苏云金杆菌高效杀虫工程菌的构建及其伴胞晶体形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis)简称Bt)作为一种环境友好型生物杀虫剂,对靶标害虫具有专一的杀虫活性,因此被广泛使用于农林业虫害以及蚊媒传播疾病的控制。它的杀虫特性主要来源于在芽胞形成期大量产生的杀虫活性蛋白。尽管在生态环境保护方面具有无可比拟的优势,但Bt生物杀虫剂的使用仍然落后于合成的化学农药。对Bt菌株进行遗传改良,可为发展新型Bt生物杀虫剂产品提供更好的技术与菌种资源。
     为获得毒力更高、杀虫谱更广的Bt菌株,进一步扩展Bt杀虫剂在生物防治上的应用,本研究采用分子手段,利用Bt偏爱密码子优化设计了昆虫特异的钙离子通道阻断剂基因ω-ACTX-Hv1a,并进行化学合成,与杀虫晶体蛋白基因crylAc3’-端融合,在Bt中进行共表达,并研究了融合蛋白的晶体形成情况和生物活性功能。在Bt杀虫蛋白基因crylAc的强表达体系调控下,cry1Ac、ω-ACTX-Hv1a和绿色荧光蛋白基因egfp在Bt无晶体突变株Cry-B中得到了有效的融合表达。通过显微镜观察发现,Bt融合基因工程菌Cry-B (1Ac-ACTX-EGFP)的单个菌体中形成了2-3个较小的类似伴胞晶体的包涵体,在菌体裂解后仍然是稳定的。在对Bt工程菌表达产物进行的免疫杂交分析中,全长166kDa的融合蛋白带被清晰的检测到,说明融合基因可以在Bt中进行完整的表达。通过对工程菌发酵产物进行生物活性测定,发现融合蛋白晶体对甜菜夜蛾幼虫的毒力比CrylAc晶体提高了至少5倍,对棉铃虫幼虫也具有很高的毒力且明显抑制了幼虫的生长。这些结果说明,外源杀虫蛋白可以采取与Cry类内毒素C-端融合的方式在Bt中共表达,共同形成伴胞晶体,并至少保留部分杀虫生物活性。本研究为构建具有不同杀虫特性的融合蛋白以及构建高效广谱的Bt工程菌株奠定了重要基础。
     目前,研究者们虽然对cry基因的表达调控已经进行了广泛研究,但由于在细菌活体中观察Cry蛋白的聚集过程比较困难,缺乏好的检测手段,因此人们对此类蛋白晶体形成的机制仍然很不清楚。本研究以Bt融合基因工程菌Cry-B(1Ac-ACTX-EGFP)为研究对象,利用激光共聚焦扫描显微镜对芽胞期菌体的蛋白晶体形成过程进行了连续时间段的观察。观察结果显示,融合蛋白开始表达时是散布于母细胞内的,晶体形成是一个由蛋白分子从分散到逐渐聚集的一个过程,并且蛋白的聚集位点存在极性,靠近菌体两端。菌体裂解前,融合蛋白形成的晶体颗粒体积达到最大。本研究构建的Cry蛋白可视化分析系统在细胞水平上为深入研究杀虫蛋白晶体的组装与形成机制提供了非常有用的技术检测手段。
     通过对Cry-B (1Ac-ACTX-EGFP)和对照菌株Cry-B(1Ac)裂解前的菌体全蛋白做无标记定量的shot-gun质谱鉴定和蛋白表达差异分析,初步探索了可能参与影响杀虫蛋白晶体形成的调控因子。从Cry-B(1Ac-ACTX-EGFP)菌株和Cry-B (1Ac)菌株中分别鉴定到201和138个非冗余蛋白,其中114个为两菌株共同所有。蛋白功能分类发现两个菌株中功能归于氧化还原类(Oxidation-reduction)的蛋白数量所占比例差异很大,说明菌体内的氧化还原环境可能是造成晶体形成差异较大的原因之一。通过蛋白表达差异比较分析,找到了两菌株中丰度差异较大的共有蛋白和丰度较大的独有蛋白,如共同作用参与蛋白折叠与组装的60kDa伴侣蛋白(GroEL)和10kDa伴侣蛋白(GroES)、参与细胞应激反应的Clp类蛋白酶和催化还原过氧化氢的过氧化氢酶等,均有可能是参与Bt杀虫蛋白晶体形成的调控因子。例如同源性较高的GroEL,已经有研究证实参与调控大肠杆菌外源蛋白包涵体的形成。仍然需要进行基因敲除、加倍互补等分子实验,并结合Cryl蛋白可视化分析系统,来进一步验证这些差异蛋白的功能与晶体形成机制的相关性。本研究提供的信息为探索杀虫蛋白晶体的形成机制,以及合理应用基因工程手段对Bt菌进行遗传改良提供了有价值的技术资料和数据。
Bacillus thuringiensis (Bt) has been used as a biopesticide in agriculture, forestry and mosquito control because of its advantages of specific toxicity against target insects, lack of polluting residues and safety to non-target organisms. The insecticidal properties of this bacterium are due to insecticidal proteins produced during sporulation. Despite these ecological benefits, the use of Bt biopesticides has lagged behind the synthetic chemical pesticides. Genetic improvement of Bt strains, offers a promising means of providing technology and strain resources to develop novel Bt-based bioinsecticide products.
     In order to obtain Bt strains with enhanced toxicity and large-spectrum to improve the application of Bt insecticides, we designed and synthesized the DNA sequence of insect-specific VGCCs blockerω-ACTX-Hvla according to the codon preference of the Bt strain, and fused it to the3'-end of insecticidal crystal protein gene cry1Ac. Then we investigated the expression, crystallization, and functional activity of the fusion protein in Bt strain. The fusion gene of cry1Ac,ω-ACTX-Hv1a and enhanced green fluorescent protein gene egfp was expressed in Bt acrystalliferous strain Cry-B under the control of the native gene crylAc expression system. The fusion recombinant Cry-B(1Ac-ACTX-EGFP) generally produced two or three small crystal-like inclusion bodies in each cell. A166kDa full-length fusion protein was identified by immunoblot analysis. This convinced that the fusion gene could be intactly expressed in Bt strain. The bioassayes of lysis of recombinant strain indicated that, virulence of the fusion inclusions was at least fivefold higher than CrylAc crystals toward larvae of Spodoptera exigua. It was also toxic to Helicoverpa armigera larvae and significantly retarded the growth of the larvae. These results demonstrated that a foreign protein could be expressed and accumulate as parasporal inclusions in Bt by C-terminal fusion with the native endotoxin while retaining partial insecticidal activity. The study provides an important foundation for constructing fusion protein with different insecticide activity and recombinant strains with higher toxicity.
     Although the expression of cryl genes has been widely studied, the mechanisms of crystal formation and assembly in Bt strains remain unclear, because it is relatively difficult to study the assembly and aggregation of Cry proteins in individual cells in vivo. In this work, we used the engineering strain Cry-B(1Ac-ACTX-EGFP) as the object, observed crystallization of the fusion protein in samples collected at consequent time point with confocal laser scanning microscopy. The result showed that, at the beginning of expression, the fusion protein was distributed in the mother cell. The formation of crystal is a process that can be compared to protein molecule polymerization. Surprisingly, the fusion protein crystals showed polarity and were located near two ends of the strain. Before cell lysis, the crystals grew to full size. This reporter system may be a useful tool to study the mechanisms of parasporal crystal formation and assembly.
     Then, a comparative proteomic analysis was performed on the Bt engineering strain Cry-B (1Ac-ACTX-EGFP) and Cry-B (1Ac) before cell lysis using label-free quantitative shotgun proteomics to investigate the underlying regulators participating in formation of insecticidal protein crystals. In total,201proteins from Cry-B (1Ac-ACTX-EGFP) and138proteins from Cry-B (1Ac) were unambiguously identified by liquid chromatography-tandem mass spectrometry analysis, in which,114proteins were shared by the two strains. The result of protein functional categorization demonstrated that, the proportion (in percentage) of identified proteins related to oxidation-reduction showed great changes between the two strains. This indicated that the different oxidation-reduction environment inside the cell may be one of reasons caused crystal difference between the two strains. We found the proteins with notable difference in expression level between the two strains and the proteins with a high emPAI value only identified in one strain, such as60kDa chaperonin (GroEL) and10kDa chaperonin (GroES) involved in preventing protein's misfolding and promotes the refolding and assembly; Clp protease involved in cell's response to stress; catalase that catalyzing reduction of hydrogen peroxide and so on. These proteins may be the regulators participating in crystals' formation. Certainly we still need do more molecular experiments and combine the GFP reporter system to test and verify the relationship between the function of these proteins and the mechanisms of crystal formation. This work provided valuable technologic information and data for exploring the mechanisms of crystal formation and further improving Bt strains by rational application of genetic engineering.
引文
[1]Keim P, Kalif A, Schupp J, et al. Molecular evolution and diversity in Bacillus anthracis as detected by amplified fragment length polymorphism markers. J Bacteriol,1997,179 (3):818-824.
    [2]Leonard C, Zekri O, Mahillon J. Integrated physical and genetic mapping of Bacillus cereus and other gram-positive bacteria based on IS231A transposition vectors. Infect Immun,1998,66 (5):2163-2169.
    [3]Ash C, Collins MD. Comparative analysis of 23S ribosomal RNA gene sequences of Bacillus anthracis and emetic Bacillus cereus determined by PCR-direct sequencing. FEMS Microbiol Lett,1992,73 (1-2):75-80.
    [4]Ash C, Farrow JA, Dorsch M, et al. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int J Syst Bacteriol,1991,41 (3):343-346.
    [5]Vilas-Boas G, Sanchis V, Lereclus D, et al. Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Appl Environ Microbiol, 2002,68(3):1414-1424.
    [6]Carlson CR, Caugant DA, Kolsto AB. Genotypic Diversity among Bacillus cereus and Bacillus thuringiensis Strains. Appl Environ Microbiol,1994,60 (6):1719-1725.
    [7]Hill KK, Ticknor LO, Okinaka RT, et al. Fluorescent amplified fragment length polymorphism analysis of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis isolates. Appl Environ Microbiol,2004,70 (2):1068-1080.
    [8]Helgason E, Okstad OA, Caugant DA, et al. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis--one species on the basis of genetic evidence. Appl Environ Microbiol,2000,66 (6):2627-2630.
    [9]Schnepf E, Crickmore N, Van Rie J, et al. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol.1998,62:775-806.
    [10]Bravo A, Gill SS, Soberon M. Mode of action of Bacillus thuringiensis toxins and their potential for insect control. Toxicon,2007,49:423-435.
    [11]Estruch JJ, Warren GW, Mullins MA, et al. Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc. Natl. Acad. Sci. USA.1996,93:5389-5394.
    [12]Baum JA, Kakefuda M, Gawron-Burke C. Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol,1996,62(12):4367-4373.
    [13]Sanchis V, Gohar M, Chaufaux J, et al. Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance. Appl Environ Microbiol,1999,65(9): 4032-4039.
    [14]Ferre J, Van RJ. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol,2002,47:501-533.
    [15]Janmaat AF, Myers JH. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loppers, Trichoplusia ni. Proc Roy Soc Lond B,2003,270:2263-2270.
    [16]Tabashnik BE. Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol, 1994,39:47-79.
    [17]Tabashnik BE, Dennehy TJ, Carriere Y. Delayed resistance to transgenic cotton in pink bollworm. Proc Nat Acad Sci,2005,102:15389-15393.
    [18]Xu X, Yu L, Wu Y. Disruption of a cadherin gene associated with resistance to Cry1Ac 8-endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol,2005,71:948-954.
    [19]Tabashnik BE, Gassmann AJ, Crowder DW, et al. Insect resistance to Bt crops: evidence versus theory. Nat Biotecchnol,2008,26:199-202.
    [20]Vilas Boas LA, Vilas Boas GFLT, Saridakis H, et al. Survival and conjugation of Bacillus thuringiensis in a soil microcosm. FEMS Microbiol Ecol,2000,31: 255-259.
    [21]Furlaneto L, Saridakis H, Arantes OMN. Survival and conjugal transfer between Bacillus thuringiensis strains in aquatic environment. Braz J Microbiol,2000, 31:233-238.
    [22]Yu J, Zhang Y, Pang Y, et al. A replication origin of Bacillus thuringiensis. Curr Microbiol,2000,40:123-127.
    [23]Lertcanawanichakul M, Wiwat C. Improved shuttle vector for expression of chitinase gene in Bacillus thuringiensis. Lett Appl Microbiol,2000,31:123-128.
    [24]Mesrati LA, Karray MD, Tounsi S, et al. Construction of a new high-copy number shuttle vector of Bacillus thuringiensis. Lett Appl Microbiol,2005,41:361-366.
    [25]Liu X, Peng D, Luo Y, et al. Construction of an Escherichia coli to Bacillus thuringiensis shuttle vector for large DNA fragments. Appl Microbiol Biotechnol, 2009,82:765-772.
    [26]Thamthiankul S, Moar WJ, Miller ME, et al. Improving the insecticidal activity of Bacillus thuringiensis subsp. aizawai against Spodoptera exigua by chromosomal expression of a chitinase gene. Appl Microbiol Biotechnol 2004,65:183-192.
    [27]Baum JA, Gilmer AJ, Mettus A-ML. Multiple roles for TnpⅠ recombinase in regulation of Tn5401 transposition in bacillus thuringiensis. J Bacteriol,1999, 181:6271-6277.
    [28]Yue C, Sun M, Yu Z. Improved production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crylC gene in its chromosome. Biotechnol Bioeng,2005 a,92:1-7.
    [29]Yue C, Sun M, Yu Z. Broadening the insecticidal spectrum of Lepidoptera-specific Bacillus thuringiensis strains by chromosomal integration of cry3A. Biotechnol Bioeng,2005 b,91:296-303.
    [30]Vadlamudi RK, Weber E, Ji I, et al. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 1995,270:5490-5494.
    [31]Gomez I, Sanchez J, Miranda R, et al. Cadherin-like receptor binding facilitates proteolytic cleavage of helix a-1 in domain I and oligomer pre-pore formation of Bacillus thuringiensis CrylAb toxin. FEBS Lett,2002,513:242-246.
    [32]Bravo A, Gomez I, Conde J, et al. Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta,2004,1667:38-46.
    [33]Jurat-Fuentes JL, Adang MJ. Characterization of a Cry1Ac-receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. Eur J Biochem, 2004,271:3127-3135.
    [34]HilderVA, GatehouseAMR, SheermanSE, et al. A novel mechanism of insect resistance engineered into tobacco. Nature,1987,330:160-163.
    [35]MacIntosh SC, Kishore GM, Perlak FJ, et al. Potentiation of Bacillus thuringiensis insecticidal activity by serine protease inhibitors. J Agric Food Chem,1990,38: 1145-1152.
    [36]Ding X, Luo Z, Xia L, et al. Improving the insecticidal activity by expression of a recombinant cry1Ac gene with chitinase-encoding gene in acrystalliferous Bacillus thuringiensis. Curr Microbiol,2008,56:442-447.
    [37]Regev A, Keller M, Strizhov N. Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae. Appl Environ Microbiol,1996,62:3581-3586.
    [38]Hu SB, Liu P, Ding XZ, et al. Efficient constitutive expression of chitinase in the mother cell of Bacillus thuringiensis and its potential to enhance the toxicity of CrylAc protoxin. Appl Microbiol Biotechnol,2009,82 (6):1157-1167.
    [39]Li J, Koni PA, Ellar DJ. Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis ssp. Kyushuensis and implications for membrane pore formation. J Mol Biol,1996,257:129-152.
    [40]Knowles BH, Blatt MR, Tester M, et al. A cytolytic delta-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett,1989,244:259-262.
    [41]Promdonkoy B, Ellar DJ. Membrane pore architecture of a cytolytic toxin from Bacillus thuringiensis. Biochem J,2000,350:275-282.
    [42]Butko P. Cytolytic toxin Cyt1Aa and its mechanism of membrane damage:data and hypothesis. Appl Environ Microbiol,2003,69:2415-2422.
    [43]Crickmore N, Bone EJ, Williams JA, et al. Contribution of the individual componentsof the d-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp israelensis. FEMS Microbiol Lett,1995,131:249-254.
    [44]Wirth MC, Georghiou GP, Federici BA. CytA enables CryⅣ endotoxins of Bacillus thuringiensis to overcome high levels of CryⅣ resistance in the mosquito Culex quinquefasciatus. Proc Natl Acad Sci USA,1997,94:10536-10540.
    [45]Perez C, Fernandez LE, Sun J, et al. Bti Cry11Aa and CytlAa toxins interactions support the synergism-model that Cyt1Aa functions as membrane-bound receptor. Proc Nat Acad Sci USA,2005,102:18303-18308.
    [46]Perez C, Munoz-Garay C, Portugal LC, et al. Bacillus thuringiensis subsp. israelensis Cyt1Aa enhances activity of Cry11Aa toxin by facilitating the formation of a pre-pore oligomeric structure. Cell Microbiol,2007,9:2931-2937.
    [47]Fernandez LE, Aimanova KG, Gill SS, et al. GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae. Biochem J, 2006,394:77-84.
    [48]Fernandez LE, Perez C, Segovia L, et al. Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae trough loop α-8 of domain Ⅱ. FEBS Lett,2005,79:3508-3514.
    [49]Dorsch JA, Candas M, Griko NB, et al. CrylA toxins of Bacillus thuringiensis bind specifically to a region adjacent to the membrane-proximal extracellular domain of Bt-R1 in Manduca sexta:involvement of a cadherin in the entomopathogenicity of Bacillus thuringiensis. Insect Biochem Mol Biol,2002,32:1025-1036.
    [50]Gomez I, Dean DH, Bravo A, et al. Molecular basis for Bacillus thuringiensis CrylAb toxin specificity:two structural determinants in the Manduca sexta Bt-R1 receptor interact with loops a-8 and 2 in domain Ⅱ of CrylAb toxin. Biochemistry, 2003,42:10482-10489.
    [51]Nagamatsu Y, Koike T, Sasaki K, et al. The cadherin-like protein is essential to specificity determination and cytotoxic action of the Bacillus thuringiensis insecticidal. FEBS Lett,1999,460:385-390.
    [52]Hua G, Jurat-Fuentes JL, Adang MJ. Bt-R1 extracellular cadherin repeat 12 mediates Bacillus thuringiensis CrylAb binding and cytotoxicity. J Biol Chem,2004, 279:28051-28056.
    [53]Gomez I, Oltean DI, Sanchez J, et al. Mapping the epitope in Cadherin-like receptors involved in Bacillus thuringiensis CrylA toxin interaction using phage display. J Biol Chem,2001,276:28906-28912.
    [54]Gomez I, Miranda-Rios J, Rudino-Pinera E, et al. Hydropathic complementarity determines interaction of epitope HITDTNNK876 in Manduca sexta Bt-R1 receptor with loop 2 of domain Ⅱ of Bacillus thuringiensis CrylA toxins. J Biol Chem,2002, 277:30137-30143.
    [55]Jenkins JL, Dean DH. Exploring the mechanism of action of insecticidal proteins by genetic engineering methods. In:Setlow JK, editor. Genetic engineering:principles and methods. New York:Plenum Press; 2000, p.33-54.
    [56]Gomez I, Arenas I, Benitez I, et al. Specific epitopes of domains Ⅱ and Ⅲ of Bacillus thuringiensis CrylAb toxin involved in the sequential interaction with cadherin and aminopeptidase-N receptors in Manduca sexta. J Biol Chem,2006,281: 34032-34039.
    [57]Xie R, Zhuang M, Ross LS, et al. Single amino acid mutations in the cadherin receptor from Heliothis virescens affect its toxin binding ability to CrylA toxins. J Biol Chem,2005,280:8416-84125.
    [58]Soberon M, Pardo-Lopez L, Lopez I, et al. Engineering modified Bt toxins to counter insect resistance. Science,2007,318:1640-1642.
    [59]Chen J, Hua G, Jurat-Fuentes JL, et al. Synergism of Bacillus thuringiensis toxins by a fragment of a toxin-binding cadherin. Proc Nat Acad Sci USA,2007,104: 13901-13906.
    [60]Wu D, Aronson AI. Localized mutagenesis defines regions of the Bacillus thuringiensis delta-endotoxin involved in toxicity and specificity. J Biol Chem,1992, 267:2311-2327.
    [61]Rajamohan F, Alzate O, Cotrill JA, et al. Protein engineering of Bacillus thuringiensis delta-endotoxin:mutations at domain Ⅱ of Cry1Ab enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Natl Acad Sci USA 1996,93:14338-14343.
    [62]Wu SJ, Koller CN, Miller DL, et al. Enhanced toxicity of Bacillus thuringiensis Cry3A delta-endotoxin in coleopterans by mutagenesis in a receptor binding loop. FEBS Lett,2000,473:227-232.
    [63]Ishikawa H, Hoshino Y, Motoki Y, et al. A system for the directed evolution of the insecticidal protein from Bacillus thuringiensis. Mol Biotechnol,2007,36:90-102.
    [64]Liu XS, Dean DH. Redesigning Bacillus thuringiensis CrylAa toxin into a mosquito toxin. Prot Eng Design Selec,2006,19:107-111.
    [65]deMaagd RA, Weemen-Hendriks M, Stiekema W, et al. Bacillus thuringiensis delta-endotoxin Cry1C domain Ⅲ can function as a specificity determinant for Spodoptera exigua in different but not all Cry1-Cry1C hybrids. Appl Environ Microbiol,2000,66:1559-1563.
    [66]deMaagd RA, Kwa MSG, van der Klei H, et al. Domain III substitution in Bacillus thuringiensis delta-endotoxin Cry1Ab results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol,1996,62: 1537-1543.
    [67]Caramori T, Albertini AM, Galizzi A. In vivo generation of hybrids between two Bacillus thuringiensis insect-toxin-encoding genes. Gene,1991,98:37-44.
    [68]Burton SL, Ellar DJ, Li J, et al. N-Acetylgalactosamine on the putative insect receptor aminopeptidase N is recognized by a site on the domain Ⅲ lectin-like fold of a Bacillus thuringiensis insecticidal toxin. J Mol Biol,1999,287:1011-1022.
    [69]Lee MK, You TH, Gould FL, et al. Identification of residues in domain Ⅲ of Bacillus thuringiensis Cry1Ac toxin that affect binding and toxicity. Appl Environ Microbiol, 1999,65:4513-4520.
    [70]Bravo A. Phylogenetic relationships of the Bacillus thuringiensis d-endotoxin family proteins and their functional domains. J Bacteriol,1997,179:2793-2801.
    [71]Carrol J, Convents D, Van Damme J, et al. Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry3A δ-endotoxin may facilitate its coleopteran toxicity. J Invertebr Pathol,1996,70:41-49.
    [72]Walters FS, Stacy CM, Lee MK, et al. An engineered chymotrypsin/cathepsin G site in domainl renders Bacillus thuringiensis Cry3A active against western corn rootworm larvae. Appl Environ Microbiol,2008,74:367-374.
    [73]Gahan LJ, Gould F, Heckel DG. Identification of a gene associated with Bt resistance in Heliothis virescens. Science,2001,293:857-860.
    [74]Morin S, Biggs RW, Shriver L, et al. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc Nat Acad Sci USA 2003,100: 5004-5009.
    [75]Morse RJ, Yamamoto T, Strud RM. Structure of cry2A suggests an unexpected receptor binding epitope. Structure,2001,9:409-417.
    [76]Mandal CC, Gayen S, Basu A, et al. Prediction based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects. Prot Eng Design Selec,2007,20:599-606.
    [77]Carlson CR, Gronstad A, Kolsto AB. Physical maps of the genomes of three Bacillus cereus strains. J Bacteriol,1992,174 (11):3750-3756.
    [78]Rasko DA, Altherr MR, Han CS, et al. Genomics of the Bacillus cereus group of organisms. FEMS Microbiol Rev,2005,29 (2):303-329.
    [79]关雄.苏云金芽孢杆菌研究回顾与展望.中国农业科技导报,2006,08(06):5-11.
    [80]Gohar M, Gilois N, Graveline R, et al. A comparative study of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis extracellular proteomes. Proteomics, 2005,5 (14):3696-3711.
    [81]Gohar M, Okstad OA, Gilois N, et al. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics,2002,2 (6):784-791.
    [82]Gong YH, Li MS, Xu D, et al. Comparative proteomic analysis revealed metabolic changes and the translational regulation of Cry protein synthesis in Bacillus thuringiensis. J Proteomics,2012,1235-1246
    [83]Masson L, Erlandson M, Puzstai-Carey M, et al. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Appl Environ Microbiol,1998,64 (12):4782-4788.
    [84]Ryzhov V, Hathout Y, Fenselau C. Rapid characterization of spores of Bacillus cereus group bacteria by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Appl Environ Microbiol,2000,66 (9):3828-3834.
    [85]Ranasinghe C, Akhurst RJ. Matrix assisted laser desorption ionisation time of flight mass spectrometry (MALDI-TOF MS) for detecting novel Bt toxins. J Invertebr Pathol,2002,79(1):51-58.
    [86]Lee KY, Kang EY, Park S, et al. Mass spectrometric sequencing of endotoxin proteins of Bacillus thuringiensis ssp. konkukian extracted from polyacrylamide gels. Proteomics,2006,6 (5):1512-1517.
    [87]Park HW, Bideshi DK, Federici BA. Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield. Appl Environ Microbiol,2000,66:4449-4455.
    [88]陈 涛.伴孢晶体的生物合成和形态结构.见:喻子牛主编.苏云金杆菌.北京:科学出版社,1990,187-214
    [89]Baum JA, Malvar T. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol.1995,18 (1):1-12.
    [90]Peng D, Wang F, Li N, et al. Single cysteine substitution in Bacillus thuringiensis Cry7Bal improves the crystal solubility and produces toxicity to Plutella xylostella larvae. Environ Microbiol.2011,13 (10):2820-2831.
    [91]Diaz-Mendoza M, Bideshi DK, Federici BA. A 54-kilodalton protein encoded by pBtoxis is required for parasporal body structural integrity in Bacillus thuringiensis subsp. israelensis. J Bacteriol,2012,194 (6):1562-1571.
    [92]Tabashnik BEManaging resistance with multiple pesticide tactics:theory, evidence and recommendations. J Econ Entomol,1989,82 (5):1263-1269.
    [93]Georghiou GP, Wirth MC. Influence of Exposure to Single versus Multiple Toxins of Bacillus thuringiensis subsp. israelensis on Development of Resistance in the Mosquito Culex quinquefasciatus (Diptera:Culicidae). Appl Environ Microbiol,1997, 63(3):1095-1101.
    [94]O'Rourke ME, Sappington TW, Fleischer SJ. Managing resistance to B.t. crops in a genetically variable insect herbivore, Ostrinia nubilalis. Ecol Appl,2010,20 (5): 1228-1236.
    [95]Raymond B, Wright DJ, Bonsall MB. Effects of host plant and genetic background on the fitness costs of resistance to Bacillus thuringiensis. Heredity (Edinb),2011,106 (2):281-288.
    [96]Ferry N, Edwards MG, Gatehouse J, et al. Transgenic plants for insect pest control:a forward looking scientific perspective. Transgenic Res,2006,15 (1):13-19.
    [97]Christou P, Capell T, Kohli A, et al. Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci,2006,11 (6):302-308.
    [98]Zheng D, Valdez-Cruz NA, Armengol G, et al. Co-expression of the mosquitocidal toxins Cyt1Aa and Cry11Aa from Bacillus thuringiensis subsp. israelensis in Asticcacaulis excentricus. Curr Microbiol,2007,54 (1):58-62.
    [99]Crickmore N, Nicholls C, Earp DJ, et al. The construction of Bacillus thuringiensis strains expressing novel entomocidal delta-endotoxin combinations. Biochem J, 1990,270(1):133-136.
    [100]van Frankenhuyzen K. Insecticidal activity of Bacillus thuringiensis crystal proteins. J Invertebr Pathol,2009,101 (1):1-16.
    [101]Sedlak M, Walter T, Aronson A. Regulation by overlapping promoters of the rate of synthesis and deposition into crystalline inclusions of Bacillus thuringiensis δ-Endotoxins. J Bacteriol,2000,182 (3):734-741.
    [102]Lopez LP, Garay CM, Porta H, et al. Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides,2009,30 (3):589-595.
    [103]Atkinson RK, Howden MEH, Tyler MI, et al. Insecticidal toxins derived from funnel web (Atrax or Hadronyche) spiders.1998, US Patent No.5,763,568, Zeneca Limited, USA.
    [104]Tedford HW, Gilles N, Menez A, et al. Scanning mutagenesis of omega-atracotoxin-Hvla reveals a spatially restricted epitope that confers selective activity against insect calcium channels.2004, J Biol Chem,279 (42):44133-44140.
    [105]Bloomquist JR. Mode of action of atracotoxin at central and peripheral synapses of insects. Invert Neurosci,2003,5 (1):45-50.
    [106]Tedford HW, Fletcher JI, King GF. (2001) Functional Significance of β-Hairpin in the Insecticidal Neurotoxin co-Atracotoxin-Hvla. J Biol Chem, (28):26568-26576.
    [107]Fletcher JI, Smith R, O'Donoghue SI, et al. The structure of a novel insecticidal neurotoxin, ω-atracotoxin-HV1, from the venom of an Australian funnel web spider. Nat. Struct. Biol,1997,4,559-566.
    [108]Tedford HW, Sollod BL, Maggio F, et al. Australian funnel-web spiders:master insecticide chemists. Toxicon,2004,43 (5):601-618.
    [109]蒋红,朱玉贤,陈章良.导入蜘蛛杀虫肽基因的烟草具有抗虫性.植物学报,1996,38(2):95-99.
    [110]郑树松,安成才,李启任,陈章良.蜘蛛杀虫肽与Bt-Toxin C肽融合蛋白基因转入棉花的研究.2002,14(6):348-351
    [111]丁学知,夏立秋.苏云金杆菌高毒力菌株4.0718的快速选育.中国生物防治,2001,17(4):163-166.
    [112]Sun YJ, Fu ZJ, Ding XZ, et al. Evaluating the Insecticidal Genes and Their Expressed Products in Bacillus thuringiensis Strains by Combining PCR with Mass Spectrometry. Appl Environ Microbiol,2008,74(21):6811-6813.
    [113]Xia LQ, Wang FX, Ding XZ, et al. The Role of β18-β19 Loop Structure in Insecticidal Activity of Cry1Ac Toxin From Bacillus thuringiensis. Chinese Science Bulletin,2008,53:1-7.
    [114]Stahly DP, Dingman DW, Bulla LA,et al. Possible origin and function of the parasporal crystals in Bacillus thuringiensis. Biochem Biophys Res Commun,1978, 84 (3):581-588.
    [115]Arantes O, Lereclus D. Construction of cloning vectors for Bacillus thuringiensis. Gene,1991,108(1):115-119.
    [116]Arvidson H, Dunn PE, Strnad S, et al. Specificity of Bacillus thuringiensis for lepidopteran larvae:factors involved in vivo and in the structure of a purified protoxin. Mol Microbiol,1989,3 (11):1533-1543.
    [117]van Frankenhuyzen K, Gringorten JL, Milne RE, et al. Specificity of Activated Cry1A Proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for Defoliating Forest Lepidoptera. Appl Environ Microbiol,1991,57 (6):1650-1655.
    [118]Zhang L, Liu X, Zhang J, et al. Proteome analysis of combined effects of androgen and estrogen on the mouse mammary gland. Proteomics,2006,6 (2):487-497.
    [119]Xia LQ, Long XS, Ding XZ, et al. Increase in Insecticidal Toxicity by Fusion of the cry1Ac Gene from Bacillus thuringiensis with the Neurotoxin Gene hwtx-I. Curr Microbiol,2009,58:52-57.
    [120]Xia LQ, Zeng Z, Ding XZ, et al. The Expression of a Recombinant crylAc Gene with Subtilisin-Like Protease CDEP2 Gene in Acrystalliferous Bacillus thuringiensis by Red/ET Homologous Recombination. Curr Microbiol,59 (4): 386-392.
    [121]王友如.VHb基因优化及其分别和Bt、Bt-CPTi基因构建的双价基因植物表达载体在烟草中的表达.[硕士学位论文],新疆农业大学.
    [122]Dean DH, Rajamohan F, Lee MK, et al. Probing the mechanism of action of Bacillus thuringiensis insecticidal proteins by site-directed mutagenesis. Gene, 1996,179(1):111-117.
    [123]Tabashnik BE, Carriere Y. Bt transgenic crops do not have favorable effects on resistant insects. J Insect Sci,2004,4:4
    [124]Bel Y, Escriche B. Common genomic structure for the Lepidoptera cadherin-like gene. Gene.2006.381:71-80.
    [125]Sambrook J, Russell DW. Molecular Cloning:A Laboratory Manual, third edition ed. New York:Cold Spring Harbor Laboratory Press,2001.
    [126]Lereclus D, Arantes O, Chaufaux J, Lecadet M Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol Lett,1989, 51 (1):211-217.
    [127]Singh AK, Rembold H. Maintenance of the cotton bollworm Heliothis armigera in the laboratory culture.Ⅰ. Rearing on semisynthetic diet. Insect Sci Appl, 1992,13:333-338.
    [128]Finney DJ.Probit analysis. Cambridge University Press, (1971) Cambridge, UK
    [129]Zhao JZ, Cao J, Li Y, et al. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat Biotechnol,2003,21 (12):1493-1497.
    [130]Bietlot HP, Vishmulhatla I, Carey PR, et al. Characterization of the cysteine residues and disulphide linkages in the protein crystal of Bacillus thuringiensis. Biochem J, 1990,267 (2):309-315.
    [131]Hernandez CS, Ferre J. Common receptor for Bacillus thuringiensis toxins CrylAc, Cry 1 Fa, and Cry1Ja in Helicoverpa armigera, Helicoverpa zea, and Spodoptera exigua. Appl. Environ. Microbiol,2005,71 (9):5627-5629.
    [132]Rajamohan F, Lee MK, Dean DH. Bacillus thuringiensis insecticidal proteins: molecular mode of action. Prog Nucleic Acid Res Mol Biol,1998,60:1-27.
    [133]Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol,1995,177 (21):6027-6032.
    [134]Kati H, Sezen K, Nalcacioglu R, et al. A highly pathogenic strain of Bacillus thuringiensis serovar kurstaki in lepidopteran pests. J Microbiol,2007,45 (6): 553-557.
    [135]Yu ZQ, Bai PS, Guo SX, et al. [Cloning and expression of nematicidal crystal protein gene cry6Aa of Bacillus thuringiensis]. Wei Sheng Wu Xue Bao,2007,47 (5):865-868.
    [136]Adams LF, Visick JE, Whiteley HR. A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol,1989,171:521-530
    [137]Mclean KM, Whiteley HR. Expression in Escherichia coli of a cloned crystal protein gene of Bacillus thuringiensis subsp. israelensis. J Bacteriol,1987,169:1017-1023.
    [138]Visick JE, Whiteley HR. Effect of a 20-kilodalton protein from Bacillus thuringiensis subsp. israelensis on production of the CytA protein by Escherichia coli. J Bacteriol,1991,173:1748-1756.
    [139]Whiteley HR, Schnepf HE. The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu Rev Microbiol.1986,40:549-576.
    [140]Liu CW, Lin CC, Yiu JC, et al. Expression of a Bacillus thuringiensis toxin (crylAb) gene in cabbage (Brassica oleracea L. var. capitata L.) chloroplasts confers high insecticidal efficacy against Plutella xylostella. Theor Appl Genet,2008,117: 75-88.
    [141]Grover D, Yang J, Tavare S et al. Simultaneous tracking of fly movement and gene expression using GFP. BMC Biotechnol,2008,8:93.
    [142]Chelur DS, Ernstrom GG, Goodman MB, et al. The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature,2002, 420:669-673.
    [143]Ellermeier CD, Hobbs EC, Gonzalez-Pastor JE, et al. A three-protein signaling pathway governing immunity to a bacterial cannibalism toxin. Cell,2006,124: 549-559.
    [144]Hahn J, Maier B, Haijema BJ, et al. Transformation proteins and DNA uptake localize to the cell poles in Bacillus subtilis. Cell,2005,122:59-71.
    [145]Larsen RA, Cusumano C, Fujioka A, et al. Treadmilling of a prokaryotic tubulin-like protein, TubZ, required for plasmid stability in Bacillus thuringiensis. Gene Dev,2007,21 (11):1340-1352.
    [146]Roh JY, Li MS, Chang JH, et al. Expression and characterization of a recombinant Cry1Ac crystal protein with enhanced green fluorescent protein in acrystalliferous Bacillus thuringiensis. Lett Appl Microbiol,2004,38 (5):393-399.
    [147]Roh JY, Lee IH, Li MS, et al. Expression of a recombinant CrylAc crystal protein fused with a green fluorescent protein in Bacillus huringiensis subsp. kurstaki Cry-B. J Microbiol,2004,42 (4):340-345.
    [148]Heller M, Schlappritzi E, Stalder D, et al. Compositional protein analysis of high density lipoproteins in hypercholesterolemia by shotgun LC-MS/MS and probabilistic peptide scoring. Mol Cell Proteomics,2007,6 (6):1059-1072.
    [149]Schirle M, Heurtier MA, Kuster B. Profiling core proteomes of human cell lines by one-dimensional PAGE and liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics,2003,2 (12):1297-1305.
    [150]Fu ZJ, Sun YJ, Xia LQ, et al. Assessment of protoxin composition of Bacillus thuringiensis strains by use of polyacrylamide gel block and mass spectrometry. Appl Microbiol Biotechnol,2008,79 (5):875-880.
    [151]Luo YS, Ding XZ, Xia LQ, et al. Comparative Proteomic Analysis of saccharopolyspora spinosa SP06081 and PR2 strains reveals the differentially expressed proteins correlated with the increase of spinosad yield. Proteome Sci, 2011,9:40.
    [152]Peng J, Elias JE, Thoreen CC, et al. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis:the yeast proteome. J Proteome Res,2003,2:43-50.
    [153]Piette A, Derouaux A, Gerkens P, et al. From dormant to germinating spores of Streptomyces coelicolor A3 (2):new perspectives from the crp null mutant. J Proteome Res,2005,4 (5):1699-7108.
    [154]Ishihama Y, Oda Y, Tabata T, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics,2005,4:1265-1272.
    [155]Lu D, Liu RZ, Izumi V, et al. IPEP:an in silico tool to examine proteolytic peptides for mass spectrometry. Bioinformatics,2008,24:2801-2802.
    [156]Lightwood DJ, Ellar DJ, Jarrett P, et al. Role of Proteolysis in Determining Potency of Bacillus thuringiensis CrylAc delta-endotoxin. Appl Environ Microbiol,2000, 66 (12):5174-5181.
    [157]Gomez I, Pardo-Lopez L, Munoz-Garay C, et al. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides,2007,28 (1):169-173.
    [158]Chang L, Grant R, Aronson A, et al. Regulation of the Packaging of Bacillus thuringiensis-Endotoxins into Inclusions. Appl Environ Microbiol,2001,67(11): 5032-5036.
    [159]Allen SP, Polazzi JO, Gierse JK, et al. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J Bacteriol,1992,174:6938-6947.
    [160]Carrio MM, Villaverde A. Role of molecular chaperones in inclusion body formation. FEBS Lett,2003,537:215-221.
    [161]Carrio MM, Villaverde A. Construction and deconstruction of bacterial inclusion bodies. J Biotechnol,2002,96:3-12.
    [162]Gonzalez-Montalban N, Carrio MM, Cuatrecasas S, et al. Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. J Biotechnol,2005,118:406-412.
    [163]Weibezahn J, Schlieker C, Tessarz P, et al. Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol Chem 2005,386:739-744.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700