两种Bt融合基因抗虫性能及其转基因水稻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Insecticidal Activities of Two Translational Fusion Bacillus Thuringiesis (Bt) Genes and Their Application in Transgenic Rice
  • 作者:高建华
  • 论文级别:博士
  • 学科专业名称:环境生物学
  • 学位年度:2011
  • 导师:沈志成
  • 学科代码:083001
  • 学位授予单位:浙江大学
  • 论文提交日期:2011-04-01
  • 答辩委员会主席:俞晓平
摘要
随着转Bt(苏云金芽孢杆菌,Bacillus thuringiensis)基因抗虫作物的广泛应用,人们对昆虫抗性发生的忧虑日益激增,对抗性管理的研究也越来越深入。目前在分子水平使用的抗性管理策略主要是基因堆叠,即将两种或更多作用位点不同,无交叉抗性的Bt基因同时在一种作物中表达。这种策略已被证明能够显著延缓抗性发生。同时,多基因的使用,还可以使转基因作物同时应对多种害虫,可谓一举两得。基因堆叠有两种实现方式,一种比较常见,是将多种基因独立的转录表达。而另一种是将两种基因拼接起来,通过一个启动子转录表达。般认为,两种Bt基因融合的效果等同于两种亲本蛋白的叠加。
     cry1Ab和cry9Aa基因,氨基酸序列相似度低于30%,理论上讲受体结合位点可能不同,因此不会出现交叉抗性。我们选取这两个cry基因,去除两者原蛋白结构域ⅢC端的编码基因,保留其经典3结构域(Ⅰ,Ⅱ和Ⅲ)的活性部分。然后将两个截断的基因拼接起来,形成融合基因,cry1Ab-cry9Aa。大肠杆菌(Escherichia coli)表达的融合蛋白Cry1Ab-Cry9Aa生物测定显示,该蛋白对粘虫(Mythimna separate)和亚洲玉米螟Ostrinia furnacalis)具有很好的杀虫活性,其LC50远低于其亲本蛋白Cry1Ab和Cry9Aa。对棉铃虫(Helicoverpa armigera)和斜纹夜蛾(Spodoptera litura)的生测结果显示,CrylAb和Cry9Aa蛋白对其没有明显的杀虫或抑制作用,但融合蛋白Cry1Ab-Cry9Aa对两种昆虫具有显著生长抑制作用。其中,喂养Cry1Ab-Cry9Aa蛋白(5μg/cm2)的棉铃虫平均体重只有空白对照的十分之一,而斜纹夜蛾约为5分之一。我们进一步将Cry9Aa的N端59个氨基酸去除,得到Cry9AaDel蛋白。同时将Cry1Ab和Cry9AaDel融合形成Cry1Ab-Cry9AaDel蛋白。生物测定显示,Cry9AaDel完全失去对粘虫和亚洲玉米螟的活性,但是,相应的融合蛋白Cry1Ab-Cry9AaDel却依然保持对两种昆虫的高效杀虫活性。另外,Cry9AaDel对棉铃虫和斜纹夜蛾也无任何活性,但融合蛋白Cry1Ab-Cry9AaDel也表现出同Cry1Ab-Cry9Aa蛋白相近的抑制作用。
     为了测定两种融合蛋白对四种害虫的生物活性是否由于其亲本蛋白之间的协同作用,我们同时将各自的两种亲本蛋白混合进行生物测定。结果显示,CrylAb和Cry9Aa或Cry9AaDel之间并无协同作用。两种融合蛋白对四种害虫的生物活性,也远远高于混合处理。该结果说明我们构建的两种融合蛋白Cry1Ab-Cry9Aa和Cry1Ab-Cry9AaDel获得了更高的生物活性,具有潜在应用价值。
     为了进一步确认两种融合蛋白在转基因领域的应用潜力,我们将两种融合基因分别转化水稻品种粳稻秀水110。分析阳性转化水稻中融合蛋白的表达情况,发现两种融合蛋白在水稻中均能较好表达。不同转化株系之间表达量差异较大(0.2-2μg每克新鲜叶片)。另外,在水稻里表达的融合蛋白,部分被水稻自身的蛋白酶消化,降解为较小的片段,该现象也已有其它相似的报道。对四种害虫,棉铃虫、斜纹夜蛾、二化螟(Chilo suppressalis)和稻纵卷叶螟(Cnaphalocrocis medinalis)等一龄幼虫进行生物测定显示,两种转基因水稻都获得了优秀的抗虫能力。进一步使用单拷贝转化株系的T1代植株测定二龄斜纹夜蛾幼虫,也表现出很好的抗性。
     综上所述,获得了两种Bt融合蛋白Cry1Ab-Cry9Aa和Cry1Ab-Cry9AaDel。对比其亲本蛋白,该融合蛋白对部分鳞翅目害虫表现出更高的杀虫活性。另外,转基因水稻分析表明,两种融合蛋白能够为水稻提供良好的抗虫性能。因此,两种融合蛋白具有在转基因抗虫作物中的应用潜力。
The Bt (Bacillus thuringiensis) crops has been planted worldwide for control of insect pests. Recently, several Bt-resistant insect species has been discovered. For resistance management, many strategies have been reported. Gene stacking, i.e. expessing multiple toxins in a plant, can not only significantly delay the development of the insect resistance, but also confer resistance to multiple insect species to a plant. Constructing a translational fusion gene is an alternative way of using multiple toxins. And there were some researches focusing on evaluating different fusion Bt proteins expressed in either Escherichia coli or crops. At present, it was considered that the fusion Bt protein exert overlapping insecticidal activity and spectrum of the parental toxins.
     In this study, a fusion protein Cry1Ab-Cry9Aa deriving from the truncated CrylAb (648 amino acid residues at the N-terminus) and Cry9Aa (656 amino acid residues at the N-terminus), was expressed in E. coli. The two truncated toxins, CrylAb and Cry9Aa, include intact 3-domain structure and are sufficient for their insecticidal activities. The assay results showed that the fusion protein Cry1Ab-Cry9Aa is more active against the oriental armyworm (Mythimna separate) and the Asian corn borer (Ostrinia furnacalis) than the parental toxins, the truncated CrylAb and Cry9Aa. For cotton bollworm (Helicoverpa armigera) and tobacco cutworm (Spodoptera litura), the fusion protein significantly inhibited the growth of the neonate larvae and the feeding larvae in 5μg/cm2 concentration treatment were about 10% and 20% respectively in weight to the control insects. The larvae of cotton bollworm and tobacco cutworm feeding with truncated Cry1Ab or Cry9Aa almost developed normally. In addition, the assay results of the mixture treatment indicated that mixing the CrylAb and Cry9Aa cannot create any significant synergetic effect.
     The other fusion protein Cry1Ab-Cry9AaDel was made from the truncated Cry1Ab and Cry9AaDel, the further truncated Cry9Aa in which the 59 amino acids of the N-terminus was removed. Compared with the truncated Cry9Aa, the Cry9AaDel is inactive on the oriental armyworm and the Asian corn borer while it do not inhibit the growth of cotton bollworm and tobacco cutworm. However, the fusion protein Cry1Ab-Cry9AaDel retains similar insecticidal activity with the Cry1Ab-Cry9Aa to the four species tested.
     The two fusion genes were consequently introduced into a local cultivar of rice (Oryza sativa L. ssp. japonica), respectively. Western blot analysis revealed that the fusion proteins can be expressed reasonably in the transgenic rice in range from 0.2 to 2μg per gram of fresh leaves. And the fusion proteins expressed in rice were partially degraded, which was in agreement with the previous reports. These positive transgenic lines were highly resistant to four pest insects, cotton bollworm, tobacco bollworm, rice stem borer (Chilo suppressalis) and rice leaf folder (Cnaphalocrocis medinalis).
     In summary, the two fusion protein Cry1Ab-Cry9Aa and Cry1Ab-Cry9AaDel constructed in our study gain broader and higher insecticidal activity and can provide an excellent insect-resistance in biotech crops.
引文
Abdullah, M. A., A. P. Valaitis and D. H. Dean (2006). Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus. BMC Biochem 7:16.
    Adamczyk, J. J., Jr. and D. V. Sumerford (2001). Potential factors impacting season-long expression of Cry1Ac in 13 commercial varieties of Bollgard cotton. J Insect Sci 1:13.
    Adamczyk, J. J., Jr. and J. Gore (2004). Development of bollworms, Helicoverpa zea, on two commercial Bollgard cultivars that differ in overall Cry1Ac levels. J Insect Sci 4:32.
    Agrawal, N., P. Malhotra and R. K. Bhatnagar (2002). Interaction of gene-cloned and insect cell-expressed aminopeptidase N of Spodoptera litura with insecticidal crystal protein Cry1C. Appl Environ Microbiol 68(9):4583-4592.
    Alberghini, S., R. Filippini, E. Marchetti, M. L. Dindo, A. B. Shevelev, A. Battisti and A. Squartini (2005). Construction of a Pseudomonas sp. derivative carrying the cry9Aa gene from Bacillus thuringiensis and a proposal for new standard criteria to assess entomocidal properties of bacteria. Res Microbiol 156(5-6):690-699.
    Alzate, O., C. Osorio, A. M. Florez and D. H. Dean (2010). Valine 171 located in {alpha}-Helix 5 of Bacillus thuringiensis Cry1Ab {delta}-endotoxin participates in toxin translocation into Lymantria dispar midgut membranes. Appl Environ Microbiol:AEM.01428-10.
    Angsuthanasombat, C., N. Crickmore and D. J. Ellar (1992). Comparison of Bacillus thuringiensis subsp. israelensis CryⅣA and CryⅣB cloned toxins reveals synergism in vivo. Ferns Microbiol Lett 73(1-2):63-68.
    Anilkumar, K. J., A. Rodrigo-Simon, J. Ferre, M. Pusztai-Carey, S. Sivasupramaniam and W. J. Moar (2008). Production and characterization of Bacillus thuringiensis Cry1Ac-resistant cotton bollworm Helicoverpa zea (Boddie). Appl Environ Microbiol 74(2):462-469.
    Arenas, I., A. Bravo, M. Soberon and I. Gomez (2010). Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J Biol Chem 285(17):12497-12503.
    Ballester, V. V., F. Granero, R. A. de Maagd, D. Bosch, J. L. Mensua and J. Ferre (1999). Role of Bacillus thuringiensis toxin domains in toxicity and receptor binding in the diamondback moth. Appl Environ Microbiol 65(5):1900-1903.
    Banks, D. J., G. Hua and M. J. Adang (2003). Cloning of a Heliothis virescens 110 kDa aminopeptidase N and expression in Drosophila S2 cells. Insect Biochem Mol Biol 33(5):499-508.
    Bayyareddy, K., T. M. Andacht, M. A. Abdullah and M. J. Adang (2009). Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae. Insect Biochem Mol Biol 39(4):279-286.
    Bohorova, N., R. Frutos, M. Royer, P. Estanol, M. Pacheco, Q. Rascon, S. McLean and D. Hoisington (2001). Novel synthetic Bacillus thuringiensis cry1B gene and the cry1B-cry1Ab translational fusion confer resistance to southwestern corn borer, sugarcane borer and fall armyworm in transgenic tropical maize. Theor Appl Genet 103(6):817-826.
    Boonserm, P., P. Davis, D. J. Ellar and J. Li (2005). Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J Mol Biol 348(2):363-382.
    Boonserm, P., M. Mo, C. Angsuthanasombat and J. Lescar (2006). Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-angstrom resolution. J Bacteriol 188(9):3391-3401.
    Bowen, D., T. A. Rocheleau, M. Blackburn, O. Andreev, E. Golubeva, R. Bhartia and R. H. ffrench-Constant (1998). Insecticidal Toxins from the Bacterium Photorhabdus luminescens. Science 280(5372):2129-2132.
    Bradley, D., M. A. Harkey, M. K. Kim, K. D. Biever and L. S. Bauer (1995). The insecticidal CryⅠB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J Invertebr Pathol 65(2): 162-173.
    Bravo, A. (1997). Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. J Bacteriol 179(9):2793-2801.
    Bravo, A., J. Sanchez, T. Kouskoura and N. Crickmore (2002). N-terminal activation is an essential early step in the mechanism of action of the Bacillus thuringiensis Cry1Ac insecticidal toxin. J Biol Chem 277(27):23985-23987.
    Bravo, A., I. Gomez, J. Conde, C. Munoz-Garay, J. Sanchez, R. Miranda, M. Zhuang, S. S. Gill and M. Soberon (2004). Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta 1667(1):38-46.
    Bravo, A., S. S. Gill and M. Soberon (2005). Bacillus thuringiensis mechanisms and use. in:L. I. Gilbert, S. S. Gill and K. Iatrou (Eds.), Comprehensive Molecular Insect Science. Amsterdam, Elsevier BV:175-206.
    Bravo, A., S. S. Gill and M. Soberon (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49(4):423-435.
    Budatha, M., G. Meur and A. Dutta-Gupta (2007). A novel aminopeptidase in the fat body of the moth Achaea Janata as a receptor for Bacillus thuringiensis Cry toxins and its comparison with midgut aminopeptidase. Biochem J 405(2):287-297.
    Burton, S. L., D. J. Ellar, J. Li and D. J. Derbyshire (1999). N-acetylgalactosamine on the putative insect receptor aminopeptidase N is recognised by a site on the domain Ⅲ lectin-like fold of a Bacillus thuringiensis insecticidal toxin. J Mol Biol 287(5):1011-1022.
    Cabiaux, V., C. Wolff and J. M. Ruysschaert (1997). Interaction with a lipid membrane:A key step in bacterial toxins virulence. Int J Biol Macromol 21(4): 285-298.
    Caprio, M. A. (1998). Evaluating resistance management strategies for multiple toxins in the presence of external refuges. Lanham, MD, ETATS-UNIS, Entomological Society of America.
    Caramori, T., A. M. Albertini and A. Galizzi (1991). In vivo generation of hybrids between two Bacillus thuringiensis insect-toxin-encoding genes. Gene 98(1):37-44.
    Carroll, J., D. Convents, J. Van Damme, A. Boets, J. Van Rie and D. J. Ellar (1997). Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry3A delta-endotoxin may facilitate its coleopteran toxicity. J Invertebr Pathol 70(1):41-49.
    Charles, J. F., M.-H. Silva-Filha and C. Nielsen-LeRoux (2000). Mode of action of Bacillus sphaericus on mosquito larvae:Incidence on resistance. in:J. F. Charles, A. Delecluse and C. Nielsen-LeRoux (Eds.), Entomopathogenic Bacteria:From Laboratory to Field Application. Dordrecht, Kluwer Academic Press:237-252.
    Chen, J., G. Hua, J. L. Jurat-Fuentes, M. A. Abdullah and M. J. Adang (2007). Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc Natl Acad Sci U S A 104(35):13901-13906.
    Chen, J., K. G. Aimanova, L. E. Fernandez, A. Bravo, M. Soberon and S. S. Gill (2009a). Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis. Biochem J 424(2):191-200.
    Chen, J., K. G. Aimanova, S. Pan and S. S. Gill (2009b). Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin. Insect Biochem Mol Biol 39(10):688-696.
    Chen, L. Z., G. M. Liang, J. Zhang, K. M. Wu, Y. Y. Guo and B. G. Rector (2010). Proteomic analysis of novel Cryl Ac binding proteins in Helicoverpa armigera (Hubner). Arch Insect Biochem Physiol 73(2):61-73.
    Chestukhina, G. G., S. A. Tyurin, A. L. Osterman, O. P. Khodova and V. M. Stepanov (1986). Amino acid sequences from the N-terminal domain of Bacillus thuringiensis, subspecies alesti, [delta]-endotoxin:Hypervariable regions of Bacillus thuringiensis [delta]-endotoxms. Febs Lett 198(2):283-286.
    Chitkowski, R. L., S. G. Turnipseed, M. J. Sullivan and W. C. Bridges (2003). Field and laboratory evaluations of transgenic cottons expressing one or two Bacillus thuringiensis var. kurstaki Berliner proteins for management of noctuid (Lepidoptera) pests. J Econ Entomol 96(3):755-762.
    Corbin, D. R., R. J. Grebenok, T. E. Ohnmeiss, J. T. Greenplate and J. P. Purcell (2001). Expression and chloroplast targeting of cholesterol oxidase in transgenic tobacco plants. Plant Physiol 126(3):1116-1128.
    Council., N. R. (1986). Pesticide Resistance:Strategies and Tactics for Management. Washington, DC, USA, National Academy Press.
    Crickmore, N. Retrieved Oct,10,2010, from http://www.lifesci.sussex.ac.uk/home/Neil Crickmore/Bt/.
    Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum and D. H. Dean (1998). Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol Mol Biol Rev 62(3):807-813.
    Davis, P. M. and D. W. Onstad (2000). Seed mixtures as a resistance management strategy for European corn borers (Lepidoptera:Crambidae) infesting transgenic corn expressing Cry1Ab protein. J Econ Entomol 93(3):937-948.
    de Maagd, R. A., M. S. Kwa, H. van der Klei, T. Yamamoto, B. Schipper, J. M. Vlak, W. J. Stiekema and D. Bosch (1996). Domain Ⅲ substitution in Bacillus thuringiensis delta-endotoxin CryIA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol 62(5):1537-1543.
    de Maagd, R. A., M. Weemen-Hendriks, W. Stiekema and D. Bosch (2000). Bacillus thuringiensis delta-endotoxin Cry1C domain Ⅲ can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Appl Environ Microbiol 66(4):1559-1563.
    de Maagd, R. A., A. Bravo and N. Crickmore (2001). How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet 17(4):193-199.
    de Maagd, R. A., A. Bravo, C. Berry, N. Crickmore and H. E. Schnepf (2003). Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu Rev Genet 37(1):409-433.
    Delecluse, A., S. Poncet, A. Klier and G. Rapoport (1993). Expression of cryIVA and cryIVB Genes, independently or in combination, in a crystal-negative strain of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol 59(11):3922-3927.
    Diaz-Mendoza, M., G. P. Farinos, P. Castanera, P. Hernandez-Crespo and F. Ortego (2007). Proteolytic processing of native CrylAb toxin by midgut extracts and purified trypsins from the Mediterranean corn borer Sesamia nonagrioides. J Insect Physiol 53(5):428-435.
    Ding, X., Z. Luo, L. Xia, B. Gao, Y. Sun and Y. Zhang (2008). Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol 56(5): 442-446.
    Dorsch, J. A., M. Candas, N. B. Griko, W. S. Maaty, E. G. Midboe, R. K. Vadlamudi and L. A. Bulla, Jr. (2002). CrylA toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of BT-R(1) in Manduca sexta:Involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochem Mol Biol 32(9): 1025-1036.
    Downes, S., T. Parker and R. Mahon (2010). Incipient Resistance of Helicoverpa punctigera to the Cry2Ab Bt Toxin in Bollgard Ⅱ(?) Cotton. PLoS One 5(9): e12567.
    Duchaud, E., C. Rusniok, L. Frangeul, C. Buchrieser, A. Givaudan, S. Taourit, S. Bocs, C. Boursaux-Eude, M. Chandler, J. F. Charles, E. Dassa, R. Derose, S. Derzelle, G. Freyssinet, S. Gaudriault, C. Medigue, A. Lanois, K. Powell, P. Siguier, R. Vincent, V. Wingate, M. Zouine, P. Glaser, N. Boemare, A. Danchin and F. Kunst (2003). The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21(11):1307-1313.
    Estruch, J. J., G. W. Warren, M. A. Mullins, G. J. Nye, J. A. Craig and M. G. Koziel (1996). Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci U S A 93(11):5389-5394.
    Estruch, J. J., C.-G. YU, G. WARREN, Wayne., N. DESAI, Manoj., M. KOZIEL, Gene, and G. NYE, James. (1998). Plant Pest Control. WO/1998/044137.
    Fabrick, J., C. Oppert, M. D. Lorenzen, K. Morris, B. Oppert and J. L. Jurat-Fuentes (2009). A novel Tenebrio molitor cadherin is a functional receptor for Bacillus thuringiensis Cry3Aa toxin. J Biol Chem 284(27):18401-18410.
    Feitelson, J. S., J.-Payne and L. Kim (1992). Bacillus thuringiensis:Insects and beyond. Nat Biotechnol 10(3):271-275.
    Feitelson, J. S. (1993). The Bacillus thuringiensis family tree, in:L. L. Kim (Eds.), Advanced engineered pesticides. New York, N.Y., Marcel Dekker, Inc.:63-71.
    Fernandez-Luna, M. T., H. Lanz-Mendoza, S. S. Gill, A. Bravo, M. Soberon and J. Miranda-Rios (2010). An alpha-amylase is a novel receptor for Bacillus thuringiensis ssp. israelensis Cry4Ba and Cry11Aa toxins in the malaria vector mosquito Anopheles albimanus (Diptera:Culicidae). Environ Microbiol 12(3): 746-757.
    Fernandez, L. E., K. G. Aimanova, S. S. Gill, A. Bravo and M. Soberon (2006). A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem J 394(Pt 1):77-84.
    Ferre, J. and J. Van Rie (2002). Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501-533.
    Flannagan, R. D., C. G. Yu, J. P. Mathis, T. E. Meyer, X. Shi, H. A. Siqueira and B. D. Siegfried (2005). Identification, cloning and expression of a Cry1Ab cadherin receptor from European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Insect Biochem Mol Biol 35(1):33-40.
    Foissac, X., N. Thi Loc, P. Christou, A. M. R. Gatehouse and J. A. Gatehouse (2000). Resistance to green leafhopper (Nephotettix virescens) and brown planthopper (Nilaparvata lugens) in transgenic rice expressing snowdrop lectin (Galanthus nivalis agglutinin; GNA). J Insect Physiol 46(4):573-583.
    Forcada, C., E. Alcacer, M. D. Garcera and R. Martinez (1996). Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins. Arch Insect Biochem Physiol 31(3): 257-272.
    Forcada, C., E. Alcacer, M. D. Garcera, A. Tato and R. Martinez (1999). Resistance to Bacillus thuringiensis Cry1Ac toxin in three strains of Heliothis virescens: Proteolytic and SEM study of the larval midgut. Arch Insect Biochem Physiol 42(1):51-63.
    Franklin, M. T., C. L. Nieman, A. F. Janmaat, M. Soberon, A. Bravo, B. E. Tabashnik and J. H. Myers (2009). Modified Bacillus thuringiensis toxins and a hybrid B. thuringiensis strain counter greenhouse-selected resistance in Trichoplusia ni. Appl Environ Microbiol 75(17):5739-5741.
    Gahan, L. J., F. Gould and D. G. Heckel (2001). Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293(5531):857-860.
    Gahan, L. J., Y. T. Ma, M. L. Coble, F. Gould, W. J. Moar and D. G. Heckel (2005). Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera:Noctuidae). J Econ Entomol 98(4):1357-1368.
    Galitsky, N., V. Cody, A. Wojtczak, D. Ghosh, J. R. Luft, W. Pangborn and L. English (2001). Structure of the insecticidal bacterial delta-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr D Biol Crystallogr 57(Pt 8):1101-1109.
    Garner, K. J., S. Hiremath, K. Lehtoma and A. P. Valaitis (1999). Cloning and complete sequence characterization of two gypsy moth aminopeptidase-N cDNAs, including the receptor for Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol 29(6):527-535.
    Gatehouse, J. A. (2008). Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146(3):881-887.
    Gazit, E., P. La Rocca, M. S. Sansom and Y. Shai (1998). The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis delta-endotoxin are consistent with an umbrella-like structure of the pore. Proc Natl Acad Sci U S A 95(21):12289-12294.
    Georghiou, G. P. (1994). Principles of insecticide resistance management. Phytoprotection 75(Supplement):51-59.
    Ghasimi Hagh, Z., H. Rahnama, J. Panahandeh, B. Baghban Kohneh Rouz, K. M. Arab Jafari and N. Mahna (2009). Green-tissue-specific, C(4)-PEPC-promoter-driven expression of Cry1Ab makes transgenic potato plants resistant to tuber moth (Phthorimaea operculella, Zeller). Plant Cell Rep 28(12):1869-1879.
    Gill, S. S., E. A. Cowles and V. Francis (1995). Identification, isolation, and cloning of a Bacillus thuringiensis CryⅠAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem 270(45):27277-27282.
    Gleave, A. P., R. J. Hedges and A. H. Broadwell (1992). Identification of an insecticidal crystal protein from Bacillus thuringiensis DSIR517 with significant sequence differences from previously described toxins. J Gen Microbiol 138(1): 55-62.
    Gleave, A. P., D. S. Mitra, N. P. Markwick, B. A. M. Morris and L. L. Beuning (1998). Enhanced expression of the shape Bacillus thuringiensis cry9Aa2 gene in transgenic plants by nucleotide sequence modification confers resistance to potato tuber moth. Mol Breeding 4(5):459-472.
    Gomez-Barbero, M., J. Berbel and E. Rodriguez-Cerezo (2008). Bt corn in Spain--the performance of the EU's first GM crop. Nat Biotechnol 26(4):384-386.
    Gomez, I., D. I. Oltean, S. S. Gill, A. Bravo and M. Soberon (2001). Mapping the epitope in cadherin-like receptors involved in Bacillus thuringiensis Cry1A toxin interaction using phage display. J Biol Chem 276(31):28906-28912.
    Gomez, I., J. Miranda-Rios, E. Rudino-Pinera, D. I. Oltean, S. S. Gill, A. Bravo and M. Soberon (2002a). Hydropathic complementarity determines interaction of epitope (869)HITDTNNK(876) in Manduca sexta Bt-R(1) receptor with loop 2 of domain Ⅱ of Bacillus thuringiensis Cry1A toxins. J Biol Chem 277(33): 30137-30143.
    Gomez, I., J. Sanchez, R. Miranda, A. Bravo and M. Soberon (2002b). Cadherin-like receptor binding facilitates proteolytic cleavage of helix alpha-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis CrylAb toxin. Febs Lett 513(2-3):242-246.
    Gomez, I., D. H. Dean, A. Bravo and M. Soberon (2003). Molecular basis for Bacillus thuringiensis Cry1Ab toxin specificity:Two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops alpha-8 and 2 in domain Ⅱ of CylAb toxin. Biochemistry-us 42(35):10482-10489.
    Gomez, I., I. Arenas, I. Benitez, J. Miranda-Rios, B. Becerril, R. Grande, J. C. Almagro, A. Bravo and M. Soberon (2006). Specific epitopes of domains Ⅱ and III of Bacillus thuringiensis CrylAb toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. J Biol Chem 281(45):34032-34039.
    Gonzalez, J., H. T. Dulmage and B. C. Carlton (1981). Correlation between specific plasmids and [delta]-endotoxin production in Bacillus thuringiensis. Plasmid 5(3):351-365.
    Gould, F. (1986). Simulation models for predicting durability of insect-resistant germ plasm:A deterministic diploid, two-locus model. Environ Entomol 15(1):1-10.
    Gould, F. (1994). Potential and problems with high-dose strategies for pesticidal engineered crops. Biocontrol Sci Techn 4(4):451-461.
    Gould, F. (1998). Sustainability of transgenic insecticidal cultivars:Integrating pest genetics and ecology. Annu Rev Entomol 43(1):701-726.
    Grochulski, P., L. Masson, S. Borisova, M. Pusztai-Carey, J. L. Schwartz, R. Brousseau and M. Cygler (1995). Bacillus thuringiensis Cry1A(a) insecticidal toxin:Crystal structure and channel formation. J Mol Biol 254(3):447-464.
    Groeters, F. R., B. E. Tabashnik, N. Finson and M. W. Johnson (1993). Resistance to Bacillus thuringiensis affects mating success of the diamondback moth (Lepidoptera:Plutellidae). J Econ Entomol 86(4):1035-1039.
    Guo, S., S. Ye, Y. Liu, L. Wei, J. Xue, H. Wu, F. Song, J. Zhang, X. Wu, D. Huang and Z. Rao (2009). Crystal structure of Bacillus thuringiensis Cry8Ea1:An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J Struct Biol 168(2):259-266.
    Herrero, S., B. Oppert and J. Ferre (2001). Different mechanisms of resistance to Bacillus thuringiensis toxins in the indianmeal moth. Appl Environ Microbiol 67(3):1085-1089.
    Herrero, S., T. Gechev, P. L. Bakker, W. J. Moar and R. A. de Maagd (2005). Bacillus thuringiensis Cry1Ca-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics 6:96.
    Hilder, V. A., A. M. R. Gatehouse, S. E. Sheerman, R. F. Barker and D. Boulter (1987). A novel mechanism of insect resistance engineered into tobacco. Nature 330(6144):160-163.
    Ho, N. H., N. Baisakh, N. Oliva, K. Datta, R. Frutos and S. K. Datta (2006). Translational fusion hybrid Bt genes confer resistance against yellow stem borer in transgenic elite Vietnamese rice (Oryza sativa L.) Cultivars. Crop Sci 46(2): 781-789.
    Hofte, H. and H. R. Whiteley (1989). Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Mol Biol Rev 53(2):242-255.
    Honee, G., W. Vriezen and B. Visser (1990). A translation fusion product of two different insecticidal crystal protein genes of Bacillus thuringiensis exhibits an enlarged insecticidal spectrum. Appl Environ Microbiol 56(3):823-825.
    Hua, G., J. L.Jurat-Fuentes and M. J. Adang (2004a). Fluorescent-based assays establish Manduca sexta Bt-R(la) cadherin as a receptor for multiple Bacillus thuringiensis CrylA toxins in Drosophila S2 cells. Insect Biochem Mol Biol 34(3):193-202.
    Hua, G., J. L. Jurat-Fuentes and M. J. Adang (2004b). Bt-Rla extracellular cadherin repeat 12 mediates Bacillus thuringiensis Cry1Ab binding and cytotoxicity. J Biol Chem 279(27):28051-28056.
    Hua, G., R. Zhang, M. A. Abdullah and M. J. Adang (2008). Anopheles gambiae cadherin AgCadl binds the Cry4Ba toxin of Bacillus thuringiensis israelensis and a fragment of AgCadl synergizes toxicity. Biochemistry-us 47(18):5101-5110.
    Hua, G., R. Zhang, K. Bayyareddy and M. J. Adang (2009). Anopheles gambiae alkaline phosphatase is a functional receptor of Bacillus thuringiensis jegathesan Cry11Ba toxin. Biochemistry-us 48(41):9785-9793.
    Huang, F., B. R. Leonard and D. A. Andow (2007). Sugarcane borer (Lepidoptera: Crambidae) resistance to transgenic Bacillus thuringiensis maize. J Econ Entomol 100(1):164-171.
    Hutchison, W. D., E. C. Burkness, P. D. Mitchell, R. D. Moon, T. W. Leslie, S. J. Fleischer, M. Abrahamson, K. L. Hamilton, K. L. Steffey, M. E. Gray, R. L. Hellmich, L. V. Kaster, T. E. Hunt, R. J. Wright, K. Pecinovsky, T. L. Rabaey, B. R. Flood and E. S. Raun (2010). Areawide suppression of European corn borer with Bt maize reaps savings to non-Bt maize growers. Science 330(6001):222-225.
    Ishikawa, H., Y. Hoshino, Y. Motoki, T. Kawahara, M. Kitajima, M. Kitami, A. Watanabe, A. Bravo, M. Soberon, A. Honda, K. Yaoi and R. Sato (2007). A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis. Mol Biotechnol 36(2):90-101.
    James, C. (2010). Executive summary global status of commercialized biotech/GM crops:2009 the first fourteen years,1996 to 2009. Retrieved Sep,20,2010, from http://www.isaaa.org/resources/publications/briefs/41/executivesummary /default.asp.
    Jimenez-Juarez, N., C. Munoz-Garay, I. Gomez, G. Saab-Rincon, J. Y. Damian-Almazo, S. S. Gill, M. Soberon and A. Bravo (2007). Bacillus thuringiensis Cry1Ab mutants affecting oligomer formation are non-toxic to Manduca sexta larvae. J Biol Chem 282(29):21222-21229.
    Jurat-Fuentes, J. L. and M. J. Adang (2001). Importance of Cry1 delta-endotoxin domain Ⅱ loops for binding specificity in Heliothis virescens (L.). Appl Environ Microbiol 67(1):323-329.
    Jurat-Fuentes, J. L. and M. J. Adang (2004). Characterization of a Cry1 Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur J Biochem 271(15):3127-3135.
    Keeton, T. P., B. R. Francis, W. S. Maaty and L. A. Bulla, Jr. (1998). Effects of midgut-protein-preparative and ligand binding procedures on the toxin binding characteristics of BT-R1, a common high-affinity receptor in Manduca sexta for Cry1A Bacillus thuringiensis toxins. Appl Environ Microbiol 64(6):2158-2165.
    Keller, M., B. Sneh, N. Strizhov, E. Prudovsky, A. Regev, C. Koncz, J. Schell and A. Zilberstein (1996). Digestion of delta-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to Cry1C. Insect Biochem Mol Biol 26(4):365-373.
    Khajuria, C., Y. C. Zhu, M. S. Chen, L. L. Buschman, R. A. Higgins, J. Yao, A. L Crespo, B. D. Siegfried, S. Muthukrishnan and K. Y. Zhu (2009). Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis): Exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance. BMC Genomics 10:286.
    Kiani, G., G. A. Nematzadeh, B. Ghareyazie and M. Sattari (2008). Evaluation of Bt (Bacillus thuringiensis) rice varieties against stem borer (Chilo suppressalis). Pak J Biol Sci 11(4):648-651.
    Klepetka, B. and F. Gould (1996). Effects of age and size on mating in Heliothis virescens (Lepidoptera:Noctuidae):Implications for resistance management. Environ Entomol 25(5):993-1001.
    Kramer, K. J., T. D. Morgan, J. E. Throne, F. E. Dowell, M. Bailey and J. A. Howard (2000). Transgenic avidin maize is resistant to storage insect pests. Nat Biotechnol 18(6):670-674.
    Krishnamoorthy, M., J. L. Jurat-Fuentes, R. J. McNall, T. Andacht and M. J. Adang (2007). Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. Insect Biochem Mol Biol 37(3):189-201.
    Kuvshinov, V. V., K. Koivu, A. Kanerva and E. Pehu (2001). Transgenic crop plants expressing synthetic cry9Aa gene are protected against insect damage. Plant Sci 160(2):341-353.
    Lambert, B., H. Hofte, K. Annys, S. Jansens, P. Soetaert and M. Peferoen (1992). Novel Bacillus thuringiensis insecticidal crystal protein with a silent activity against coleopteran larvae. Appl Environ Microbiol 58(8):2536-2542.
    Lee, M. K., B. A. Young and D. H. Dean (1995). Domain Ⅲ exchanges of Bacillus thuringiensis CryⅠA toxins affect binding to different gypsy moth midgut receptors. Biochem Biophys Res Commun 216(1):306-312.
    Lee, M. K., A. Curtiss, E. Alcantara and D. H. Dean (1996). Synergistic effect of the Bacillus thuringiensis toxins CryⅠAa and CryⅠAc on the gypsy moth, Lymantria dispar. Appl Environ Microbiol 62(2):583-586.
    Lee, M. K., F. S. Walters, H. Hart, N. Palekar and J. S. Chen (2003). The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin. Appl Environ Microbiol 69(8):4648-4657.
    Li, H., L. L. Buschman, F. Huang, K. Y. Zhu, B. Bonning and B. Oppert (2007). DiPel-selected Ostrinia nubilalis larvae are not resistant to transgenic corn expressing Bacillus thuringiensis Cry1Ab. J Econ Entomol 100(6):1862-1870.
    Li, J. D., J. Carroll and D. J. Ellar (1991). Crystal structure of insecticidal delta-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353(6347): 815-821.
    Li, Y. X., S. M. Greenberg and T. X. Liu (2006). Effects of Bt cotton expressing Cry 1 Ac and Cry2Ab and non-Bt cotton on behavior, survival and development of Trichoplusia ni (Lepidoptera:Noctuidae). Crop Prot 25(9):940-948.
    Lin C., Nie P., Lu W., Zhang Q., Li J., Shen Z. (2010). A selectively terminable transgenic rice line expressing human lactoferrin. Protein Expr Purif 74(1):60-4.
    Liu, C. W., C. C. Lin, J. C. Yiu, J. J. Chen and M. J. Tseng (2008). Expression of a Bacillus thuringiensis toxin (crylAb) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet 117(1):75-88.
    Liu, D., S. Burton, T. Glancy, Z.-S. Li, R. Hampton, T. Meade and D. J. Merlo (2003). Insect resistance conferred by 283-kDa Photorhabdus luminescens protein TcdA in Arabidopsis thaliana. Nat Biotechnol 21(10):1222-1228.
    Liu, X. S. and D. H. Dean (2006). Redesigning Bacillus thuringiensis CrylAa toxin into a mosquito toxin. Protein Eng Des Sel 19(3):107-111.
    Luo, K., S. Sangadala, L. Masson, A. Mazza, R. Brousseau and M. J. Adang (1997). The Heliothis virescens 170 kDa aminopeptidase functions as receptor A by mediating specific Bacillus thuringiensis CrylA delta-endotoxin binding and pore formation. Insect Biochem Mol Biol 27(8-9):735-743.
    Luttrell, R. G., I. Ali, K. C. Allen, S. Y. Young Ⅲ, A. Szalanski, K. Williams, G. Lorenz, Parker Jr.C.D. and B. C. (2004). Resistance to Bt in Arkansas populations of cotton bollworm. Proceedings of the 2004 Beltwide Cotton Conferences, D. A. Richter. San Antonio, TX, National Cotton Council of America, Memphis, TN.
    MacIntosh, S. C., G. M. Kishore, F. J. Perlak, P. G. Marrone, T. B. Stone, S. R. Sims and R. L. Fuchs (1990). Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. J Agr Food Chem 38(4):1145-1152.
    Mahon, R. J., K. M. Olsen, K. A. Garsia and S. R. Young (2007). Resistance to Bacillus thuringiensis toxin Cry2Ab in a strain of Helicoverpa armigera (Lepidoptera:Noctuidae) in Australia. J Econ Entomol 100(3):894-902.
    Mallet, J. and P. Porter (1992). Preventing insect adaptation to insect-resistant crops: Are seed mixtures or refugia the best strategy? Proc Biol Sci 250(1328):165-169.
    Mandal, C. C., S. Gayen, A. Basu, K. S. Ghosh, S. Dasgupta, M. K, Maiti and S. K. Sen (2007). Prediction-based protein engineering of domain Ⅰ of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Protein Eng Des Sel 20(12):599-606.
    Martinez-Ramirez, A. C., F. Gould and J. Ferre (1999). Histopathological effects and growth reduction in a susceptible and a resistant strain of Heliothis virescens (Lepidoptera:Noctuidae) caused by sublethal doses of pure Cry1A crystal proteins from Bacillus thuringiensis. Biocontrol Sci Techn 9(2):239-246.
    Martins, E. S., R. G. Monnerat, P. R. Queiroz, V. F. Dumas, S. V. Braz, R. W. de Souza Aguiar, A. C. Gomes, J. Sanchez, A. Bravo and B. M. Ribeiro (2010). Midgut GPI-anchored proteins with alkaline phosphatase activity from the cotton boll weevil (Anthonomus grandis) are putative receptors for the Cry1B protein of Bacillus thuringiensis. Insect Biochem Mol Biol 40(2):138-145.
    Masson, L., Y. J. Lu, A. Mazza, R. Brousseau and M. J. Adang (1995). The Cry1A(c) receptor purified from Manduca sexta displays multiple specificities. J Biol Chem 270(35):20309-20315.
    Masson, L., B. E. Tabashnik, A. Mazza, G. Prefontaine, L. Potvin, R. Brousseau and J. L. Schwartz (2002). Mutagenic analysis of a conserved region of domain Ⅲ in the Cry 1 Ac toxin of Bacillus thuringiensis. Appl Environ Microbiol 68(1):194-200.
    Matten, S. R., G. P. Head and H. D. Quemada (2008). How governmental regulation can help or hinder the integration of Bt crops into IPM programs. in:J. Romeis, A. M. Shelton and G. G. Kennedy (Eds.), Integration of Insect-Resistant Genetically Modified Crops within IPM Programs. New York, Springer:27-39.
    McNall, R. J. and M. J. Adang (2003). Identification of novel Bacillus thuringiensis Cry 1 Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochem Mol Biol 33(10):999-1010.
    Mehlo, L., D. Gahakwa, P. T. Nghia, N. T. Loc, T. Capell, J. A. Gatehouse, A. M. R. Gatehouse and P. Christou (2005). An alternative strategy for sustainable pest resistance in genetically enhanced crops. Proc Natl Acad Sci U S A 102(22): 7812-7816.
    Menzies, B. E. and I. Kourteva (2000). Staphylococcus aureus alpha-toxin induces apoptosis in endothelial cells. FEMS Immunol Med Microbiol 29(1):39-45.
    Miranda, R., F. Z. Zamudio and A. Bravo (2001). Processing of CrylAb delta-endotoxin from Bacillus thuringiensis by Manduca sexta and Spodoptera frugiperda midgut proteases:Role in protoxin activation and toxin inactivation. Insect Biochem Mol Biol 31(12):1155-1163.
    Moar, W., R. Roush, A. Shelton, J. Ferre, S. MacIntosh, B. R. Leonard and C. Abel (2008). Field-evolved resistance to Bt toxins. Nat Biotechnol 26(10):1072-1074; author reply 1074-1076.
    Moar, W. J., J. T. Trumble, R. H. Hice and P. A. Backman (1994). Insecticidal activity of the Cry11A protein from the NRD-12 isolate of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leaf-colonizing strain of Bacillus cereus. Appl Environ Microbiol 60(3):896-902.
    Morgan, J. A. W., M. Sergeant, D. Ellis, M. Ousley and P. Jarrett (2001). Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl Environ Microbiol 67(5):2062-2069.
    Morin, S., R. W. Biggs, M. S. Sisterson, L. Shriver, C. Ellers-Kirk, D. Higginson, D. Holley, L. J. Gahan, D. G. Heckel, Y. Carriere, T. J. Dennehy, J. K. Brown and B. E. Tabashnik (2003). Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Natl Acad Sci U S A 100(9): 5004-5009.
    Morse, R. J., T. Yamamoto and R. M. Stroud (2001). Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9(5):409-417.
    Morton, R. L., H. E. Schroeder, K. S. Bateman, M. J. Chrispeels, E. Armstrong and T. J. Higgins (2000). Bean alpha-amylase inhibitor 1 in transgenic peas (Pisum sativum) provides complete protection from pea weevil (Bruchus pisorum) under field conditions. Proc Natl Acad Sci U S A 97(8):3820-3825.
    Munoz-Garay, C., L. Portugal, L. Pardo-Lopez, N. Jimenez-Juarez, I. Arenas, I. Gomez, R. Sanchez-Lopez, R. Arroyo, A. Holzenburg, C. G. Savva, M. Soberon and A. Bravo (2009). Characterization of the mechanism of action of the genetically modified CrylAbMod toxin that is active against CrylAb-resistant insects. Biochim Biophys Acta 1788(10):2229-2237.
    Nagadhara, D., S. Ramesh, I. C. Pasalu, Y. K. Rao, N. P. Sarma, V. D. Reddy and K. V. Rao (2004). Transgenic rice plants expressing the snowdrop lectin gene (gna) exhibit high-level resistance to the whitebacked planthopper (Sogatella furcifera). Theor Appl Genet 109(7):1399-1405.
    Nagamatsu, Y., S. Toda, T. Koike, Y. Miyoshi, S. Shigematsu and M. Kogure (1998). Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal CryⅠA(a) toxin. Biosci Biotechnol Biochem 62(4):727-734.
    Nagamatsu, Y., T. Koike, K. Sasaki, A. Yoshimoto and Y. Furukawa (1999). The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal CryⅠAa toxin. Febs Lett 460(2):385-390.
    Naimov, S., S. Dukiandjiev and R. A. de Maagd (2003). A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato. Plant Biotechnol J 1(1):51-57.
    Nair, M. S. and D. H. Dean (2008). All domains of Cry1A toxins insert into insect brush border membranes. J Biol Chem 283(39):26324-26331.
    Nakanishi, K., K. Yaoi, Y. Nagino, H. Hara, M. Kitami, S. Atsumi, N. Miura and R. Sato (2002). Aminopeptidase N isoforms from the midgut of Bombyx mori and Plutella xylostella -- their classification and the factors that determine their binding specificity to Bacillus thuringiensis Cry1A toxin. Febs Lett 519(1-3): 215-220.
    Nakasu, E. Y., A. A. Firmino, S. C. Dias, T. L. Rocha, H. B. Ramos, G. R. Oliveira, W. Lucena, C. R. Carlini and M. F. Grossi-de-Sa (2010). Analysis of Cry8Ka5-binding proteins from Anthonomus grandis (Coleoptera:Curculionidae) midgut. J Invertebr Pathol 104(3):227-230.
    Nelson, D. R., L. Koymans, T. Kamataki, J. J. Stegeman, R. Feyereisen, D. J. Waxman, M. R. Waterman, O. Gotoh, M. J. Coon, R. W. Estabrook, I. C. Gunsalus and D. W. Nebert (1996). P450 superfamily:Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6(1):1-42.
    Nelson, K. L., R. A. Brodsky and J. T. Buckley (1999). Channels formed by subnanomolar concentrations of the toxin aerolysin trigger apoptosis of T lymphomas. Cell Microbiol 1(1):69-74.
    Ochoa-Campuzano, C., M. D. Real, A. C. Martinez-Ramirez, A. Bravo and C. Rausell (2007). An ADAM metalloprotease is a Cry3Aa Bacillus thuringiensis toxin receptor. Biochem Biophys Res Commun 362(2):437-442.
    Oddou, P., H. Hartmann, F. Radecke and M. Geiser (1993). Immunologically unrelated Heliothis sp. and Spodoptera sp. midgut membrane-proteins bind Bacillus thuringiensis Cry1A(b) delta-endotoxin. Eur J Biochem 212(1):145-150.
    Ogiwara, K., L. S. Indrasith, S. Asano and H. Hori (1992). Processing of delta-endotoxin from Bacillus thuringiensis subsp. kurstaki HD-1 and HD-73 by gut juices of various insect larvae. J Invertebr Pathol 60(2):121-126.
    Oltean, D. I., A. K. Pullikuth, H. K. Lee and S. S. Gill (1999). Partial purification and characterization of Bacillus thuringiensis Cry1A toxin receptor A from Heliothis virescens and cloning of the corresponding cDNA. Appl Environ Microbiol 65(11):4760-4766.
    Oppert, B., K. J. Kramer, D. Johnson, S. J. Upton and W. H. McGaughey (1996). Luminal proteinases from Plodia interpunctella and the hydrolysis of Bacillus thuringiensis Cry1A(c) protoxin. Insect Biochem Mol Biol 26(6):571-583.
    Oppert, B., K. J. Kramer, R. W. Beeman, D. Johnson and W. H. McGaughey (1997). Proteinase-mediated insect resistance to Bacillus thuringiensis toxins. J Biol Chem 272(38):23473-23476.
    Osterman, A. L., A. I. Karasin, O. P. Zagnit'ko, S. V. Kaluger and G. G. Chestukhina (1989). Cloning and comparative characteristics of genes coding two structurally distant delta-endotoxins of Bacillus thuringiensis var. galleriae and kurstaki. Mol Biol (Mosk) 23(2):463-472.
    Parker, C. D., Jr. and R. G. Luttrell (1999). Interplant movement of Heliothis virescens (Lepidoptera:Noctuidae) larvae in pure and mixed plantings of cotton with and without expression of the Cry1Ac delta-endotoxin protein of Bacillus thuringiensis Berliner. J Econ Entomol 92(4):837-845.
    Parker, M. W. and S. C. Feil (2005). Pore-forming protein toxins:From structure to function. Prog Biophys Mol Biol 88(1):91-142.
    Pereira, E. J., N. P. Storer and B. D. Siegfried (2008). Inheritance of Cry1F resistance in laboratory-selected European corn borer and its survival on transgenic corn expressing the Cry1F toxin. Bull Entomol Res 98(6):621-629.
    Perlak, F. J., R. L. Fuchs, D. A. Dean, S. L. McPherson and D. A. Fischhoff (1991). Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci U S A 88(8):3324-3328.
    Persley, G. (1996). Biotechnology and Integrated Pest Management. Oxon, UK, CAB int.
    Pigott, C. R. and D. J. Ellar (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol Mol Biol Rev 71(2):255-281.
    Pigott, C. R., M. S. King and D. J. Ellar (2008). Investigating the properties of Bacillus thuringiensis Cry proteins with novel loop replacements created using combinatorial molecular biology. Appl Environ Microbiol 74(11):3497-3511.
    Pilcher, C. D., M. E. Rice, J. J. Obryckl and L. C. Lewis (1997). Field and laboratory evaluations of transgenic Bacillus thuringiensis corn on secondary lepidopteran pests (Lepidoptera:Noctuidae). J Econ Entomol 90(2):669-678.
    Prasifka, J. R., R. L. Hellmich, D. V. Sumerford and B. D. Siegfried (2009). Bacillus thuringiensis resistance influences European corn borer (Lepidoptera:Crambidae) larval behavior after exposure to Cry1Ab. J Econ Entomol 102(2):781-787.
    Priester, T. M. and G. P. Georghiou (1978). Induction of high resistance to permethrin in Culex pipiens quinquefasciatus. J Econ Entomol 71(2):197-200.
    Puntheeranurak, T., P. Uawithya, L. Potvin, C. Angsuthanasombat and J. L. Schwartz (2004). Ion channels formed in planar lipid bilayers by the dipteran-specific Cry4B Bacillus thuringiensis toxin and its alphal-alpha5 fragment. Mol Membr Biol 21(1):67-74.
    Qiu, C., J. S. Sangha, F. Song, Z. Zhou, A. Yin, K. Gu, D. Tian, J. Yang and Z. Yin (2010). Production of marker-free transgenic rice expressing tissue-specific Bt gene. Plant Cell Rep 29(10):1097-1107.
    Rajagopal, R., N. Agrawal, A. Selvapandiyan, S. Sivakumar, S. Ahmad and R. K. Bhatnagar (2003). Recombinantly expressed isoenzymic aminopeptidases from Helicoverpa armigera (American cotton bollworm) midgut display differential interaction with closely related Bacillus thuringiensis insecticidal proteins. Biochem J 370(Pt 3):971-978.
    Rajamohan, F., O. Alzate, J. A. Cotrill, A. Curtiss and D. H. Dean (1996). Protein engineering of Bacillus thuringiensis delta-endotoxin:Mutations at domain Ⅱ of CrylAb enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Natl Acad Sci U S A 93(25):14338-14343.
    Ramachandran, S., G. D. Buntin, J. N. All, P. L. Raymer and C. N. Stewart (1998). Movement and Survival of Diamondback Moth (Lepidoptera:Plutellidae) Larvae in Mixtures of Nontransgenic and Transgenic Canola Containing a cry1A (c) Gene of Bacillus thuringiensis. Environ Entomol 27(3):649-656.
    Rao, K. V., K. S. Rathore, T. K. Hodges, X. Fu, E. Stoger, D. Sudhakar, S. Williams, P. Christou, M. Bharathi, D. P. Bown, K. S. Powell, J. Spence, A. M. Gatehouse and J. A. Gatehouse (1998). Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. Plant J 15(4):469-477.
    Rausell, C., C. Munoz-Garay, R. Miranda-CassoLuengo, I. Gomez, E. Rudino-Pinera, M. Soberon and A. Bravo (2004). Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate. Biochemistry-us 43(1):166-174.
    Regev, A., M. Keller, N. Strizhov, B. Sneh, E. Prudovsky, I. Chet, I. Ginzberg, Z. Koncz-Kalman, C. Koncz, J. Schell and A. Zilberstein (1996). Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol 62(10):3581-3586.
    Rodriguez-Almazan, C., L. E. Zavala, C. Munoz-Garay, N. Jimenez-Juarez, S. Pacheco, L. Masson, M. Soberon and A. Bravo (2009). Dominant negative mutants of Bacillus thuringiensis CrylAb toxin function as anti-toxins: Demonstration of the role of oligomerization in toxicity. PLoS One 4(5):e5545.
    Rodriguez-Cabrera, L., D. Trujillo-Bacallao, O. Borras-Hidalgo, D. J. Wright and C. Ayra-Pardo (2010). RNAi-mediated knockdown of a Spodoptera frugiperda trypsin-like serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Cal protoxin. Environ Microbiol 12(11):2894-2903.
    Sarkar, A., D. Hess, H. A. Mondal, S. Banerjee, H. C. Sharma and S. Das (2009). Homodimeric alkaline phosphatase located at Helicoverpa armigera midgut, a putative receptor of Cry 1 Ac contains alpha-Ga1NAc in terminal glycan structure as interactive epitope. J Proteome Res 8(4):1838-1848.
    Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler and D. H. Dean (1998). Bacillus thuringiensis and Its Pesticidal Crystal Proteins. Microbiol Mol Biol Rev 62(3):775-806.
    Schnepf, H. E. and H. R. Whiteley (1981). Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc Natl Acad Sci U S A 78(5):2893-2897.
    Shade, R. E., H. E. Schroeder, J. J. Pueyo, L. M. Tabe, L. L. Murdock, T. J. V. Higgins and M. J. Chrispeels (1994). Transgenic pea seeds expressing the alpha- amylase inhibitor of the common bean are resistant to bruchid beetles. Nat Biotechnol 12(8):793-796.
    Sharma, P., V. Nain, S. Lakhanpaul and P. A. Kumar (2010). Synergistic activity between Bacillus thuringiensis Cry1Ab and Cry1Ac toxins against maize stem borer (Chilo partellus Swinhoe). Lett Appl Microbiol 51(1):42-47.
    Shevelev, A. B., A. Battisti, A. M. Volynskaya, S. I. Novikova, L. I. Kostina and I. A. Zalunin (2001). Susceptibility of the pine processionary caterpillar Thaumetopoea pityocampa (Lepidoptera:Thaumetopoeidae) toward delta-endotoxins of Bacillus thuringiensis under laboratory conditions. Ann Appl Biol 138(3):255-261.
    Smedley, D. P. and D. J. Ellar (1996). Mutagenesis of three surface-exposed loops of a Bacillus thuringiensis insecticidal toxin reveals residues important for toxicity, receptor recognition and possibly membrane insertion. Microbiology (Reading, England) 142(Pt 7):1617-1624.
    Smulevitch, S. V., A. L. Osterman, A. B. Shevelev, S. V. Kaluger, A. I. Karasin, R. M. Kadyrov,O. P. Zagnitko, G. G. Chestukhina and V. M. Stepanov (1991). Nucleotide sequence of a novel delta-endotoxin gene cryⅠg of Bacillus thuringiensis ssp. galleriae. Febs Lett 293(1-2):25-28.
    Soberon, M., L. Pardo-Lopez, I. Lopez, I. Gomez, B. E. Tabashnik and A. Bravo (2007). Engineering modified Bt toxins to counter insect resistance. Science 318(5856):1640-1642.
    Soberon, M., S. S. Gill and A. Bravo (2009). Signaling versus punching hole:How do Bacillus thuringiensis toxins kill insect midgut cells? Cell Mol Life Sci 66(8): 1337-1349.
    Stewart, S. D., J. J. Adamczyk, K. S. Knighten and F. M. Davis (2001). Impact of Bt cottons expressing one or two insecticidal proteins of Bacillus thuringiensis Berliner on growth and survival of Noctuid (Lepidoptera) larvae. J Econ Entomol 94(3):752-760.
    Subramanian, A., K. Kirwan, D. Pink and M. Qaim (2010). GM crops and gender issues. Nat Biotechnol 28(5):404-406.
    Sudhakar, D., X. Fu, E. Stoger, S. Williams, J. Spence, D. P. Brown, M. Bharathi, J. A. Gatehouse and P. Christou (1998). Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic Res 7(5):371-378.
    Tabashnik, B. E. (1994a). Evolution of resistance to Bacillus Thuringiensis. Annu Rev Entomol 39(1):47-79.
    Tabashnik, B. E. (1994b). Delaying insect adaptation to transgenic plants:Seed mixtures and refugia reconsidered. Proc Biol Sci 255(1342):7-12.
    Tabashnik, B. E., Y. Carriere, T. J. Dennehy, S. Morin, M. S. Sisterson, R. T. Roush, A. M. Shelton and J.-Z. Zhao (2003). Insect resistance to transgenic Bt crops: Lessons from the laboratory and field. J Econ Entomol 96(4):1031-1038.
    Tabashnik, B. E., A. J. Gassmann, D. W. Crowder and Y. Carriere (2008). Insect resistance to Bt crops:Evidence versus theory. Nat Biotechnol 26(2):199-202.
    Taylor, C. E. and G. P. Georghiou (1979). Suppression of insecticide resistance by alteration of gene dominance and migration. J Econ Entomol 72(1):105-109.
    Tomimoto, K., T. Hayakawa and H. Hori (2006). Pronase digestion of brush border membrane-bound Cry1Aa shows that almost the whole activated Cry1Aa molecule penetrates into the membrane. Comp Biochem Physiol B Biochem Mol Biol 144(4):413-422.
    Vadlamudi, R. K., T. H. Ji and L. A. Bulla, Jr. (1993). A specific binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. Berliner. J Biol Chem 268(17):12334-12340.
    Vadlamudi, R. K., E. Weber, I. Ji, T. H. Ji and L. A. Bulla, Jr. (1995). Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270(10):5490-5494.
    van der Salm, T., D. Bosch, G. Honee, L. Feng, E. Munsterman, P. Bakker, W. J. Stiekema and B. Visser (1994). Insect resistance of transgenic plants that express modified Bacillus thuringiensis cryIA(b) and cry1C genes:A resistance management strategy. Plant Mol Biol 26(1):51-59.
    Van Rensburg, J. B. J. (2007). First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. S African J Plant Soil 24:147-151.
    Von Tersch, M. A., S. L. Slatin, C. A. Kulesza and L. H. English (1994). Membrane-permeabilizing activities of Bacillus thuringiensis coleopteran-active toxin CryIIIB2 and CryIIIB2 domain I peptide. Appl Environ Microbiol 60(10):3711-3717.
    Walters, F. S., S. L. Slatin, C. A. Kulesza and L. H. English (1993). Ion channel activity of N-terminal fragments from Cry1A(c) delta-endotoxin. Biochem Biophys Res Commun 196(2):921-926.
    Walters, F. S., C. M. Stacy, M. K. Lee, N. Palekar and J. S. Chen (2008). An engineered chymotrypsin/cathepsin G site in domain I renders Bacillus thuringiensis Cry3A active against Western corn rootworm larvae. Appl Environ Microbiol 74(2):367-374.
    Walters, F. S., C. M. deFontes, H. Hart, G. W. Warren and J. S. Chen (2010). Lepidopteran-active variable-region sequence imparts coleopteran activity in eCry3.1Ab, an engineered Bacillus thuringiensis hybrid insecticidal protein. Appl Environ Microbiol 76(10):3082-3088.
    Wilhelm, R., O. Sanvido, P. Castanera, K. Schmidt and J. Schiemann (2010). Monitoring the commercial cultivation of Bt maize in Europe-conclusions and recommendations for future monitoring practice. Environ Biosafety Res 8(4): 219-225.
    Wu, D. and A. I. Aronson (1992). Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J Biol Chem 267(4):2311-2317.
    Wu, K. M., Y. H. Lu, H. Q. Feng, Y. Y. Jiang and J. Z. Zhao (2008). Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science 321(5896):1676-1678.
    Wu, S. J., C. N. Koller, D. L. Miller, L. S. Bauer and D. H. Dean (2000). Enhanced toxicity of Bacillus thuringiensis Cry3A delta-endotoxin in coleopterans by mutagenesis in a receptor binding loop. Febs Lett 473(2):227-232.
    Xie, R., M. Zhuang, L. S. Ross, I. Gomez, D. I. Oltean, A. Bravo, M. Soberon and S. S. Gill (2005). Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to Cry1A toxins. J Biol Chem 280(9):8416-8425.
    Xu, X., L. Yu and Y. Wu (2005). Disruption of a cadherin gene associated with resistance to CrylAc {delta}-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol 71(2):948-954.
    Xue, J. L., Q. X. Cai, D. S. Zheng and Z. M. Yuan (2005). The synergistic activity between CrylAa and Crylc from Bacillus thuringiensis against Spodoptera exigua and Helicoverpa armigera. Lett Appl Microbiol 40(6):460-465.
    Yang, Y., H. Chen, Y. Wu and S. Wu (2007). Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Appl Environ Microbiol 73(21):6939-6944.
    Yang, Y., Y. C. Zhu, J. Ottea, C. Husseneder, B. R. Leonard, C. Abel and F. Huang (2010). Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from Bacillus thuringiensis-susceptible and resistant strains of sugarcane borer, Diatraea saccharalis. Insect Biochem Mol Biol 40(8):592-603.
    Yang, Y. H., Y. J. Yang, W. Y. Gao, J. J. Guo, Y. H. Wu and Y. D. Wu (2009). Introgression of a disrupted cadherin gene enables susceptible Helicoverpa armigera to obtain resistance to Bacillus thuringiensis toxin Cry 1 Ac. Bull Entomol Res 99(2):175-181.
    Yaoi, K., K. Nakanishi, T. Kadotani, M. Imamura, N. Koizumi, H. Iwahana and R. Sato (1999). cDNA cloning and expression of Bacillus thuringiensis CrylAa toxin binding 120 kDa aminopeptidase N from Bombyx mori. Biochim Biophys Acta 1444(1):131-137.
    Zalunin, I. A., L. P. Revina, L. I. Kostina, G. G. Chestukhina and V. M. Stepanov (1998). Limited proteolysis of Bacillus thuringiensis CryIG and CryIVB delta-endotoxins leads to formation of active fragments that do not coincide with the structural domains. J Protein Chem 17(5):463-471.
    Zhang, M., Q. Tang, Z. Chen, J. Liu, H. Cui, Q. Shu, Y. Xia and I. Altosaar (2009). Genetic transformation of Bt gene into sorghum (Sorghum bicolor L.) mediated by Agrobacterium tumefaciens. Sheng Wu Gong Cheng Xue Bao 25(3):418-423.
    Zhang, R., G. Hua, T. M. Andacht and M. J. Adang (2008). A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry 11Ba toxin in the mosquito Anopheles gambiae. Biochemistry-us 47(43):11263-11272.
    Zhang, X., M. Candas, N. B. Griko, L. Rose-Young and L. A. Bulla, Jr. (2005). Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ 12(11):1407-1416.
    Zhang, X., M. Candas, N. B. Griko, R. Taussig and L. A. Bulla, Jr. (2006). A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the CrylAb toxin of Bacillus thuringiensis. Proc Natl Acad Sci U S A 103(26):9897-9902.
    Zhao, J.-Z., J. Cao, Y. Li, H. L. Collins, R. T. Roush, E. D. Earle and A. M. Shelton (2003). Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol 21(12):1493-1497.
    Zhao, J.-Z., J. Cao, H. L. Collins, S. L. Bates, R. T. Roush, E. D. Earle and A. M. Shelton (2005). Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc Natl Acad Sci U S A 102(24):8426-8430.
    Zhao, J. Z., Y. X. Li, H. L. Collins, J. Cao, E. D. Earle and A. M. Shelton (2001). Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C. J Econ Entomol 94(6):1547-1552.
    Zhuang, M., D. I. Oltean, I. Gomez, A. K. Pullikuth, M. Soberon, A. Bravo and S. S. Gill (2002). Heliothis virescens and Manduca sexta lipid rafts are involved in CrylA toxin binding to the midgut epithelium and subsequent pore formation. J Biol Chem 277(16):13863-13872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700