稻米品质突变体库的构建及粉质胚乳垩白突变体(flo6)的基因定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是主要粮食作物之一,其基因组的全序列测定已经完成,但基因组中多数基因的功能仍是未知。所以,对基因功能的注释与研究己成为单子叶模式植物水稻遗传学与分子生物学研究的重点。本研究利用化学诱变剂甲基磺酸乙酯(EMS)处理己完成测序的粳稻品种日本晴构建包括垩白、蒸煮品质、营养品质性状在内的水稻品质性状突变体库。利用近红外光谱分析对一个包含2210份诱变处理材料的群体进行2次筛选,对获得的品质突变体进行化学分析验证,确定了该突变体的突变性状。同时对其中一份垩白突变体进行了基因定位。得到结果如下:
     1.在外观品质和蒸煮品质方面获得27份突变体。其中垩白突变体5份(突变频率为2.26‰)、直链淀粉含量突变体5份(2.26%o)、胶稠度突变体4份(1.81‰)、碱消值突变体2份(0.90‰)、糊化温度突变体4份(1.81‰)、稻米米粉黏滞性突变体7份(3.17‰)。
     2.在营养品质方面获得61份突变体。以相对含量低于或高于野生型10%作为筛选标准,对诱变群体的不同氨基酸含量和蛋白质含量进行了突变体筛选。结果共获得赖氨酸突变体1份(0.45‰)、亮氨酸突变体1份(0.45‰)、缬氨酸突变体11份(4.98‰)、谷氨酸突变体1份(0.45‰)、精氨酸突变体7份(3.17‰)、丙氨酸突变体6份(2.71‰)、丝氨酸突变体、甘氨酸突变体各1份(各0.45‰)、酪氨酸突变体3份(1.36%o)、脯氨酸突变体5份(2.26‰)、组氨酸突变体1份(0.45‰)、蛋氨酸突变体5份(2.26‰),半胱氨酸突变体7份(3.17‰)、蛋白质含量突变体11份(4.98‰)。异亮氨酸、苯丙氨酸、苏氨酸,天冬氨酸、苯丙氨酸和苏氨酸未筛选到相应的突变体。
     3.利用一个粉质胚乳垩白突变体(flo6)构建了定位群体,flo6垩白突变体具有大垩白、胚乳中心部位淀粉粒结合松散等突变性状。同时还具有千粒重下降、籽粒变小、胶稠度变软、糊化温度降低和稻米粉的黏滞性系数降低等特性;但蛋白质含量有所提高,其中多种氨基酸含量也发生了明显变化。遗传分析表明此垩白突变为隐性单基因突变。
     4.通过图位克隆策略将垩白突变基因定位在1号染色体长臂中段区域约500kb范围内。根据水稻基因组注释计划(RAP)数据库的相关注释信息,对候选区段内的推定基因进行分析,其中编号为LOC_Os01g44220的基因被初步确定为突变基因。该基因编码水稻AGPase的一个大亚基OsAGPL2,催化着AGPase淀粉合成途径中第一步反应的合成,是水稻淀粉合成的主要限制因素。测序结果表明该基因的第4个转录本LOC_Os01g44220.4的第10号外显子发生了一个碱基的突变(G→A),导致其转录蛋白序列也产生变异(E→K)。
     5.由于DNA序列单碱基替换引起的蛋白质序列氨基酸替换没有导致AGPase大亚基OsAPL2功能的完全丧失,蛋白质三级结构的预测结果表明突变位点只引起了二级结构的微小改变,但突变位点紧邻AGPase与ADP-Glu互作区域,且由带负电荷的谷氨酸突变为带有正电荷的赖氨酸,影响了互作区域的电荷环境,进而影响了AGPase的催化能力。所以,基于以上关于突变位点对蛋白质序列的影响及AGPase作用模型分析,推测在胚乳发育早期大亚基OsAPL2参与构成的AGPase复合物在细胞质内含量较低,且由于突变造成的催化功能降低,质体内由OsAPS1和OsAPL1形成的AGPase复合物的酶活性较低(约为5%),大部分是由细胞质型AGPase提供催化活性,造成胚乳淀粉合成底物ADP-G的量不足,减少了淀粉的合成,形成早期发育部位淀粉粒结合松散的性状。后期大亚基OsAPL2含量迅速增加,弥补了由于突变而造成的AGPase催化能力的下降,使得ADP-G合成趋于正常,以至胚乳淀粉积累也恢复正常,最终形成了胚乳内部呈粉质而外部边缘正常的flo6垩白突变体的突变表型。
Rice (Oryza sativa L.) is not only a pivotal key cereal crop that provides the staple food for more than half of the world's population as a source of daily carbon intake, but also a plant that has attracted broad interest in basic and applied research. The published of draft genome sequences of two rice cultivars to proclaim that the study of both the indica and japonica subspecies has entered into post-genomic era. The completed sequence variety Oryza sativa cv. Nipponbare as experimental material can be found in this paper. Seeds of this variety were treated with ethyl methane sulphonate (EMS). A total of2210materials were first screened by NIR from which208mutants were obtained. A second screening yielded73mutants that were all identified by the chemical experiment. The following results were observed in present experiment.
     1. A number of27mutants with appearance and cooking quality traits have been obtained:5chalky mutants were screened and the mutation frequency of chalkiness was2.26%o, followed by5amylose content (AC) mutants (2.26%o), both4gelatinization temperature (GT) and gel consistency (GC) mutants (1.81‰),2alkali spreading value (ASV) mutants (0.9%o), and7rapid visco analyzer (RVA) profile mutants (3.17%o).
     2. A number of61mutants of nutrition quality have been obtained:11protein content (PC) mutants were detected at a mutation frequency of4.98%o. Relative contents of17kinds of amino acid mutations, including7kinds of essential amino acid and10kinds of nonessential were identified. When the screening standard was set at10%, mutants of lysine and leucine (0.45‰), and valine (4.98‰) were screened, but no mutant was obtained for isoleucine, phenylalanine or threonine in essential amino acids. For nonessential amino acids, mutants of glutamic (0.45‰), arginine (3.17‰), alanine (2.71‰), serine (0.45‰), glycine (0.45‰), tyrosine (1.36‰), proline (2.26‰), and histidine (0.45‰) were obtained, but no mutant was obtained for aspartic, phenylalanine or threonine. With the screening standard for methionine and cysteine set at100%, the mutation frequencies of these two amino acids were2.26‰and4.98‰, respectively. Mutants of this preliminary library for rice quality mutants would play important role in the study of gene function and breeding for rice quality.
     3. A floury endosperm (flo6) mutant with chalky phenotype was used to constructed gene mapping population. The scanning electron microscopic results showed that the starch granules of flo6mutant were comprised round and loosely packed, some starch granules compounded by the film coating. Cooking and nutrition quality analysis indicated that the value of GC, GT or RVA profile of flo6mutant was lower than that of WT; and the thermodynamic parameters Tp and△T1/2between WT and flo6mutant were different. PC of flo6mutant was higher than that of WT. According to the relative contents of17amino acids analyzed,9of them were different between WT and flo6mutant. Genetic analysis revealed that flo6mutation was controlled by a single recessive nuclear gene.
     4. The flo6locus was located on a500kb region by primary mapping. Map-based cloning and sequencing showed that there was a single nucleotide mutation (G→A) in LOC_Os01g44220.4.exon10, which resulted in the sequence of transcript protein of locus LOC_Os01g44220had been changed (E→K). This gene was annotated encodes glucose-1-phosphate adenylyltransferase large subunit in database, and it was named OsAPL2. The protein of this gene catalyzed the first step of starch synthesis in rice endosperm, and this reaction was considered to be the main limiting factors of rice starch synthesis. The tertiary structure had been changed because of the site mutation.
     5. The result of comparison of protein sequences showed that the amino acid residue mutant site was closed to the residues interacting with ADP-Glu of AGPase, and the original residue was Glu with negative charge mutated into Lys with positive charge, so the charge environment about the interact residues was changed by this mutation. Thus, the site mutation of protein sequence did not lead to the complete lost of gene function for OsAPL2, it just decreased its capability to catalyze or polymerize with others subunits. Based on the model of AGPase works, the content of AGPase complex which was composed by OsAPL2with other subunits was lower in the early stage of endosperm development, and the capability of the complex was also decreased because of the site mutant. Meanwhile, the enzymatic activity of AGPase complex which was composed by OsAPS1and OsAPL1was lower (only5%), the catalyzed activity was mostly supplied by the cytoplasm AGPase. As a result, at the early stage of endosperm development, the lack of ADP-G whcih was the substrate of starch synthesis, reduced the speed of starch synthesis, which was why the starch granules were loosen in the central section of grains of flo6mutant. At the later stage, the content of OsAPL2increased rapidly in a short time, so it was a compensation for the decrease of catalyzed capabilities that was induced by the site mutation. Under these conditions, the synthesis of ADP-G and starch returned to normal. Finally, the mutation phenotype at the interior of the endosperm was floury-white while the outer portion was normal has formed.
引文
包劲松,应用RVA测定米粉淀粉成糊温度。中国水稻科学,2007,‘21(5):543-546。
    常红叶、康海岐和傅华龙等,不同水稻品种(系)的垩白差异及胚乳细胞学结构研究。四川大学学报(自然科学版),2006,43(4):927-932。
    程方民、张嵩午和吴永常,灌浆结实期温度对稻米垩白形成的影响。西北农业学报,1996,5(2):31-34。
    陈能、李太贵和罗玉坤,早籼稻胚乳充实过程中温度变化对垩白形成的影响。浙江农业学报,2001,13(2):103-106。
    付崇允和李仕贵,稻米品质的分子水平研究进展。中国生物工程杂志,2003,23(11):28-31。
    高振宇、曾大力和崔霞等,水稻稻米糊化温度控制基因ALK的图位克隆及其序列分析。中国科学,2003,33:481-487。
    顾佳清、张智奇和周音,EMS诱导水稻中花11突变体的筛选和鉴定。上海农业学报,2005,21(1):7-11。
    郭龙彪、程式华和钱前,水稻基因组测序和分析的研究进展。中国水稻科学,2004,18(6):557-562。
    郭龙彪、储成才和钱前,水稻突变体与功能基因组学。植物学通报,2006,23(1):1-13。
    胡昌泉、苏军和陈建民等,糙米直链淀粉含量透射式近红外定标方程的建立。福建农业学报,2004,19(1):54-57。
    胡兴明和钱前,现阶段中国水稻种质创新的研究策略和应用思考。植物遗传资源学报,2004,5(2):193-196。
    江绍玫、朱速松和刘世家等,水稻谷蛋白突变体的筛选及遗传分析。遗传学报,2003,30(7):641-645。
    贾志宽、高如嵩和张嵩午等,水稻齐穗后温度对稻米垩白影响途径研究。西北农业大学学报,199],19(3):27-32。
    贾志宽、高如嵩、张嵩午和朱碧岩,中国稻米垩白形成的地域分异规律之初步研究。中国水稻科学,1992,6(4):159-164。
    金田蕴、李辉和郭涛等,水稻稳定高垩白率突变体的获得与理化特性分析。作物学报,2010,36(1):121-132。
    刘庆坡和薛庆中,水稻基因组测序及基因功能的鉴定。遗传学报,2006,33(8):669-677。
    刘思衡,作物育种与良种繁育学词典。北京:中国农业出版社,2001,1。
    刘霞、付艳苹和朱晔荣等,水稻垩白形成的生理和遗传机制。植物生理学通讯,2007,43(3):569-574。
    李庆春、王文真和张玉良等,近红外漫反射光谱分析法(NIRDRSA)在作物品质育种中的应用。作物学报,1992,18:235-240。
    李智念、徐海波和王光明,温度与稻米垩白形成的研究综述。耕作于栽培,2001,6:58-60。
    李文强,水稻新矮秆基因d62的图位克隆与功能研究及光叶基因g11的精细定位[博士学位论文],浙江杭州,浙江大学,2010,33-34。
    黄农荣和钟旭华,早籼稻垩白形成与灌浆期耐热性关系研究初报。广东农业科学,2004,1:6-8。
    骆艺、王旭杰和梅曼彤等,空间搭载水稻种子后代基因组多态性及其与空间重离子辐射关系的探讨。生物物理学报,2006,22(2):131-138.
    蔺万煌、萧浪涛和彭克勤等,稻米垩白的形成及其调控。湖南农业大学学报(自然科学版),2001,27(3):234-239。
    邱新棉,植物空间诱变育种的现状与展望。植物遗传资源学报,2004,5(3):247-251.
    沈波、陈能和李太贵等,温度对早籼稻米垩白发生与胚乳物质形成的影响。中国水稻科学,1997,11(3):183-186。
    王景雪、孙毅和徐培林等,植物功能基因组学研究进展。生物技术通报,2004,1:18-22。
    王东、黄敏和高方远等,稻米垩白的影响因素及遗传改良。西南农业学报,2006,19(6):1189-1194。
    王忠、顾蕴洁和陈刚等,稻米的品质和影响因素。分子育种,2003,1(2):231-241。
    吴建国和石春海,近红外反射光谱分析技术在植物育种与种质资源研究中的应用。植物遗传资源学报,2003,4(1):68-72。
    魏均,日本的水稻基因组研究计划。生物工程进展,1991,6:44-46。
    肖听、陈奕和罗文永等,单粒活体稻谷种子直链淀粉含量的近红外透射光谱分析。中国水稻科学,2003,17(3):287-290。
    叶俊、吴建国和杜婧等,水稻“9311”突变体的筛选和突变体库的构建。作物学报,2006,32(10):1525-1529。
    杨弘远,水稻生殖生物学。杭州:浙江大学出版社,2005,136。
    钟明,水稻精米蛋白质和氨基酸含量QTL定位及遗传基础研究[硕士学位论文],湖北武汉,华中农业大学,2007,20。
    周新桥和邹冬升,稻米垩白研究综述。作物研究,2001,3:52-58。
    周立军、江铃和翟虎渠等,水稻垩白研究现状与改良策略。遗传,2009,31:563-572。
    周立军、江铃和刘喜等,水稻千粒重和垩白粒率的QTL及其互作分析。作物学报,2009,35(2):255-261。
    朱克明、曾大力和郭龙彪等,水稻突变体的创制与遗传分析。中国稻米,2006,1:14-15。
    朱旭东、陈红旗和罗达等,水稻中花11辐射突变体的分离与鉴定。中国水稻科学,2003,3:205-210。
    张斌、张大鹏和章文斌等,稻米色氨酸含量近红外反射光谱全局和局部飞速定标技术研究。光谱学与光谱分析,2011,31(1):73-76。
    张斌,稻米氨基酸含量的近红外定标模型的创建及应用[硕士学位论文],浙江杭州,浙江大学,2010,32。
    中华人民共和国农业部部标准米质测定方法NY147-88。
    政府间气候变化专门委员会,2007:气候变化2007:综合报告。政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告[核心撰写组、Pachauri, R.K和Reisinger, A.(编辑)]。IPCC,瑞士,日内瓦,104页。
    An S, S Park and D H Jeong, et al, Generation and analysis of end sequence database for T-DNA tagging lines in rice. Plant Physiol,2003,133:2040-2047.
    Akihiro T, K Mizuno and T Fujimura, Gene expression of ADP-glucose pyrophosphorylase and starch contents in rice cultured cells are cooperatively regulated by sucrose and ABA. Plant Cell Physiol,2005,46(6):937-946.
    Arumuganathan K and E. D. Earle, Nuclear DNA content of some important plant species. Plant Moleculor Biology reporter,1991,3:208-218.
    Ball S G and M K. Morell, From bacterial glycogen to starch:Understanding the biogenesis of the plant starch granule. Annu Rev Plant Phys,2003,54:207-233.
    Bao J S, Y Z Cai and H Corke, Prediction of rice starch quality parameters by near-infrared reflectance spectroscopy. J Food Sci,2001,66(7):936-939.
    Barton F E, W R Windham and E T Chanpagne, et al, Optimal genometrics for the development of rice quality spectroscopic chemometric models. Cereal Chem,1998,75:315-319.
    Bhave M R, S Lawrence and C Barton et al, Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell,1990,2:581-588.
    Braidotti G, Chalky rice. Partners, November 2007-February 2008.
    Colbert T, B J Till and T Tompa, et al, High-throughput screening for induced point mutations. Plant Physiol,2001,126:480-484.
    Burton R A, P E Johnson and Beckles D M et al, Characterization of the genes encoding the cytosolic and plastidial forms of ADP-glucose pyrophosphorylase in wheat endosperm. Plant Physiol,2002,130:1464-1475.
    Chen M S, Presting G and Barbazuk W B, et al, An integrated physical and genetic map of the rice genome. Plant Cell,2002,14:537-545.
    Delwiche S R, K S Mekenzie and B D Webb, Quality characteristics in rice by near infrared reflectance analysis of whole grain milled samples. Cereal Chem,1996,73:257-263.
    Denyer K, F Dunlap and T Thorbjornsen et al, The major form of ADP-glucose pyrophosphorylase in maize endosperm is extra-plastidial. Plant Physiol,1996, 112:779-785.
    Ding Y, X Wang and L Su, et al, SDG714, a histone H3K9 methyltransferase, is involved in Tosl7 DNA methylation and transposition in rice. Plant Cell,2007,19:9-22.
    Drake J W, B Charlesworth and D Charlesworth, et al, Rates of spontaneous mutation. Genetics, 1998,148:1677-1686.
    Emanuelsson O, Brunak S and Heijne G et al, Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocol,2007,2:953-971.
    Enokil T W and K Mihoko, Ac a tool for the fanctional genomics of rice. Plant J,1999,19: 605-613.
    Ertao W, J Wang and X Zhu, et al, Control of rice grain-filling and yield by a gene with a potential signature of domestication. Nature Genetics,2008:1370-1374.
    Feng Q, Zhang Y and Hao P, et al, Sequence and analysis of rice chromosome 4. Nature,2002, 420:316-320.
    Fitzgerald M A, S R McCouch and R D Hall, et al., Not just a grain of rice:the quest for quality. Trends in plant sci,2009,14(3):133-139.
    Gibson G and S V Muse, A primer of genome science. USA:Sinauer Associates,2009,300-322.
    Greco R, PB Ouwerkerk and RJ Dekam, et al., Transpositional behaviour of an Ac/Ds system for reverse genetic in rice. TheorAppl Genet,2003,108:10-24.
    Greene E A, C A Codomo and N E Taylor, et al, Spectrum of chemically induced mutations from a large-scale reverse-genetics screen in Arabidopsis. Genetics,2003,164:731-740.
    Gale M D and K M Devos, Comparative genetics in the grasses PNAS,1998,95:1971-1974.
    Gender and rice. International Year of Rice,2004.
    Grewal S I and S Jia, Heterochromatin revisited. Nat Rev Genet,2007,8(1):35-46.
    Hannah L C, J R Shaw and M J Giroux et al, Maize genes encoding the small subunit of ADP-glucose pyrophosphorylase. Plant Physil,2001,127:173-183.
    Harushima Y, M Yano and A Shmura, et al, A high-density rice genetics linkage map with 2275 markers using a single F2 population. Genetics,1998,148:479-494.
    He C K, M Dey and Z H Lin, et al, An efficient method for producing an indexed, insertional-mutant library in rice. Genomics,2007,89:532-540.
    Hiei Y, S Ohta and Komml T, et al, Efficient transfermation of rice (Oryza indica L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J,1994, 6(2):271-282
    Hirochika H, Contribution of the Tos 17 retrotransposon to rice functional genomics, Curr Opin Plant Biol,2001,4:118-122.
    Hirochika H, E Guiderdoni and G An, et al, Rice mutant resources for gene discovery. Plant Mol Biol,2004,54:325-334.
    Hirose T, T Ohdan and Y Nakamura et al, Expression profiling of genes related to starch synthesis in rice leaf sheaths during the heading period. Physiol Plantarum,2006, 128:425-435.
    International Rice Genome Sequencing Project, The map-based sequence of the rice genome. Nature,2005,436:793-800.
    IRRI. http://irri.org/world-rice-statistics.
    Ito Y, K Arikawa and B A Antonio, et al, Rice annotation database (RAD):a contig-oriented database for map-based rice genomics. Nucleic Acids Res,2005,33:651-655.
    James M G, K Denyer and A M Myers, Starch synthesis in the cereal endosperm. Curr Opin Plant Biol,2003,6:215-222.
    Jeon J S, S Lee and K Hong, et al, T-DNA insertional mutagenesis for functional genomics in rice. Plant J,2000,22:561-570.
    Jeong D H, A Su and H G Kong, et al, T-DNA insertional mutegeneais for activation tagging in rice. Plant Physil,2002,130:1636-1644.
    Jin X, M A Ballicora and J Preiss, et al, Crystal structure of potato tuber ADP-glucose pyrophosphorylase. EMBO J,2005,24(4):694-704.
    Kawamura S, M Natsuga and K Takekura, et al, Development of an automatic rice-quality inspection system. Comput and Electron Agr,2003,40:115-126.
    Kang H G, S Park and Makoto, et al, White-core endosperm floury endosperm-4 in rice is generated by knockout mutations the C4-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant Jl,2005,42:901-911.
    Khush G S, What it will take to feed 5.0 billion rice consumers in 2030. Plant Molecular Biology,2005,59:1-6.
    Kim Y, K S Schumaker and J K Zhu, EMS mutagenesis of Arabidopsis. Methods Mol Biol, 2006,323:101-103.
    Krysan P J, J C Young and M R Sussman, et al, T-DNA as an insertional mutagen in Arabidopsis. Plant Cell,1999,11:2283-2290.
    Kurata N, K Miyoshi and K Nonomura, et. al, Rice mutants and genes related to organ development, morphogenesis and physiological traits. Plant Cell Physiol,2005,46:48-62.
    Kumarnaru T, Sato H, Satoh H, High-lysine mutants of rice, Oryza sativa L. Plant Breeding, 1997,116:245-249.
    Leung H, Deletion mutants for functional genomics:progress in phenotyping, sequence assignment, database development. In:Khush G. S., Brar D. S., Hardy B. Rice Genetics N. IRRI:Science Publishers,2001,239-250.
    Lee S K S K Hwang and M Han et al. Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol,2007,65(4):531-546.
    Li W Q, J G Wu and S L Weng, et al, Identification and characterization of dwarf 62, a loss-of-function mutation in DLT/OsGRAS-32 affecting gibberellin metabolism in rice. Planta,2010a,232:1383-1396.
    Li W Q, J G Wu and S L Weng, et al, Characterization and fine mapping of the glabrous leaf and hull mutants (gl1) in rice (Oryza sativa L.). Plant Cell Rep,2010b,29:617-627.
    Lisle A J, M Martin and M A Fitzgerald, et al, Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal chem,2000,77:627-632.
    Liu X L, T Guo and X Y Wan, et al, Transcriptome analysis of grain-filling caryopses reveals involvement of multiple regulatory pathways in chalky grain formation in rice. BMC Genomics,2010,11:1-15.
    Maple J and S G Moller, Mutagenesis in Arabidopsis. Methods Mol Biol,2007,362:197-206.
    Mashinsky A L and G S Nechitailo, Results and prospects of studying the gravitationally sensitive systems of plants under conditions of space flight. Cosmic res,2001, 39(4):317-327.
    McCouch SR, L Teytelman and Y Xu, et al, Development and mapping of 2240 new SSR makers for rice (Oryza sativa L.). DNA Res,2002,9:199-207.
    McCallum C M, L Comai and E A Greene, et al, Targeting induced local lesions in genomes (TILLING) for plant functional genocis. Plant Physiol,2000,123:439-442.
    Maclean J, Dawe D, Hardy B, Hettel G, Rice Almanac,3rd Edition. IRRI,2002,253.
    Michelmore R W, I Paran and R V Kesseli, Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA,1991, 88:9828-9832.
    Moss S C and K Denyer, The evolution of the starch biosynthetic pathway in cereals and other grasses. J Exp Bot,2009,60(9):2481-2492.
    Muegge K, Modifications of histone cores and tails in V(D)J recombination. Genome Biol, 2003,4(4):211.
    Nancy A. E., Sequencing the rice genome. Plant Cell,2000,12:2011-2017.
    Moore G, KM Devos and Z Wang, et al, Cereal genome evolution grasses line up and form a circle. Current Bio,1995,7:737-739.
    Nguyen B T, J G Wu and C H Shi, et al, The screening of mutants and construction of mutant library for Oryza sativa cv. Nipponbare via ethyl methane sulphonate inducing. Biologia, 2010,65:660-669.
    Ohdan T, P B Francisco and J et al, Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot,2005,56(422):3229-3244.
    Ouyang S, W Zhu and J Hamilton, et al, The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res,2007,35:883-887.
    Peters J L, F Cnudde and T Gerats, Forward genetic and map-based cloning approaches. Trends in plant sci,2003,8:484-491.
    Piffanelli P, G Droc and D Mieulet, et al, Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol Biol,2007,65:587-601.
    Pkania C K, J G Wu and H M Xu, et al, Addressing rice germplasm genetic potential using genotypic value to develop quality core collections. J Sci Food and Agr,2007, 87:326-333.
    Preiss J, Bacterial glycogen-synthesis and ts iregulationir. Annu Rev Microbiol,1984, 39:4] 9-458.
    Qiao Y, S I Lee and R Piao, et al, Fine mapping and candidate gene analysis of the floury endosperm gene, FLO(a), in rice. Mol Cells,2010,29:167-174.
    Reski R, Physcomitrella and Arabidopsis:the David and Goliaht of reverse genetics. Trends in plant sci,1998,3(6):209-210.
    Rockwood W, Rice research and production in the 21st Century, IRRI,2001,224.
    Rosegrant M W and S A Cline, Global food security:challenges and policies. Science,2003, 302:1917-1919.
    Rosenfeld J A, Z Wang and D E Schones et al, Determination of enriched histone modifications in non-genic portions of the human genome.2009,10:143.
    Ryoo N, C Yu and C S Park, et al, Knockout of a starch synthase gene OsSSIlla/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Rep,2007, 26:1083-1095.
    Saji S, Y Umehara and BA Antonio, et al, A physical map with yeast artificial chromosome (YAC) clones covering 63% of the 12 rice chromosomes. Genome,2001,44:32-37.
    Sasaki T and B Burr, International Rice Genome Sequencing Project:the effort to completely sequence the rice genome. Curr Opin Plant Biol,2000,3:138-141.
    Sasaki T, T Matsumoto, and K Yamamoto, et al, The genome sequence and structure of rice chromosome 1. Nature,2002,420:312-316.
    Satoh H and T Omura, New endosperm mutations induced by chemical mutagens in rice, Oryza sativa L. Japan JBreed,1981,31 (3):316-326.
    Sallaud C, C Gay and P Larmande, et al, High throughput T-DNA insertion mutagenesis in rice: A first step towards in silico reverse genetics. Plant J,2004,39:450-464.
    She K C, H Kusano and K Koizumi, et al, A novel superior factor widely controlling the rice grain quality. Nature Precedings,2009, hdl:10101/npre.2009.3283.1
    She K C, H Kusano and M Yaeshima, et al, Reduced rice grain production under high temperature stress closely correlates with ATP shortage during seed development. Plant Biotechnology,2010,27:67-73.
    Shi C H, G K Ge and J G Wu, et al, The dynamic gene expression from different genetic systems for protein and lysine contents of indica rice. Genetica,2006,128(1-3):297-306.
    Shi C H, J G Wu and X B Lou, et al, Genetic analysis of transparency and chalkiness area at different filling stages of rice (Oryza sativa L.). Field Crop Res,2002,76(1):1-9.
    Stern N and C Taylor, Economics climate change:risk, ethics, and the Stern Review. Science, 2007,317:203-204.
    Tanaka T, B A Antonio and S Kikuchi, et al, The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res,2008,36:1028-1033.
    Thang N B, J G Wu, W H Zhou, et al, The screening of mutants and construction of mutant library for Oryza sativa cv. Nipponbare via ethyl methane sulphonate inducing. Biologia, 2010,65(4):660-669.
    Tian Z X, Q Qian and Q Q Liu, et al, Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities. PNAS,2009,106:21760-21765.
    Till B J, J Cooper and T H Tai, et al, Discovery of chemically induced mutations in rice by TILLING, BMC Plant Biol,2007,7:19.
    Timmons L and A Fire, Specific interference by ingested dsRNA. Nature,1998,395:854.
    Velasco L and HC Becker, Estimating the fatty acid composition of the oil in intact-seed rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphytica, 1998, 101:221-250.
    Villareal C P, De La Cruz N M and B O Hykuabi, Rice amylose analysis by near-infrared transmittance spectrose. Cereal Chem,1994,71(3):292-296.
    Walden R, H Hayashi and J Schell, T-DNA as a gene tag. Plant J,1991,1:281-288.
    Wan X Y, J M Wan and J F Weng, et al, Stability of QTLs for rice grain dimension and endosperm chalkiness characteristics across eight environments. Theor Appl Genet,2005, 110:1334-1346.
    Wang J K, X Y Wan and H H Li, et al, Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach. Theor Appl Genet,2007, 115:87-100.
    Wu J G and C H Shi, Prediction of grain weight, brown rice weight and amylose content in single seeds of rice using near-infrared reflectance spectroscopy. Field Crop Res,2004, 87:13-21.
    Wu J G, C H Shi and X M Zhang, Estimating the amino acid composition in milled rice powder by near infrared reflectance spectroscopy. Field Crop Res,2002,75:1-7.
    Wu J L, C Wu and C Lei, et al, Chemical-and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol,2005,59:85-97.
    Yamazaki M, H Tsugawa and A Miyao, et al, The rice retrotransposon Tosl7 prefers low-copy-number sequences as integration targets. Mol Genet Genomics,2001, 265:336-344.
    Yamakawa H, H Tatsuro and K Masaharu, et al, Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol, 2007,144:258-277.
    Yamakawa H, T Ebitani and T Terao. Comparison between locations of QTLs for grain chalkiness and genes responsive to high temperature during grain filling on the rice chromosome map. Breed. Sci.,2008,58:337-343.
    Yamakawa H, Omics-based approach for cereal starch biosynthesis:toward a determination of key factors for quality of rice grain dffected by high temperature. Journal of Applied Glycoscience,2011,19:1-9.
    Yamakawa H and H Makoto, Atlas of rice grain filling-related metabolism under high temperature:joint analysis of metabolome and transcriptome demonstrated inhibition of starch accumulation and induction of amino acid accumulation. Plant Cell Physiol,2010, 51:795-809.
    Yu J, J Wang and W Lin, et al, The genome of Oryza sativa:A history of duplication. PloS Biol, 2005,3(2):0266-0281.
    Yu J, S Hu and J Wang, et al, A draft sequence of rice genome. Science,2002,296:79-92.
    Yu Y, T Rambo and J Currie, In-depth view of structure, activity, and evolution of rice chromosome 10. Science,2003,300:1566-1569.
    Yu G Q, K M Olsen and B A Schaal, Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.. Mol Biol Evol,2011,28(1):659-671.
    Yuan Q, S Ouyang and J Liu, et al, The TIGR rice genome annotation resource:annotating the rice genome and creating resources for plant biologists. Nucleic Acids Res,2003, 31(1):229-233.
    Yuan Q, S Ouyang and A Wang, et al, The institute for genomic research Osal rice genome annotation database. Plant Physiol,2005,138:18-26.
    Zhang J N, C S Li and C Y Wu, et al, RMD:a rice mutant database for functional analysis of the rice genome. Nucleic Acids Res,2006,34:745-748.
    Zhang J, D Guo and Y X Chang, et al, Non-random distribution of T-DNA insertions at various levels of the genome hierarchy as revealed by analyzing 13 804 T-DNA flanking sequences from an enhancer-trap mutant library. Plant J,2007,49:947-959.
    Zhang B, Z Q Rong and Y Shi, et al, Prediction of the amino acid composition in brown rice using different sample status by near-infrared reflectance spectroscopy. Food Chem,2011, 127:275-281.
    Zheng C and J J Hayes, Structures and interactions of the core histone tail domains. Biopolymers,2003,68(4):539-546.
    Zhou L, L Chen and L Jiang, et al, Fine mapping of the grain chalkiness QTL qPGWC-7 in rice (Oryza sativa L.). Theo Appl Genet,2009,118:581-590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700