HH. Enzymatic synthesis of sugar fatty acid esters[J]. J Ind Eng Chem, 2007, 13:1-6.
    [269] Harder DB, Capeless CG , Maggio JC, et al. Intermediate sucrose octa-acetate sensitivity suggests a third allele at mouse bitter taste locus Soa and Soa-Rua identity[J]. Chem Senses, 1992, 17: 391-401.
    [270] Akoh CC, Swanson BG. Optimized synthesis of sucrose polyesters: comparison of physical properties of sucrose polyesters. raffinose polyesters and salad oils[J]. J Food Sci, 1990, 55: 236-243.
    [271]陈广兴,陈龙,强皆兵,等.几种化合物在改性双基推进剂中降低燃速的作用[J].固体火箭技术, 1996,19: 28-33.
    [272]张铸勇,祁国珍,庄甫.精细有机合成反应单元[M].上海:华东化工学院出版社, 1990.
    [273]刘远凤,吾满江艾力,文彬,等.八乙酸蔗糖酯的合成研究[J].新疆石油学院学报. 2002, 14: 58-61.
    [274]李莲瑞,付宝权,卢强,等.旋毛虫丝氨酸蛋白酶基因的克隆与分析[J].中国兽医科学, 2008, 38: 200-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700