球孢白僵菌两种甘露醇脱氢酶及五种过氧化氢酶的功能分析与对鳞翅目幼虫高口服毒力的工程菌株构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
球孢白僵菌已被开发成多种制剂应用于农林害虫的防治,但其田间防治效果受环境因子的制约,这是制约真菌杀虫剂大规模应用推广的技术瓶颈和亟待解决的国际难题。开展白僵菌抗逆生物学研究,揭示抗逆性状的分子基础,定向遗传改良生产菌株的抗逆力和毒力,是提升生防真菌制剂质量和田间应用稳定性的核心技术途径。
     甘露醇是生物体内广泛存在的小分子多元醇,作为碳源储备物,也参与真菌的抗逆境胁迫生理反应。过氧化氢酶是细胞抗氧化酶系的重要成员,在细胞抵抗活性氧自由基(Reactive oxygen species, ROS)胁迫过程中发挥着重要的作用。目前在生防真菌中有关甘露醇代谢相关酶系的生物学功能知之有限,对过氧化氢酶在抗逆反应中的作用也鲜有研究报道。另外,将外源苏云金芽孢杆菌(Bacillus thuringiensis,简称Bt)营养期杀虫蛋白Vip3Aa1基因置于构巢曲霉组成型通用启动子PgpdA下导入球孢白僵菌中能有效提高工程菌株对斜纹夜蛾低龄幼虫的毒力,但受启动子驱动力的影响,Vip3Aal毒蛋白的表达量不足以致死高龄的叶面暴食性害虫。为此,本论文从揭示球孢白僵菌抗逆生物学机理及提高菌株口服毒力的角度出发,运用农杆菌介导的同源重组以及芽生孢子化学转化法,系统研究了球孢白僵菌中甘露醇代谢相关酶和过氧化氢酶的基因家族的时空表达情况以及各基因缺失对菌株抗逆力和毒力的影响;以球孢白僵菌自身疏水蛋白基因启动子的克隆及优化为切入点,构建了高表达Vip3Aa1蛋白的球孢白僵菌工程菌株,并评价了其对斜纹夜蛾各龄幼虫双途径感染的杀虫活性。主要研究内容及结果如下:
     甘露醇1-磷酸脱氢酶(mannitol1-phosphate dehydrogenase, MPD)的基因克隆、表达纯化及酶学特征分析通过序列比对及简并引物扩增,从球孢白僵菌Bb2860基因组中克隆到甘露醇1-磷酸脱氢酶基因BbMPD,序列全长1334bp,其开放阅读框(open reading frame, ORF)长1176bp,含一个158bp的内含子,编码一条由391个氨基酸组成的典型的真菌甘露醇1-磷酸脱氢酶,预测分子量为42.8kDa,与已知的其它17种真菌MPD蛋白的序列同源性为56~74%,且在N端含有一个NADH辅因子结合域(GAGRIG)。在大肠杆菌中成功表达了BbMPD的重组蛋白,其纯化产物的最适反应温度为30℃,最适反应pH7.0,对果糖6-磷酸具有底物专一性,米氏常数Km和Vmax积分别为0.89±0.05mM和913.5±14.9U/mg蛋白,还原D-果糖6-磷酸的催化效率(kcat/Km)为1.31×104mM-1s-1。
     甘露醇脱氢酶(mannitol dehydrogenase, MTD)的基因克隆及两个脱氢酶基因的表达调控首次从Bb2860基因组中克隆到甘露醇脱氢酶基因BbMTD,其上游序列有3个胁迫响应元件(AGGGG)和5个碳利用阻遏元件CREA (Carbon catabolite repression element, SYGGRG)附着位点的保守序列;ORF全长801bp,编码266个氨基酸,蛋白分子量和等电点分别为28.2kDa和6.6,与其它真菌MTD的同源性较高,N端第28个氨基酸处存在一个NADPH辅因子结合域(GPKGIG)。
     BbMTD在菌丝生长的前五天转录表达水平逐步递增,第五天的表达量约为第二天的20倍,但在此后的两天里又有所下降。BbMPD的转录水平在连续七天培养过程中保持相对恒定,第4天表达水平最高。在1M NaCl的渗透压胁迫和50mM H202的氧化胁迫下,基因表达均呈现随胁迫时间延长而显著上调的趋势,渗透压胁迫3h后的BbMTD和BbMPD基因表达水平分别较空白对照提高了5.0和10.9倍;相应基因的转录水平在氧化胁迫3h后分别上调了11.4和74.9倍。两基因在热胁迫条件下的表达水平均受抑制,热激3h后,BbMPD的表达水平为正常条件下的63%,而BbMTD只有一半左右。结果表明,两基因均参与球孢白僵菌抵抗逆境胁迫的防御反应。
     BbMPD和BbMTD基因的敲除及突变株表型分析应用根癌农杆菌介导的遗传转化方法成功构建BbMPD和BbMTD基因的缺失突变株ΔBbMPD和ABbMTD。酶活分析显示,BbMPD和BbMTD均是球孢白僵菌甘露醇代谢的关键催化酶,ΔBbMPD菌株粗酶液无法还原果糖6-磷酸,而ABbMTD有低水平的酶活残留。无论是在固体SDAY平板正常条件下生长,还是在液体SDB胁迫条件下培养,单基因敲除株胞内甘露醇含量均显著低于野生株。在正常生长条件下,ΔBbMPD和ΔBbMTD菌丝(或分生孢子)中甘露醇的含量分别减少了68%(83%)和16%(38%)。渗透压能诱导菌株胞内甘露醇的合成,1M NaCl刺激24h后,ΔBbMPD和ΔBbMTD菌丝甘露醇含量分别提高3.0和1.7倍。而热激培养则抑制其合成,35℃下培养一天,相应的甘露醇合成水平只有正常培养条件下的40.7%和62.3%。有趣的是,各菌株胞内甘露醇合成的减少伴随着海藻糖含量的上升。例如,正常平板培养条件下,ΔBbMPD菌丝和分生孢子中海藻糖的含量较野生株分别提高1.7倍和1.5倍。
     除胞内可溶性甘露醇和海藻糖含量变化外,BbMPD基因的敲除显著影响菌株的产孢能力(下降27%),而ΔBbMTD菌株的产孢则不受影响。两敲除株菌丝和孢子在不同的单一碳源培养基上培养时表型差异明显。ΔBbMPD菌丝生长速度不受影响,但分生孢子的萌发速率较野生株显著降低,在以果糖,葡萄糖和甘露醇为单一碳源平板上孢子萌发50%所需的时间(GT50)分别延迟3.0、3.1和6.6h;ΔBbMTD菌丝生长则受到显著抑制,但其分生孢子除在甘露醇平板上萌发延迟之外(GTso后延7.1h),萌发速率在其他碳源平板上差异不显著。抗逆力测定显示,甘露醇合成受阻能致球孢白僵菌的分生孢子对活性氧、高温、紫外等环境胁迫的适应能力显著下降。ΔBbMPD和ΔBbMTD分生孢子对H202的耐受力分别较野生株下降38%和18%,对UV-B辐射的耐受力(LDso:0.26和0.36J/cm2)比野生株(LD50:0.42J/cm2)分别下降39%和16%,对45℃热胁迫的耐受力(LT50:39.0min和46.1min)比野生株(52.0min)分别下降22%和11%。然而,上述基因的缺失不显著影响菌株对桃蚜的毒力以及对高渗透压胁迫的耐受力。
     球孢白僵菌过氧化氢酶(Catalase,CAT)基因家族的克隆、序列分析及表达调控通过保守序列比对从球孢白僵菌2860基因组中克隆到五个CAT基因,分别编码三种单功能CAT (BbcatA、 BbcatB和BbcatC)和两种双功能CAT (BbcatP和BbcatD)。其中,BbcatC为小亚基酶,蛋白序列中含有NADPH绑定域,其余四种均为大亚基酶。通过进化树构建分析表明,五种CAT分别属于不同的蛋白家族。其中,BbcatA属于cladeA(孢子特异性CAT),主要参与分生孢子的形成及发育过程,其基因转录表达水平在产孢过程中逐渐累积,而在孢子萌发和菌丝开始生长过程中大幅降低;氧化胁迫能提高该基因转录水平,50mM H202胁迫3h的表达水平为空白对照的4.5倍。BbcatB和BbcatD属于clade B(分泌性CAT),在蛋白N端均含有一段19个氨基酸的分泌信号肽。BbcatB基因的表达水平随菌落生长时间延长而逐渐上调,第7天的转录水平达到第二天的30.2倍。BbcatD基因的表达在生长的前5天内保持较低的水平,而在第6天和第7天显著增强,分别达到第二天的53.1和158.3倍。氧化胁迫均能诱导BbcatB和BbcatD基因的表达,分别提高8.6和6.9倍。BbcatC和BbcatP均属于clade P(过氧化物酶体CAT),它们分别在蛋白中间段和C端含有PTS信号序列。BbcatC基因在菌丝生长过程中的转录表达量逐渐上升,而BbcatP基因在7天的菌落生长过程中其表达水平相对平稳。与其他四种CAT基因的表达水平相比,BbcatP基因受H202胁迫的影响最为显著,3h胁迫处理后,其转录水平较正常条件提高13.5倍。结果表明,各CAT在球孢白僵菌生长发育过程中扮演不同的角色,且不同程度地参与氧化胁迫的防御反应。
     球孢白僵菌五种过氧化氢酶的生物学功能分析应用根癌农杆菌介导的遗传转化方法成功构建球孢白僵菌各CAT基因的单敲除株。酶活测定显示,正常生长条件下,菌丝CAT活力主要取决于BbcatB、 BbcatP和BbcatD。活性染色PAGE凝胶上仅呈现BbcatB(高)和BbcatP(低)两条酶带,氧化胁迫及热激等胁迫条件并不能改变相应的酶谱类型。抗逆力测定表明,ΔBbcatC和ΔBbcatP菌丝对氧化胁迫十分敏感,50mM H202几乎完全抑制.ΔBbcatP菌落的生长,而其它三种CAT的缺失突变株的菌落生长没有受到明显抑制。ABbcatB菌落生长在含4mM甲萘醌的培养基上明显受抑制,其他CAT基因缺失株生长则差异不显著。在渗透压(NaCl)、杀菌剂(多菌灵)以及热胁迫(33℃)条件下,各敲除株的菌落生长表型均未受到显著影响。另一方面,CAT基因敲除后可显著影响分生孢子对H202、UV-B和高温的耐受力,但影响程度不同。ΔBbcatA、 ΔBbcatP和ΔBbcatC分生孢子对H202的耐受力分别较野生株下降42.6%、57.0%和34.5%,而ΔBbcatB和ΔBbcatD的分生孢子对此氧化胁迫的耐受力未受显著影响。各敲除株的孢子对UV-B辐射的耐受力也表现不同程度的下降,以ΔBbcatB和ΔBbcatD最为显著,较野生株分别下降52.4%和47.6%。耐热力测定显示,ΔBbcatA分生孢子在45℃热胁迫下的半致死时间LT50较野生株下降40%,但其余敲除株都与野生株的LT5o均为52.0min。
     毒力测定显示,敲除株ΔBbcatA、 ABbcatP知ΔBbcatD对斜纹夜蛾二龄幼虫的毒力显著低于野生株,其LT50分别较野生株下降1.4天、1.8天和0.9天,而另两个敲除株与野生株无异,其LT5o为5.0~5.1天之间。由此可见,CAT是球孢白僵菌克服昆虫寄主ROS相关的抗氧化酶系,因而是影响菌株重要抗逆性状和毒力的重要因子。
     球孢白僵菌内源强启动子Phydl的克隆与优化为了寻找一种可在球孢白僵菌中高表达外源有益基因的内源强启动子,从Bb2860基因组中克隆到I型疏水蛋白基因(hydl)的上游序列,并分别截成-1798(全长、-1290、-1179、-991和-791bp)不同长度的片段或对-1290片段特定转录因子(StuA、 NIT2和Mat-Mc)结合位点施以定点突变后,与绿色荧光蛋白报告基因eGFP融合起来,在球孢白僵菌Bb2860中转化表达,考察各转化子中eGFP蛋白相对于外源通用启动子PgpdA调控的表达水平。结果显示,携带3个必要转录因子的-1290bp为最优的启动子片段(Phydl-t1),由其驱动eGFP表达的转化子菌落的相对荧光强度(RFI)是PgpdA驱动的15.6倍,且eGFP蛋白主要积累于分生孢子形成阶段,尤以成熟的分生孢子中表达量最高。其他截头片段或定点突变的启动子片段启动基因表达的效率均不如Phydl-t1,-791bp片段几乎完全失去启动外源基因表达的能力。在定点突变的片段中,以StuA结合位点的突变影响eGFP基因表达最甚。
     高表达中肠特异性杀虫蛋白Vip3Aa1的球孢白僵菌工程株的构建及毒力分析将外源Bt营养期杀虫蛋白基因Vip3Aa1置于优化的内源启动子Phydl-t1下导入野生株Bb2860中,筛选鉴定出一株生长和产孢性状良好且遗传稳定的工程株BbHV8。实时定量PCR和ELISA分析显示,与BbV28菌株(本实验室先前构建由PgpdA启动Vip3Aa1表达的工程菌株)相比,BbHV8培养4天的菌落(菌丝)中Vip3Aa1基因的转录水平上升112倍,在菌丝和培养7天形成的分生孢子中Vip3Aa1蛋白的表达量分别提高7.8和9.8倍。Western杂交和免疫胶体金定位分析表明,Vip3Aa1蛋白在BbHV8分生孢子中高表达且均与分布于细胞质中。孢子被四龄斜纹夜蛾幼虫摄食24h后,能在中肠液中通过Western杂交检测到一条62kDa的活性条带。生测实验表明,BbHV8菌株对斜纹夜蛾二至五龄幼虫均表现出明显的Vip3Aal特有的口服感染毒力,致死虫尸严重萎缩,保湿培养后长出的菌丝稀薄甚至不长。时间-剂量-死亡率(TCM)观察显示,BbHV8的杀虫速度明显快于BbV28和Bb2860,高浓度处理下,BbHV8在处理后第三天能分别杀死100%和53%的二、三龄幼虫,而BbV28和Bb2860在第8天才杀三龄幼虫62%和45%。
     TCM模拟分析显示,Bb2860、BbV28和BbHV8对斜纹夜蛾二龄幼虫的LC5o随接种天数差异显著。BbHV8对斜纹夜蛾二龄幼虫的LC5o及其95%置信限由第2天的1293(889~1880)孢子/mm2下将至第5天的26(16~44)孢子/mm2。Bb2860和BbV28对三龄幼虫LC5o的差异不显著,但均显著高于BbHV8的LC5o。基于各菌株的LC5o值,BbHV8处理后3-8天期间对二、三龄幼虫的毒力分别为BbV28的8-80倍和Bb2860的18~931倍,毒力差异倍数随处理后时间延长而缩小。在可比较的处理剂量下,BbHV8对二、三龄幼虫的LTso比BbV28和Bb2860分别缩短1.5~3.8天和2.9~4.6天,即在给定剂量下,BbHV8的杀虫速度比BbV28快63~100%,比Bb2860怏1.1~1.6倍。此外,BbHV8在处理后3-8天杀死90%二至五龄幼虫的孢子剂量为678~1389个孢子/mm2,BbV28和Bb2860对三龄幼虫无可计算的LC5o。以上结果表明,Phydl-t1能强启动外源毒素基因的表达并大量积累毒蛋白于球孢白僵菌分生孢子中,从而大幅提高其对高龄暴食性害虫的毒力。
     综上所述,本研究主要成果和创新点在于,一是成功克隆了球孢白僵菌中与甘露醇代谢相关的BbMPD和BbMTD基因,通过基因敲除和表型分析首次揭示了它们在调控该菌生长发育、抗逆及毒力性状中的重要作用。二是首次系统研究了该菌CAT基因种类、结构和功能,阐明了各CAT影响该菌抗逆性状和毒力的程度。三是发现了能驱动外源基因在球孢白僵菌分生孢形成阶段特异性超表达的疏水蛋白启动子Phyd1-t1,并利用其构建了超高表达Vip3Aa1肠毒蛋白的工程菌株,大幅提高了对斜纹夜蛾各龄幼虫的口服毒力,因而是对付暴食性叶面害虫的新武器。这些结果深化了对丝孢类生防真菌抗逆分子机理的认识,形成了真菌杀虫剂遗传改良的关键技术和成果。
As a classic fungal entomopathogen, Beauveria bassiana has been developed into dozens of mycoinsecticides and widely applied in insect pest control. The fungal application is often restricted due to the defect of slow action and the sensitivity to the stresses of high temperature and solar UV irradiation often encountered in summer. Thus, there is an urgent need for exploring possible mechanisms involved in the defence of the fungal pathogen against multiple stresses and improving genetically fungal virulence to target pests.
     Mannitol, a small sugar polyol, is widely distributed in fungi and can be served as carbohydrate resources and involved in crucial defense mechanisms that protect cells from damages by environmental stresses. Catalases (CAT) are important antioxidant enzymes in eukaryotic cells and play important roles in protecting cells from the damage of intracellular reactive oxygen species (ROS). However, the regulation of mannitol metabolism and the function of catalases in entomopathogenic fungi are not well understood at present. On the other hand, integrating Bacillus thuringiensis (Bt) vegetative insecticidal protein Vip3Aal into B. bassiana under a constitutive promoter PgpdA from Aspergillus nidulans could increase fungal per os virulence to the neonates of Spodoptera litura but the amount of the target toxin expressed in fungal conidia was too small to kill older larvae. Thus, the present study sought to elucidate a possible mechanism involved in mannitol metabolism and explore the functions of CAT members in B. bassiana in response to multiple stresses by means of gene knockouts and phenotypic analyses. Moreover, a fragment found from the upstream regions of B. bassiana Class I hydrophobin gene (hydl) was used a novel, strong promoter to drive high yield expression of the midgut toxin Vip3Aal in transgenic B. bassiana, yielding an engineered strain highly insecticidal to all instars of S. litura larvae. The results are summarized below.
     Characterization of B. bassiana mannitol1-phosphate dehydrogense (BbMPD). A full-length1334-bp fragment of mannitol1-phosphate dehydrogenase gene (BbMPD) was cloned from B. bassiana2860(Bb2860herein), including a putative1176-bp open reading frame (ORF) with a158-bp intron. The gene was found encoding a391amino acid protein and showing56-74%sequence identity to MPDs known from other17fungi. The deduced protein was featured with a putative NADH cofactor binding site (GAGRIG) at the N-terminal. The gene was successfully expressed in E. coli BL21and the recombinant protein (84.4kDa) was well in agreement with the predicted molecular weight. The purified BbMPD showed high substrate specificity to fructose6-phosphote (Fru6P). Its maximal activity in Fru6P reduction was achieved at30℃and pH7.0. In the reaction at optimal 30℃and pH7.0, the BbMPD activities (y) at0.05-5mM Fru6P (x) were well fitted to non-linear Michaelis-Menten equation (r2=0.99), generating the parameters Km and Vmax (±SE) of0.89±0.05mM and913.5114.9U/mg proteins. The catalytic efficiency (kcat/Km) for the reduction of Fru6P by BbMPD was estimated as1.31×104mM-1s-1.
     Gene cloning of B. bassiana mannitol dehydrogense (BbMTD). A full-length864-bp fragment of mannitol dehydrogenase gene(BbMTD) was cloned from Bb2860. Three potential stress-responsive elements (AGGGG) and five elements meeting the consensus sequence (SYGGRG) for binding CREA, a broad domain regulator for carbon catabolism repression in Aspergillus, were lcoated in its5'flanking regions. The864-bp ORF with a63-bp intron encoded for a266amino acid protein with the predicted molecular weight of28.2kDa and the isoelectric point of6.6. The deduced protein, featured with a putative NADPH cofactor binding site (GPKGIG) at N-terminal, was found sharing high sequence identity to MTDs known from other fungi.
     Expression patterns of BbMPD and BbMTD. The wild-type strain Bb2860was grown on the plates of Saubouraud dextrose agar plus1%yeast extract (SDAY) for7days at25℃to monitor the transcription levels of the two genes in fungal colonies. As a result, the mRNA level of BbMTD increased steadily during the first four-day growth, followed by a20-fold increase on day5relative to day2. Unlike BbMTD, the transcription level of BbMPD fluctuated in a narrow range during the7-day growth and peaked on day4. Under the osmotic stress of1M NaCl) or the oxidative stress of50mM H2O2, the expression levels of both genes increased with stress time. Three-hour stress resulted in an increase of5(NaCl) or11.4(H2O2) fold in BbMTD expression and of10.9(NaCl) and74.9(H2O2) fold in BbMPD expression, respectively. In contrast, both BbMPD and BbMTD expression levels were suppressed by50and63%, respectively, after3-h heat stress at35℃. The results suggest that both genes take important parts in B. bassiana response to multiple stresses.
     Functional analyses of BbMPD and BbMTD. Two gene disruption mutants, ABbMPD and ABbMTD, were constructed via Agrobacterium tumefaciens-mediated transformation. Enzymatic activity assays and polyol content analysis showed that both BbMPD and BbMTD were crucial enzymes for mannitol metabolism. The BbMPD disruption resulted in almost all loss of MPD activity to reduce fructose-6-phosphate while the BbMTD knockout led to~80%loss of MTD activity compared with the wild-type strain. The two mutants and Bb2860grown on SDAY plates or incubated in Saubourau dextroe broth (SDB) differed significantly in intracellular mannitol content. The mannitol contents in mycelia and conidia decreased68and83%for△BbMPD, and16and38%for△BbMTD, respectively, compared with the Bb2860counterparts. The mannitol contents of△BbMPD and ΔBbMTD were enhanced respectively by3.0and1.7fold after the SDB-cultured mycelia were transferred to fresh SDB containing1M NaCl for24-h osmotic stress or by40.7and62.3%after exposure to35℃. Accompanied by the decreases of mannitol contents, trehalose contents increased in ΔBbMPD and ΔBbMTD cells under normal or stressed conditions.
     The conidial yield of ΔBbMPD on SDAY was significantly reduced by25-27%compared with similar yields of Bb2860and ΔBbMTD. The two mutants showed some differences in colony growth and spore germination on minimal medium with different carbon sources. ΔBbMPD was similar to Bb2860in colony size irrespective of a carbon source but fructose, glucose and mannitol delayed50%spore germination (GT50) for3.0,3.1and6.6h, respectively. In contrast, ΔBbMTD grew much more slowly than Bb2860and its GT50was delayed for7.1h by mannitol but not affected by fructose and glucose. Moreover, ΔBbMPD and ΔBbMTD conidia were38and18%less tolerant to the oxidative stress of H2O2,39and16%less tolerant to the stress of UV-B irradiation, and22and11%less tolerant to the wet-heat stress of45℃, respectively. However, both gene knockout mutants were not affected in conidial tolerance to osmotic stress and and virulence to the apterous adults of green peach aphid Myzus persicae.
     Gene cloning, sequence analysis and expression patterns of B. bassiana catalases. Five catalase (CAT) genes were cloned for the first time from B. bassina, including BbcatA, BbcatB, BbcatP, BbcatC and BbcatD. These genes were found encoding three monofunctional catalases (BbcatA, BbcatB, and BbcatC) and two biofunctional catalase-peroxidases (BbcatP and BbcatD). Of those, BbcatC was a small subunit catalase found in B. bassiana and other four were all large subunit catalases. Phylogenetic analysis indicated that five catalases were classified to different groups. BbcatA, a Clade A catalase, is mainly involved in spore-specific processes, such as germination. Its transcription level increased during conidiation but significantly decreased during spore germination and hyphal growth. In SDB cultures including50mM H2O2for3-h oxidative stress, the transcription level of BbcatA was enhanced by4.5fold. BbcatB and BbcatD were Clade B catalases due to the presence of a secretive signal peptide of19amino acids at the N-terminal. The BbcatB gene transcribed increasingly during colony growth, resulting in a peak of30.2fold increase on day7relative to day2. The transcript level of BbcatD was relatively low during the first5-day growth and drastically increased53.1and158.3fold on days6and7, respectively. BbcatC and BbcatP were Clade P members (peroxisomal catalases) due to their peroxisome-targeting signal (PTS). BbcatC transcribed increasingly during colony growth while BbcatP transcibed at a level much lower than other four genes during7-day colony growth. The transcriptional levels of both genes were induced by H2O2added to SDB cultures for3-h oxidative stress, which, for example, increased BbcatP transcription by13.5fold. Our study revealed that the B. bassiana catalases may take different parts in regulating fungal response to oxidative stress.
     Functional analyses of five B. bassiana catalases. The disruption mutants of five B. bassiana CAT genes, i.e., ΔBbcatA, ΔBbcatB, ΔBbcatC, ABbcatD and AbbcatP, were constructed by means of A. tumefaciens-mediated transformation. Enzymatic activity assays indicated that BbcatB, BbcatP and BbcatD primarily contributed to the CAT activities of the fungal species under normal conditions. In the profiles of non-denaturing polyacrylamide gels stained with ferricyanide, however, only two CAT-active bands were found in the wild-type strain grown under normal conditions. The upper and lower bands corresponded to BbcatB and BbcatP because they were absent in the ΔBbcatB and ΔbbcatP profiles, respectively.
     ΔBbcatC and ΔBbcatP were very sensitive to the oxidative stress of50mM H2O2with their colony growth being greatly suppressed (e.g., nearly100%for AbbcatP). However, other three mutants showed the same response to the oxidative stress as the wild-type strain. All mutant and wild-type strains displayed no significant difference in colony growth on SDAY plates under the stress of1M NaCl,1μg/ml carbendazim or4mM menadione or incubated at33℃. Exceptionally, the colony growth of ABbcatB was suppressed on menadione-inclusive plates. Moreover, conidial tolerance to H2O2was reduced by42.6,57.0and34.5%for ΔBbcatA, ΔBbcatC and AbbcatP, respectively. The conidia of ΔBbcatB and ABbcatD were52.4and47.6%less tolelrance to UV-B irradiation than the wild-type strain, respectively. Conidial tolerance to the heat stress of45℃was similar for all wild-type and mutant strains except AbbcatA, whose median lethal time (LT50) was reduced by40%.
     ΔBbcatA, ΔBbcatP and ΔBbcatD displated significantly reduced virulence to the second-instar larvae of S. litura compared to the wild-type strain. Their LT50estimates were delayed for1.4,1.8and0.9days, respectively. The same estimates of ABbcatB, ABbcatC and the wild-type strain fell in the narrow range of5.0-5.1days. Thus, the three catalases are potential virulence factors in B. bassiana.
     Great elevation of fungal per os virulence to caterpillars by high yield expression of a midgut-acting toxin in transgenic conidia under a novel promoter. Beuaveria bassiana infects insect pests normally through host cuticle but hardly causes per os infection. We obtained a great progress in high yield expression of Bacillus thuringensis Vip3Aal, a midgut-acting toxin, in transgenic conidia for enhanced fungal virulence to caterpillars through spore ingestion. The toxin production relied on a homologous promoter (Phydl-t1) found to drive the toxin-coding gene expression specifically during conidiation. The gene transcription level in the4-day colonies of all examined transformants was3.4-112fold higher than that in a transgenic strain (BbV28) under the control of PgpdA, a heterologous promoter widely used for gene expression in fungi. The best transformant BbHV8produced9.8-fold-higher Vip3Aal yield in ripe conidia than BbV28. The release of active Vip3Aal into larval midguts from BbHV8conidia ingested within24h was4.4-fold more than that from BbV28. In the bioassays of spore suspensions sprayed onto S. litura larvae (for normal infection) and lotus leaf discs (for feeding), the LC50S of BbHV8against instars II and III on days2-5and3-8were reduced by11-24and8-80fold (declining with time), respectively, compared with the BbV28estimates. BbHV8killed90%instars II-V larvae within3-8days under the economic sprays of678-1389conidia/mm2whereas BbV28and wild-type strain could not kill the older larvae effectively. Conclusively, the high toxin yield in conidia enhanced greatly the toxin release into midguts, the fungal per os virulence to caterpillars and the potential of BbHV8for pest control.
引文
方卫国,张永军,杨星勇,王中康,裴炎.2002.球孢白僵菌降解昆虫体壁蛋白酶基因CDEP-1的克隆与序列分析.遗传学报29(3):278-282.
    方允中,郑荣梁.2002.自由基生物学的理论与应用.北京:科学出版社,pp.143-147.
    冯明光.1998.生物杀虫剂与新的农业科技革命.植物保护21世纪展望暨第三届全国青年植物保护科技工作者学术研讨会论文集,北京:中国科学技术出版社.
    季香云,杨长举.白僵菌的致病性与应用.中国生物防治,2003,19(2):82-85.
    邝灼彬,吕利华,冯夏,陈焕瑜,武亚敬,何余容.2005.温度及常见农药对球孢白僵菌生物学特性的影响.华南农业大学学报26(3):26-29.
    李农昌,王成树,唐燕平,唐燕平,李增智,汤坚,黄长春,丁珊.白僵菌油剂剂型的研究.安徽农业大学学报,1996,23:329~335.
    李运帷,金得森,伊可儿,范弘达,刘利玲,陈仙景.白僵菌纯孢子粉工业化生产新工艺.中国虫生真菌研究与应用第3卷.北京:中国农业科技出版社,1993,pp.124-129.
    李增智,樊美珍.2002.真菌生物技术与真菌杀虫剂的发展.微生物农药及其产业化,喻子牛主编,北京:科学出版社pp469-487.
    李增智.1999.菌物在害虫、植病和杂草治理中的现状和未来.中国生物防治,15:35-40.
    李增智和樊美珍,真菌生物技术与真菌杀虫剂的发展.微生物农药及其产业化.北京:科学出版社,2000,pp.115-121.
    梁宗琦和叶育昌.昆虫真菌病.昆虫病理学(蒲蜇龙主编).广州:广东科技出版社,1994:p349.
    刘银泉,冯明光,刘树生和张宝鑫.不同温度下球孢白僵菌对桃蚜的毒力.中国生物防治,2000,16:56-60.
    卢永洁.环境因子对白僵菌除治松毛虫效果的影响.河北林业科技,2005,5:4-5.
    蒲蛰龙,李增智.1996.昆虫真菌学.合肥:安徽科技出版社,pp.301-446.
    唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2007.
    王成树.真菌杀虫剂剂型研究现状(综述).安徽农业大学学报,1996,23:375-380.
    许寿涛,冯明光,应盛华.球孢白僵菌对桃蚜接种后特定时间内的侵染率.应用生态学报,2002,13(6):701-704.
    叶素丹和冯明光.生防真菌耐旱特性的生理生化基础及其利用.应用生态学报,2004,5:2383-2387.
    殷凤鸣.白僵菌孢子粉贮存试验.广东林业科技通讯,1983,3:13~16.
    应盛华和冯明光.真空干燥球孢白僵菌纯孢子粉的活孢率、毒力于贮存期.微生物学通报,2002,29:42-47.
    张爱文,邓春生,农向群.1991.虫生真菌育种方法的进展.微生物学杂志11(2):89-92.
    张永军,裴炎,方卫国,杨星勇和王中康.耐低水活度高毒力虫生真菌菌株选育.菌物系统,2001,20:73-78.
    Abbott DA, Suir E, Duong GH, de Hulster E, Pronk JT, van Maris AJ.2009. Catalase overexpression reduces lactic acid-induced oxidative stress in Saccharomyces cerevisiae. Applied and Environmental Microbiology 75:2320-2325.
    Abrashev R, Dolashka P, Christova R, Stefanova L, Angelova M.2005. Role of antioxidant enzymes in survival of conidiospores of Aspergillus niger 26 under conditions of temperature stress. Journal of Applied Microbiology 99:902-909.
    Adomako D, Kaye MAG, Lewis DH.1972. Carbohydrate Metabolism in Chaetomium globosum III. The Metabolism of Mannitol. New Phytologist 71:467-476.
    Albertyn J, Hohmann S, Thevelein JM, Prior BA.1994. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Molecular Cell Biology 14:4135-4144.
    Alscher RG, Erturk N, Heath LS.2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53:1331-1341.
    Arora N, Selvapandiyan A, Agrawal N, Bhatnagar RK.2003. Relocating expression of vegetative insecticidal protein into mother cell of Bacillus thuringiensis. Biochemical and Biophysical Research Communications 310:158-162.
    Ballio A, Di Vittorio V, Russi S.1964. The isolation of trehalose and polyols from the conidia of Penicillium chrysogenum Thom. Archives Biochemistry and Biophysics 107:177-183.
    Beever RE, Laracy EP.1986. Osmotic adjustment in the filamentous fungus Aspergillus nidulans. Journal of Bacteriology 168:1358-1365.
    Berlett BS, Stadtman ER.1997. Protein oxidation in aging, disease and oxidative stress. Journal of Biological Chemistry 272:20313-20316.
    Berthet S, Nykyri L, Bravo J, Mate MJ, Berthet-Colominas C, Alzari PM, Roller F, Fita I.1997. Crystallization and preliminary structural analysis of catalase-A from Saccharomyces cerevisiae. Protein Science 6:481-483.
    Beyer WF, Fridovich I.1985. Pseudocatalase from Lactobacillus plantarum:evidence for a homopentameric structure containing two atoms of manganese per subunit. Biochemistry 24:6460-6467.
    Bidochka M J, Menzies F V & Kamp A M.2002. Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Archives of Microbiology 178: 531-537.
    Blackman LM, Hardham AR.2008. Regulation of catalase activity and gene expression during Phytophthora nicotianae development and infection of tobacco. Molecular Plant Pathology 9:495-510.
    Blokhina O, Virolainen E, Fagerstedt KV.2003. Antioxidants, oxidative damage and oxygen deprivation stress:a review. Annals of botany (London) 91:179-194.
    Bogo MR, Vainstein MH, Aragao FJL, Rech E, Schrank A.1996. High frequency gene conversion among benomyl resistance transformants in the entomopathogenic fungus Metarhizium anisopliae. FEMS Micorbiology Letters 142:123-127.
    Bois G, Bertrand A, Piche Y, Fung M, Khasa DP.2005. Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza Online First:1432-1890.
    Boonsaeng V, Sullivan PA, Shepherd MG.1976. Mannitol production in fungi during glucose catabolism. Canadian Journal of Microbiology 22:808-816.
    Bradford MM.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248-254.
    Brake J, Faust m, Stein j.2005. Evaluation of transgenic hybrid corn (VIP3A) in broiler chickens. Poultry Science 84:503-512.
    Bravo J, Verdaguer N, Tormo J, Betzel C, Switala J, Loewen PC, Fita I.1995. Crystal structure of catalase HPII from Escherichia coli. Structure 3:491-502.
    Brown GC, Prochaska GL, Hildebrand DF, Nordin GL, Jackson DM.1995. Green leaf volatiles inhibit conidial germination of the entomopathogen Pandora neoaphidis (Entomophthorales: Entomophthoraceae). Environmental Entomology 24:1637-1643.
    Brownbridge M, Costa S, Jaronski ST.2001. Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii. Journal of Invertebrate Pathology 77:280-283.
    Bussink HJ, Oliver R.2001. Identification of two highly divergent catalase genes in the fungal tomato pathogen, Cladosporium fulvum. European Journal of Biochemistry 268:15-24.
    Calera JA, Paris S, Monod M, Hamilton AJ, Debeaupuis JP, Diaquin M, Lopez-Medrano R, Leal F, Latge JP. 1997. Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus. Infection and Immunity 65:4718-4724
    Cantone FA, Vandenberg JD.1999. Genetic transformation and mutagenesis of the entomopathogenic fungus Paecilomyces fumosoroseus. Journal of Invertebrate Pathology 74:281-288.
    Chaga GS, Medin AS, Chaga SG, Porath JO.1992. Isolation and characterization of catalase from Penicillium chrysogenum. Journal of Chromatography 604:177-183.
    Chagas RF, Bailao AM, Pereira M, Winters MS, Smullian AG, Deepe Jr GS, de Almeida Soares CM.2008. The catalases of Paracoccidioides brasiliensis are differentially regulated:protein activity and transcript analysis. Fungal Genetics and Biology 45:1470-1478.
    Chakraborty TK, Basu D, Das N, Sengupta S, Mukherjee M.2004. The mannitol cycle in Pleurotus ostreatus (Florida). FEMS Microbiology Letters 236:307-311.
    Chaturvedi V, Bartiss A, Wong B.1997. Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glyceroldefective mutant from high-salt and oxidative stress. Journal of Bacteriology 179:157-162.
    Chaturvedi V, Flynn T, Niehaus WG, Wong B.1996a. Stress tolerance and pathogenic potential of a mannitol mutant of Cryptococcus neoformans. Microbiology 142:937-943.
    Chaturvedi V, Wong B, Newman SL.1996b. Oxidative killing of Cryptococcus neoformans by human neutrophils:evidence that fungal mannitol protects by scavenging reactive oxygen intermediates. Journal of Immunology 156:3836-3840.
    Chelikani P, Fita I, Loewen PC.2004. Diversity of structures and properties among catalases. Cellular and Molecular Life Sciences 61:192-208.
    Chen J, Sun F, Shi Z, Xu W, Guo W, Pang Z.2005. Efficient expression of vip184△P gene under the control of promoters plus Shine-Dalgarno (SD) sequences of cry genes from Bacillus thuringiensis. Journal of Applied Microbiology 99:426-434.
    Cho EM, Kirkland BH, Holder DJ, Keyhani NO.2007. Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology-SGM 153:3438-3447.
    Clark AJ, Blissett KJ, Oliver RP.2003. Investigating the role of polyols in Cladosporium fulvum during growth under hyper-osmotic stress and in planta. Planta 216:614-619.
    Clarkson JM, Charnley AK.1996. New insights into the mechanisms of fungal pathogenesis in insects. Trends in Microbiology 4:197-203.
    Cochrane VW.1958. Physiology of fungi. John Wiley & Sons, Inc., New York.
    Cooke RC, Mitchell DT.1969. Sugars and polyols in sclrotia of Claviceps purpurea, C. nigricans and Sclerotinia curreyana during germination. Transactions of the British Mycological Society 52:365-372.
    Cooke RC.1969. Changes in soluble carbohydrates during sclerotium formation by Sclerotinia sclerotiorum and Sclerotinia trifoliorum. Trans. Br. Mycol. Soc.53:77-86.
    Corina DL, Munday K. A.1971. Studies on polyol function in Aspergillus clavatus:a role for mannitol and ribitol. Journal of General Microbiology 69:221-227.
    Costa SD, Barbercheck ME & Kennedy GG. Mortality of colorado potato beetle (Leptinotarsa decemlineata) after subletal stress with the CryⅢA-endotoxin of Bacillus thuringiensis and subsequent exposure to Beauveria bassiana. Journal of Invertebrate Pathology 2001,77:173-179.
    Cowan MM.1999. Plant products as antimicrobial agents. Clinical microbiology reviews 12:564-582.
    Crickmore N, Zeigler DR, Schnepf E, Van Rie J, Lereelus D, Baum J, Bravo A, Dean DH.2008. Bacillus thuringingiensis toxin nomenclature, http://www.lifesci.sussex.ac.uk/Home/Neil_ Crickmore/Bt.
    Crisan EV.1973. Current concepts of thermophilism and the thermophilic fungi. Mycologia 65:1171-1198.
    Daboussi MJ, Djeballi A, Gerlinger C, Blaiseau PL, Bouvier I, Cassan M, Lebrun MH, Parisot D, Brygoo Y. 1989. Transformation of seven species of filamentous fungi using the nitrate reductase gene of Aspergillus nidulans. Current Genetics 15:453-456.
    de Faria M R & Wraight S P.2007. Mycoinsecticides and Mycoacaricides:A comprehensive list with worldwide coverage and international classification of formulation types. Biology Control 43:237-256.
    de Vires RP, Filter SJ, van de Vondervoort PJ, Chaveroche MK, Fontaine T, Fillinger S, Rijuter GJ, d'Enfert C, Visser J.2003. Glycerol dehydrogenase, encoded by gldB is essential for osmotolerance in Aspergillus nidulans. Molecular Microbiology 49:131-141.
    Delgado FX, Britton JH, Onsager JA & Swearingen W. Field assessment of Beauveria bassiana (Balsamo) Vuillemin and potential synergism with diflubenzuron for control of Savanna grasshopper complex (Orthoptera) in soil. Journal of Invertebrate Pathology 1999,73:34-39
    Donovan WP, Donovan JC, Engleman JT.2001. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thurungiensis toward Agrotis ipsilon and Spodoptera exigua. Journal of Invertebrate of Pathology 78:45-51.
    Dulermo T, Rascle, C, Blilon-Grand G, Gout E, Bligny R, Cotton P.2010. Novel insights into mannitol metabolism in the fungal plant pathogen Botrytis cinerea. Journal of Biochemistry 427:323-332
    Durner J, Klessig DF.1996. Salicylic acid is a modulator of tobacco and mammalian catalases. Journal of Biological Chemistry 271:28492-28501.
    Elbein AD, PanYT, Pastuszak I, Carroll D.2003. New insights on trehalose:a multifunctional molecule. Glycobiology 13:17-27.
    Estruch JJ, Warren GW, Mulis MA, Nye GJ, Craig JA, Koziel MG.1996. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proceedings of the National Academy of Sciences USA 93:5389-5394.
    Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Li D, Jin K, Bidochka MJ, Pei Y.2007. Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Applied and Environmental Microbiology 73:295-302.
    Fang J, Xu X, Wang P, Zhao JZ, Shelton AM, Cheng J, Feng MG, Shen Z.2007. Characterization of chimeric Bacillus thuringiensis Vip3 toxins. Applied and Environmental Microbilogy 73:956-961.
    Fang W, Pei Y, Bidochka MJ.2006. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Canadian Journal of Microbiology 52:623-626.
    Fang W, Zhang Y, Yang X, Zheng X, Duan H, Li Y, Pei Y.2004. Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. Journal of Invertebrate Pathology 85:18-24.
    Fang WG, Leng B, Xiao YH, Jin K, Ma JC, Fan YH, Feng J, Yang XY, Zhang YJ, Pei Y.2005. Cloning of Beauveria bassiana chitinase gene Bbchitl and its application to improve fungal strain virulence. Applied and Environmental Microbiology 71:363-370.
    Feng MG, Liu CL, Xu JH, Xu Q.1998. Modeling and biological implication of time-dose-mortality data for the entomophthoralean fungus, Zoophthora anhuiensis, on the green peach aphid Myzus persicae. Journal of Invertebrate Pathology 72:246-251.
    Feng MG, Poprawski TJ, Khachatourians GG.1994. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control:current status. Biocontrol Science and Technology 4:3-34.
    Feng MG., Chen B, Ying SH.2004. Trials of Beauveria bassiana, Paecilomyces fumosoroseus and imidacloprid for management of Trialeurodes vaporariorum (Homoptera:Aleyrodidae) on greenhouse grown lettuce. Biocontrol Science and Technology 14:531-544.
    Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d'Enfert C.2001. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology-SGM 147:1851-1862.
    Fita I, Silva AM, Murthy MRN, Rossmann MG.1986. The refined structure of beef liver catalase at 2.5 A resolution. Acta Crystallographic B42:497-515.
    Foreman JE, Niehaus WG.1985. Zn2+-induced Cooperativity of Mannitol-1-phosphate Dehydrogenase from Aspergillus parasiticus. The Journal of Biological Chemistry 260:10019-10022.
    Fraaije MW, Roubroeks HP, Hagen WR, Van-Berkel WJ.1996. Purification and characterization of an intracellular catalase-peroxidase from Penicillium simplicissimum. European Journal of Biochemistry 235: 192-198.
    Fridovich I.1983. Superoxide radical:an endogenous toxicant. Annual Review of Pharmacology and Toxicology 23:239-257.
    Fungaro MH, Rech E, Muhlen GS, Vainstein MH, Pascon RC, de Queiroz MV, Pizzirani-Kleiner AA, de Azevedo JL.1995. Transformation of Aspergillus nidulans by microprojectile bombardment on intact conidia. FEMS Microbiology Letters 125:293-297.
    Garre V, Miiller U, Tudzynski P.1998a. Cloning, characterization, and targeted disruption of cpcatl, coding for an in planta secreted catalase of Claviceps purpurea. Molecular Plant-Microbe Interactions 11: 772-783.
    Garre V, Tenberge KB, Eising R.1998b. Secretion of a fungal extracellular catalase by Claviceps purpurea during infection of rye:putative role in pathogenicity and suppression of host defense. Phytopathology 88: 744-753.
    Gessler NN, Sokolov AV, Bykhovskii VIa, Belozerskaia TA.2002. Superoxide dismutase and catalase activities in carotenoid-synthesizing fungi Blakeslea trispora and Neurospora crassa under the oxidative stress. Prikladnaia Biokhimiia i Mikrobiologiia 38:237-242.
    Giles SS, Stajich JE, Nichols C, Gerrald QD, Alspaugh JA, Dietrich F, Perfect JR.2006. The Cryptococcus neoformans catalase gene family and its role in antioxidant defense. Eukaryotic Cell 5:1447-1459
    Goldberg I, Hochman A.1989. Three different types of catalases in Klebsiella pneumoniae. Archives Biochemistry and Biophysics 268:124-128.
    Goodwin PH, Li J, Jin S.2001. A catalase gene of Colletotrichum gloeosporioides f. sp. malvae is highly expressed during the necrotrophic phase of infection of round-leaved mallow, Malva pusilla. FEMS Microbiology Letters.202:103-107.
    Griffiths HR, Mistry P, Herbert KE, Lunec J.1998. Molecular and cellular effects of ultraviolet light-induced genotoxicity. Critical Reviews in Clinical Laboratory Sciences 35:189-237.
    Groden E & Lockwood JL.1991. Effects of soil fungitasis on Beauveria bassiana and its relationship to disease incidence in the colorado potato beetle, Leptinotarsa decemlineata, in Michigan and Rhode island soils. Journal of Invertebrate Pathology 57:7-16
    Hajek AE, St. Leger RJ.1994. Interactions between fungal pathogenesis and insect hosts. Annual Review of Entomology 39:293-322.
    Hallsworth JE, Magan N.1994. Effect of carbohygrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology-SGM 140:2705-2713.
    Hallsworth JE, Magan N.1995. Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology 141:1109-1115.
    Hallsworth JE, Magan N.1996. Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Applied and Environmental Microbiology 62:2435-2442.
    Hallsworth JE, Magan N.1999. Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus. Journal of Invertebrate Pathology 74:261-266.
    Herrero E, Ros J, Belli G, Cabiscol E.2008. Redox control and oxidative stress in yeast cells. Biochimica et Biophysica Acta 1780:1217-1235.
    Hidalgo E, Moore D & le Patourel G. The effect of different formulations of Beauveria bassiana on Sitophilus zeamais in stored maize. Journal of Stored Product Research 1998,34:171-179.
    Hisada H, Hata Y, Kawato A, Abe Y, Akita O.2005. Cloning and expression analysis of two catalase genes from Aspergillus oryzae. Journal of Bioscience and Bioengineering 99:562-568.
    Hochman A, Goldberg I.1991. Purification and characterization of a catalase-peroxidase and a typical catalase from the bacterium Klebsiella pneumoniae. Biochimica et Biophysica Acta 1077:299-307.
    Horikoshi K, Lida S, Ikeda Y.1965. Mannitol and Mannitol Dehydrogenases in conidia of Aspergillus oryzae. Journal of Bacteriology 89:326-330.
    Huang BF, Feng MG.2009. Comparative tolerances of various Beauveria bassiana isolates to UV-B irradiation with a description of a modeling method to assess lethal dose. Mycopathologia 168:145-152.
    Hult K, Gatenbeck S.1978. Production of NADPH in the mannitol cycle and its relation to polyketide formation in Alternaria alternata. European Journal of Biochemistry.88:607-612.
    Hult K, Veide A, Gatenbeck S.1980. The distribution of the NADPH regenerating mannitol cycle among fungal species. Archives of Microbiology 128:253-255.
    Inglis GD, Goettel MS, Johnson DL.1995. Influence of ultraviolet light protectants on persistence of the entomopathogenic fungus, Beauveria bassiana. Biological Control 5:581-590.
    Inglis GD, Johnson DL & Goettel MS.1997. Efftects of temperature and sunlight on mycosis of Beauveria bassiana (Hyphomycetes:Sympodulosporae) of grasshoppers under field conditions. Environmental Entomology 26:400-409.
    Inglis GD, Johnson DL, Kawchuk LM, Goettel MS.1998. Effect of soil texture and soil sterilization
    Inglis PW, Aragao FJL, Frazao H, Magalhaes BP, Valadares-Inglis MC.2000. Biolistic co-transformation of Metarhizium anisopliae var. acridum strain CG423 with green fuorescent protein and resistance to glufosinate ammonium. FEMS Microbiology Letters 191:249-254.
    Inyang EN, Butt TM, Beckett A, Archer S.1999. The effect of crucifer epicuticular waxes and leaf extracts on the germination and virulence of Metarhizium anisopliae conidia. Mycological Research 130:419-426.
    Izawa S, Inoue Y, Kimura.1996. Importance of catalase in the adaptive response to hydrogen peroxide: analysis of acatalasaemic Saccharomyces cerevisiae. Journal of Biochemistry 320:61-67.
    Jackson R, Marcus M, Gould E, Bradley IJ, Van Duyn JW.2007. Cross-resistance responses of CrylAc-selected Heliothis virescens (Lepidoptera:Noctuidae) to the Bacillus thuringiensis protein vip3A. Journal of Economic Entomology 100:180-186.
    Jacob RA, Ph D, FACN.1995. The integrated antioxidant system. Nutrition Research 15:755-766.
    Jaros-Su J, Groden E, Zhang JX.1999. Effects of selected fungicides and the timing of fungicide application on Beauveria bassiana-induced mortality of the colorado potato beetle (Coleoptera:Chrysomelidae). Biological Control 15:259-269.
    Jennings DB, Daub ME, Pharr DM, Williamson JD.2002. Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Plant Journal 32:41-49.
    Jennings DB, Ehrenshaft M, Pharr DM, Williamson JD.1998. Roles for mannitol and mannitol dehydrogenase in active oxygen-mediated plant defense. Proceedings of the National Academy of Sciences 95: 15129-15133.
    Jennings DH.1984. Polyol metabolism in fungi. Advances Microbial Physiology 25:149-193
    Jennings DH.1993. Stress Tolerance of Fungi. Marcel Dekker, Inc.
    Jennings DH.1995. The physiology of fungal nutrition. Cambridge University Press, Cambridge
    Jiang Q, Ying SH, Feng MG.2007. Enhanced frequency of Beauveria bassiana blastospore transformation by restriction enzyme-mediated integration and electroporation. Journal of Microbiological Methods 69: 512-517.
    Jin K, Zhang Y, Luo Z, Xiao Y, Fan Y, Wu D, Pei Y.2008. An improved method for Beauveria bassiana transformation using phosphinothricin acetyltransferase and green fluorescent protein fusion gene as a selectable and visible marker. Biotechnology Letters 30:1379-1383.
    Jin SF, Feng MG, Ying SH, Mu WJ, Chen JQ.2011. Evaluation of alternative rice planthopper control by the combined action of oil-formulated Metarhizium anisopliae and low-rate buprofezin. pest management science 67:36-43.
    Johnsson K, Froland WA, Schultz PG.1997. Overexpression, purification, and characterization of the catalase-peroxidase KatG from Mycobacterium tuberculosis. Journal of Biological Chemistry 272: 2834-2840.
    Joosten MHAJ, Hendrickx LJM, De Wit PJGM.1990. Carbohydrate composition of apoplastic fluids isolated from tomato leaves inoculated with virulent or avirulent races of Cladosporium fulvum (syn. Fulvia fulva). Netherlands Journal of Plant Path 96:103-112.
    Kavanagh KL, Jornvall H, Persson B, Oppermann U.2008. The SDR superfamily:functional and structural diversity within a family of metabolic and regulatory enzymes. Cellular and Molecular Life Sciences 65: 3895-3906
    Kawasaki L, Aguirre J.2001. Multiple catalase genes are differentially regulated in Aspergillus nidulans. Journal of Bacteriology 183:1434-1440.
    Kawasaki L, Wysong D, Diamond R, Aguirre J.1997. Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress. Journal of Bacteriology 179: 3284-3292.
    Klotz MG, Klassen GR, Loewen PC.1997. Phylogenetic relationships among prokaryotic and eukaryotic catalases. Molecular Biology and Evolution 14:951-958.
    Krahulec C, Armao GC, Weber H, Klimacek M, Nidetzky B.2008. Characterization of recombinant Aspergillus fumigatus mannitol-1-phosphate 5-dehydrogenase and its application for the stereoselective synthesis of protio and deuterio forms of D-mannitol 1-phosphate. Carbohydrate Research 343: 1414-1423.
    Kreiner M, Harvey LM, McNell B.2003. Morphological and enzymatic responses of a recombinant Aspergillus niger to oxidative stressors in chemostat cultures. Journal of Biotechnology 100:251-260.
    Krieg M, Groner A, Huber J, Zimmermann G.1981. Inaktivierung von verschiedenen Isektenpathogenen durch ultraviolette Strahlen. Journal of Plant Diisease and Protection 88:38-48.
    Kumar S, Nei M, Dudley J, Tamura K.2008. MEGA:A biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9:299-306.
    Kuzniak E, Wyrwicka A, Gabara B, Kozirog A, Sklodowska M.2006. Effects of N,N-bis(3-aminopropyl)dodecylamine on antioxidant enzyme activities, mitochondrial morphology and metabolism in Aspergillus niger. Folia Microbiologica (Praha) 51:38-44.
    Kwok LY, Schluter D, Clayton C, Soldati D.2004. The antioxidant system in Toxoplasma gondii and the role of cytosolic catalase in defense against oxidative injury. Molecular Microbiology 51:47-61.
    Lacey LA, Frutos R, Kaya HK, Vail P.2001. Insect pathogens as biological control agents:Do they have a future? Biological Control 21:230-248.
    LaemmLi UK.1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
    Latyshko NV, Gudkova LV.1996. The kinetic and catalytic properties of Penicillium vitale catalase. Ukrainskii biokhimicheskil zhurnal 68:69-73.
    Leclerque A, Wan H, Abschutz A, Chen S, Mitina GV, Zimmermann G, Schairer HU.2004. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Current Genetics 45:111-119.
    Lee MK, Miles P, Chen JS.2006. Brush border membrane binding properties of Bacillus thuringiensis Vip3A toxin to Heliothis virescens and Helicoverpa zea midguts. Biochemical and Biophysical Research Communications 339:1043-1047.
    Lee MK, Walters FS, Hart H, Palekar N, Chen JS.2003. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1 Ab-endotoxin. Applied and Environmental Microbiology 69:4648-4657.
    Lewis DH, Smith DC.1967. Sugar alcohols (polyols) in fungi and green plants. New Phytologist 66:143-184.
    Li C, Xu N, Huang X, Wang W, Cheng J, Wu K, Shen Z.2007. Bacillus thuringiensis Vip3 mutant proteins: insecticidal activity and trypsin sensitivity. Biocontrol Science and Technology 17:699-708.
    Li J, Feng MG.2009. Intraspecific tolerance of Metarhizium anisopliae conidia to the upper thermal limits of summer with a description of a quantitative assay system. Mycological Research 113:93-99.
    Linares CE, Griebeler D, Cargnelutti D, Alves SH, Morsch VM, Schetinger MR.2006. Catalase activity in Candida albicans exposed to antineoplastic drugs. Journal of Medical Microbiology 55:259-262.
    Linder MB, Szilvay GR, Nakari-Setala T, Penttila ME.2005. Hydrophobins:the protein-amphiphiles of filamentous fungi. FEMS Microbiology Reviews 29:877-96.
    Link T, Lohaus G, Heiser I, Mendgen K, Hahn M, Voegele RT.2005. Characterization of a novel NADP(+)-dependent D-arabitol dehydrogenase from the plant pathogen Uromyces fabae. Biochemical Journal 389:289-295.
    Liu Q, Ying SH, Feng MG, Jiang XH.2009. Physiological implication of intracellular trehalose and mannitol changes in response of entomopathogenic fungus Beauveria bassiana to thermal stress. Antonie Van Leeuwenhoek 95:65-75.
    Llewellyn DJ, Mares CL, Fitt GP.2007. Field performance and seasonal changes in the efficacy against Helicoverpa armigera (Hubner) of transgenic cotton expressing the insecticidal protein Vip3A. Agricultural and Forest Entomology 9:93-101.
    Lord J C.2001. Desiccant Dusts Synergize the effect of Beauveria bassiana (Hyphomycetes:Moniliales) on Stored-Grain Beetles. Journal of Economic Entomology 94:367-372.
    Lu D, Pava-Ripoll M, Li Z, Wang C.2008. Insecticidal evaluation of Beauveria bassiana engineered to express a scorpion neurotoxin and a cutile degrading protease. Applied Microbiology of Biotechnology 81:515-522.
    Luz C & Fargues J.1997. Temperature and moisture requirements for conidial germination of an isolate of Beauveria bassiana, pathogenic to Rhodnius prolixus. Mycopathologia 138:117-125.
    Majchrowicz L, Poprawski TJ.1993. Effects in vitro of nine fungicides on groth of entomopathogenic fungi. Biocontrol Science and Technology 3:321-336.
    Michan S, Lledias F, Baldwin JD, Natvig DO, Hansberg W.2002. Regulation and oxidation of two large monofunctional catalases. Free Radical Biology and Medicine 33:521-32.
    Michan S, Lledias F, Hansberg W.2003. Asexual development is increased in Neurospora crassa cat-3-null mutant strains. Eukaryotic Cell.2:798-808.
    Miller CD, Rangel D, Braga GUL, Flint S, Kwon S, Messias CL, Roberts DW, Anderson AJ.2004. Enzyme activities associated with oxidative stress in Metarhizium anisopliae during germination, mycelial growth, and conidiation and in response to near-UV irradiation. Canadian Journal of Microbiology 50:41-49.
    Milne R, Liu YH, Gauthier D, van Frankenhuyzen K.2008. Purification of Vip3Aal from Bacillus thuringiensis HD-1 and its contribution to toxicity of HD-1 to spruce budworm(Choristoneura fumiferana) and gypsy moth (Lymantria dispar) (Lepidoptera). Journal of Invertebrate Pathology 99: 166-172.
    Minard KI, McAlister-Henn L.2001. Antioxidant function of cytosolic sources of NADPH in yeast. Free Radical Biology and Medicine 31:832-843.
    Missall TA, Cherry-Harris JF, Lodge JK.2005. Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates. Microbiology 151: 2578-2581.
    Hernandez CEM, Guerrero IEP, Hernandez GAG, Solis ES, Guzman JCT.2010. Catalase overexpression reduces the germination time and increases the pathogenicity of the fungus Metarhizium ansiopliae. Applied Microbiology and Biotechnology 87:1033-1044.
    Moreira SF, Bailao AM, Barbosa MS, Jesuino RS, Felipe MS, Pereira M, de Almeida Soares CM.2004. Monofunctional catalase P of Paracoccidioides brasiliensis:identification, characterization, molecular cloning and expression analysis. Yeast 21:173-82.
    Mount SM.1982. A catalogue of splice junction sequences. Nucleic Acids Research 10:459-472.
    Miiller D.1937. Die mannitdehydrase. Enzymologia 3.
    Murshudov GN, Grebenko AI, Barynin V, Dauter Z, Wilson KS, Vainshtein BK, Melik-Adamyan WR, Bravo J, Ferran JM, Ferrer JC, Switala J, Loewen PC, Fita 1.1996. Structure of the heme d of Penicillium vitale and Escherichia coli catalases. Journal of Biological Chemistry 271:8863-8868.
    Nagy JM, Cass AE, Brown KA.1997. Purification and characterization of recombinant catalase-peroxidase, which confers isoniazid sensitivity in Mycobacterium tuberculosis. Journal of Biological Chemistry 272: 31265-31271.
    Nakagawa Y, Kanbe T, Mizuguchi I 2003. Disruption of the human pathogenic yeast Candida albicans catalase gene decreases survival in mouse-model elevates susceptibility to higher temperature and to detergents. Microbiology and Immunology 47:395-403
    Navarro RE, Stringer MA, Hansberg W, Timberlake WE, Aguirre J.1996. catA, a new Aspergillus nidulans gene encoding a developmentally regulated catalase. Current Genetics 29:352-359
    Noventa-Jordao MA, Couto RM, Goldman MH, Aguirre J, Iyer S, Caplan A, Terenzi HF, Goldman GH.1999. Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. Microbiology. 145:3229-3234.
    Nowierski RM, Zeng Z, Jaronski S, Delgado F, Swearingen W.1996. Analysis and modeling of time-dose-mortality of Melanoplus sanguinipes, Locusta migratoria migratorioides, and Schistocerca gregaria (Orthoptera:Acrididae) from Beauveria, Metarhizium,and Paecilomyces isolates from Madagascar. Journal of Invertebrate Pathology 67:236-252.
    Obinger C, Regelsberger G, Strasser G, Burner U, Peschek GA.1997. Purification and characterization of a homodimeric catalase-peroxidase from the cyanobacterium Anacystis nidulans. Biochemical and Biophysical Research Communications 235:545-552.
    Ouedraogo A, Fargues J, Goettel M S & Lomer C J.1997. Effect of temperature on vegetative growth among isolates of Metarhizium anisopliae and M. flavoviride. Mycopathologia 137:37-43.
    Paris S, Wysong D, Debeaupuis JP, Shibuya K, Philippe B, Dianond RD, Latge JP.2003. Catalases of Aspergillus fumigatus. Infection and Immunity 71:3551-3562
    Pava-Ripoll M, Posada F, Momen B, Wang C, St Leger RJ.2008. Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera:Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. Journal of Invertebrate Pathology 99:220-226.
    Pedrini N, Juarez MP, Crespo R, de Alaniz MJ.2006. Clues on the role of Beauveria bassiana catalases in alkane degradation events. Mycologia 98:528-534.
    Pendland J, Boucias DG.1996. Phagocytosis of lectin-opsonized fungal cells and endocytosis of the ligand by insect Spodoptera esigua granular hemocytes:an ultra structural and immunocytochemical study. Cell and Tissue Research 285:57-67.
    Peng D, Chen S, Ruan L, Li L, Yu Z, Sun M.2006. Safety assessment of transgenic Bacillus thuringiensis with VIP insecticidal protein gene by feeding studies. Food Chemistry and Toxicology 45:1179-1185.
    Persson B, Krook M, Jornvall H.1991. Characteristics of short-chain alcohol dehydrogenases and related enzymes. European Journal of Biochemistry 200:537-543.
    Pinto E.2003. Heavy metal-induced oxidative stress in algae. Journal of phycology 39:1008-1018.
    Polidoros AN, Mylona PV, Scandalios JG.2001. Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistence to oxidative stress. Transgenic Research 10:555-569.
    Pu XY, Feng MG, Shi CH.2005. Impact of three application methods on the field efficacy of a Beauveria bassiana-based mycoinsecticide against the false-eye leafhopper, Empoasca vitis (Homoptera: Cicadellidae) in tea canopy. Crop Protection.24:167-175.
    Putnam CD, Arvai AS, Bourne Y, Tainer JA.1999. Active and inhibited human catalase structures:ligand and NADPH binding and catalytic mechanism. Journal of Molecular Biology 296:295-309.
    Qin Y, Ying SH, Chen Y, Shen ZC, Feng MG.2010. Integration of insecticidal protein Vip3Aal into Beauveria bassiana enhances fungal virulence to Spodoptera litura larvae by cuticle and per os infection. Applied and Environmental Microbilogy 76:4611-4618.
    Ramstedt M, Jirjis R, So'derhall K.1987. Metabolism of mannitol in mycorrhizal and non-mycorrhizal fungi. New Phytologist 105:281-287.
    Reader U, Broda P.1985. Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1:17-20
    Robbertse B, Yoder OC, Nguyen A, Schoch CL, Turgeon BG.2003. Deletion of all Cochliobolus heterostrophus monofunctional catalase-encoding genes reveals a role for one in sensitivity to oxidative stress but none with a role in virulence. Molecular Plant-Microbe Interactions 16:1013-1021
    Ruijter GJG, Bax M, Patel H, Flitter SJ, van de Vondervoort PJI, de Vries RP, vanKuyk PA, Visser J.2003. Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryotic Cell 2:690-698
    Ryan WK, Vlan MC, David OR.2007. Insect resistance management for Syngenta's VipCotTM transgenic cotton. Journal of Invertebrate Pathology 95:227-230.
    Sanchez O, Navarro RE, Aguirre J.1998. Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Molecular and General Genetics 258:89-94.
    Sanyang Sidi, H. F. Van Emden, and Moore D.2000. Laboratory Shelf-Life of Oil-Formulated Conidia of the Locust and Grasshopper Fungal Pathogen Metarhizium flavoviride Gams & Rozsypal, in Mixture with the Pyrethroid Insecticide Lambda-Cyhalothrin. International Journal of Pest Management 46:165-168.
    Scherer M, Wei H, Liese R, Fischer R.2002. Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA. Eucaryotic Cell 1:725-735.
    Schneider PB, Denk U, Breitenbach M, Richter K, Schmid-Grendelmeier P, Nobbe S, Himly M, Mari A, Ebner C, Simon-Nobbe B.2006. Alternaria alternate NADP+-dependent mannitol dehydrogenase is an important fungal allergen. Clinical & Experimental Allergy 36:1513-1524.
    Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH.1998. Bacillus thuringiensis and its pesticidal Crystal Porteins. Microbiol and Molecular Biology Reviews 62:775-806.
    Schouten A, Tenberge KB, Vermeer J, Stewart J, Wagemakers L, Williamson B, van Kan JAL.2002. Functional analysis of an extracellular catalase of Botrytis cinerea. Molecular Plant Pathology 3: 227-238.
    Schutzendubel A, Polle A.2002. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization. Journal of experimental botany 53:1351-1365.
    Seal-Lewis HM, Fairhurst V.1992. An NADP+-dependent glycerol dehydrogenase in Aspergillus nidulans is inducible by D-galacturonate. Current Genetics 22:293-296.
    Setlow B, Setlow P.1998. Heat killing of Bacillus subtilis spores in water is not due to oxidative damage. Applied and Environmental Microbiology 64:4109-4112.
    Shen B, Hohmann S, Jensen RG, Bohnert H.1999. Roles of sugar alcohols inosmotic stress adaptation. Replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiology 121:45-52.
    Shen Z, Warren GW, Shotkoski E, Kramer V.2003. Novel Vip3 toxins and methods of use. WO/2003/075655.
    Shi WB, Feng MG.2006. Field efficacy of application of Beauveria bassiana formulation and low rate pyridaben for sustainable control of citrus red mite Panonychus citri (Acari:Tetranychidae) in orchards. Bioogical Control 39:210-217.
    Shi WB, Feng MG, Liu SS.2008. Sprays of emulsifiable Beauveria bassiana formulation are ovicidal towards Tetranychus urticaea (Acari:Tetranychidae) at various regimes of tempertature and humidity. Experimental and applied acarology 46:247-257.
    Singh M, Scrutton NS, Scrutton MC.1988. NADPH generation in Aspergillus nidulans:is the mannitol cycle involved? Journal of General Microbiology 134:643-654.
    Skamnioti P, Henderson C, Zhang Z, Robinson Z, Gurr SJ.2007. A novel role for catalase B in the maintenance of fungal cell-wall integrity during host invasion in the rice blast fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions 20:568-580.
    Skibbe U, Christerller JT, Callaghan PT, Eccles CD, Laing WA.1996. Visualization of pH gradients in the larval midgut of Spodoptera litura using 31P-NMR microscopy. Journal of Insect Physiology 42:777-790.
    Smirnoff N, Cumbes QJ 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry. 28:1057-1060.
    Solomon P, Tan KC, Oliver RP.2005. Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum. Molecular Plant-Microbe Interaction 18:110-115.
    Solomon PS, Waters ODC, Jorgens Cl, Lowe RGT, Rechberger J, Trengove R, Oliver RP.2006. Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch). Journal of Biochemistry 399:231-239
    Song TT, Feng MG.2011. In vivo passages of heterologous Beauveria bassiana isolates improve conidial surface properties and pathogenicity to Nilaparvata lugens (Homoptera:Delphacidae). Journal of Invertebrate Pathology 106; 211-216.
    St Leger RJ, Joshi L, Bidochka MJ, Roberts DW.1996. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proceedings of the National Academy of Sciences of the United States of America 93:6349-6354.
    Staats CC, Junges A, Fitarelli M, Furlaneto MC, Vainstein MH, Schrank A.2007. Gene inactivation mediated by Agrobacterium tumefaciens in the filamentous fungi Metarhizium anisopliae. Applied Microbiology and Biotechnology 76:945-50.
    Stoop JM., Mooibroek H.1998. Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom, Agaricus bisporus, and its expression in response to NaCl stress. Applied and Environmental Microbiology 64:4689-4696.
    Strandberg GW.1969. D-Mannitol Metabolism by Aspergillus candidus. Journal of Bacteriology 97:1305-1309.
    Strobel GA, Kosuge T.1965. Polyol metabolism In Diplodia Viticola Desm. Archives of Biochemistry and Biophysics 109:622-626. susceptibility of oviposition grasshoppers to Beauveria bassiana. Journal of Invertebrate Pathology,71: 73-81.
    Suvarna K, Bartiss A, Wong B.2000. Mannitol-1-phosphate dehydrogenase from Cryptococcus neoformans is a zinc-containing long-chain alcohol/polyol dehydrogenase. Microbiology 146:2705-2713.
    Teixido N, Vinas I, Usall J Marcos R. de Faria & Stephen P.2007. Wraight Mycoinsecticides and Mycoacaricides:A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 43:237-256.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG.1997. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24:4876-4882.
    Todorova SI, Codderre D, Duchesne RM.1998. Compatibilty of Beauveria with selected fungicides and herbicides. Biological Control 27:427-433.
    Trail F, Xu HX.2002. Purification and characterization of mannitol dehydrogenase and identification of the corresponging cDNA from the head blight fungus, Gibbrerella zeaea (Fusarium graminearum). Phytochemistry 61:791-796.
    Ueng STH, Hartanowicz P, Lewandoski C, Keller J, Holick M, McGuinness ET.1976. D-Mannitol dehydrogenase from Absidia glauca. Purification, metabolic role, and subunit interactions Biochemistry 15:17431749.
    Valadares-Inglis MC, Inglis PW, Peberdy JF.1997. Sequence analysis of the catalytic domain of a Metarhizium anisopliae chitinase. Brazilian Journal of Genetics 20:161-164.
    Velez H, Glassbrook NJ, Daub ME.2007. Mannitol metabolism in the phytopathogenic fungus Alternaria alternate. Fungal Genetics and Biology 44:258-268.
    Velez H, Glassbrook NJ, Daub ME.2008. Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternate. FEMS Microbiology Letters 285:122-129.
    Walstad JD, Anderson RF, Stambaugh WJ.1970. Effects of environmental conditions on two species of muscardine fungi(Beauveria bassiana and Metarhizium anisopliae). Journal of Invertebrate Pathology 16: 221-226
    Wang C, St Leger RJ.2007b. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryotic Cell 6:808-816.
    Wang CS, St Leger RJ.2007a. A scorpion neurotoxin increases the potency of a fungal insecticide. Nature Biotechnology 25:1455-1456.
    Wang N, Yoshida Y, Hasunuma K.2007. Loss of Catalase-1 (Cat-1) results in decreased conidial viability enhanced by exposure to light in Neurospora crassa. Molecular Genetics and Genomics 277:13-22.
    Wang SY, Le Tourneau D.1972. Mannitol biosynthesis in Sclerotinia sclerotiorum. Arch Mikrobiol 81:91-99.
    Wang ZL, Ying SH, Feng MG.2009. Gene cloning and catalysis features of a new mannitol-1-phosphate dehydrogenase (BbMPD) from Beauveria bassiana. Carbohydrate Research 345:50-54.
    Webster J, Davey RA, Smirnoff N, Fricke W, Hinde P, Romos D, Turner JCR.1995. Mannitol and hexoses are components of Buller's drop. Mycological Research 99:833-838.
    Wedding RT, Harley JL.1976. Fungal polyols metabolites in the control of carbohydrate metabolism of mycorrhizal root of beech. New Phytologist 77:675-688.
    Whitehouse MEA, Wilson LJ, Constable GA.2007. Corrigendum to:target and non-target effects on the invertebrate community of Vip cotton, a new insecticidal transgenic. Australian Journal of Agricultural Research 58:383-383.
    Wong B, Brauer KL, Tsai RR, Jayasimhulu K.1989. Increased amount of the Aspergillus metabolite D-mannitol in tissues and serum of animals with experimental aspergillosis. Journal of Infectious Diseases 160:95-103.
    Wosten HA, de Vocht ML.2000. Hydrophobins, the fungal coat unravelled. Biochimica et Biophysica Acta 1469:79-86.
    Wosten HA. Hydrophobins:multipurpose proteins.2001. Annual Review of Microbiology 55:625-646.
    Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD.1998. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infection and Immunity 66:1953-1961.
    Xi L, Xu X, Liu W, Li X, Liu Y, Li M, Zhang J, Li M.2007. Differentially expressed proteins of pathogenic Penicillium marneffei in yeast and mycelial phases. Journal of Medical Microbiology 56:298-304.
    Xie XQ, Wang J, Huang BF, Ying SH, Feng MG.2010. A new manganese superoxide dismutase identified from Beauveria bassiana enhances virulence and stress tolerance when overexpressed in the fungal pathogen. Applied Microbiology and Biotechnology 86:1543-1553.
    Yamashita K, Shiozawa A, Banno S, Fukumori F, Ichiishi A, Kimura M, Fujimura M.2007. Involvement of OS-2 MAP kinase in regulation of the large-subunit catalases CAT-1 and CAT-3 in Neurospora crassa. Genes and Genetic Systems 82:301-310.
    Ying SH, Feng MG.2004. Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. Journal of Applied Microbiology 97:323-331.
    Ying SH, Feng MG.2006. Novel blastospore-based transformation system for integration of phosphinothricin resistance and green fluorescence protein genes into Beauveria bassiana. Applied Microbiology and Biotechnology 72:206-210.
    Yu CG, Mullis MA, Warren GW, Koziel MG, Estruch JJ.1997. The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Applied and Environmental Microbiology 63:532-536.
    Zamocky M, Koller F.1999. Understanding the structure and function of catalases:clues from molecular evolution and in vitro mutagenesis. Progress in Biophysics and Molecular Biology 72:19-66.
    Zhang S, Fan Y, Xia YX, Keyhani NO.2010. Sulfonylurea resistance as a new selectable marker for the entomopathogenic fungus Beauveria bassiana. Applied Microbiology and Biotechnology 87:1151-1156.
    Zhang Z, Henderson C, Gurr SJ.2004. Blumeria graminis secretes an extracellular catalase during infection of barely:potential role in suppression of the host defence. Molecular Plant Pathology 5:537-547.
    Zou G, Ying SH, Shen ZC, Feng MG.2006. Multi-sited mutations of beta-tubulin are involved in benzimidazole resistance and thermotolerance of fungal biocontrol agent Beauveria bassiana. Environmental Microbiology 8:2096-2105.
    Zurek L, Watson D W & Schal C. Synergism between Metarhizium anisopliae (Deuteromycota: Hyphomycetes) and boric acid against the german cockroach (Dictyoptera:Blattellidae). Biological Control 2002,23:296-302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700