动目标检测、成像与参数估计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动目标探测是雷达系统的最重要功能之一提高动目标检测性能,主要依赖于两点:一是有效地抑制杂波,二是对目标进行有效地聚焦借助多个天线的自由度信息能够有效地实现杂波抑制,这样,如何提高各天线通道的一致性以及更加有效的杂波抑制算法就成为动目标检测的重要内容之一随着动目标探测技术研究的不断深入和发展,实现动目标检测的同时估计得到目标的运动参数及位置和目标的SAR成像也成为重要的系统要求和研究内容
     本论文主要围绕两方面内容进行了相关研究:一是提高目标检测性能的方法:如何有效抑制杂波以及如何对目标进行良好聚焦;二是在目标检测后,如何有效估计目标的运动参数,具体如下:
     1.多通道SAR-GMTI通道均衡及动目标检测定位方法
     通道一致性问题是实现多通道SAR-GMTI系统杂波抑制和动目标检测的关键问题针对多通道SAR-GMTI系统,提出了一种新的通道均衡方法和基于该均衡的动目标检测定位方法该方法先利用泄漏信号进行电路中信号均衡,后进行通道间快时间和慢时间校准并在距离压缩后通过迭代补偿通道差异,再经杂波对消和方位压缩实现动目标检测,最后通过估计动目标多普勒偏移的方法完成参数估计该通道均衡方法不需要天线参数平台运动参数等先验信息,避免了图像配准过程和自适应杂波相消处理,因而计算量小,易于实现实测数据实验结果证明该方法杂波对消比能够达到20dB,检测和定位性能好
     2.基于总体最小二乘的多通道SAR-GMTI方法
     针对多通道SAR-GMTI处理中噪声导致杂波相关性差而使杂波抑制性能降低的问题,提出了一种基于总体最小二乘的SAR-GMTI方法该方法利用检测单元周围的相邻像素杂波信息在整体最小二乘意义下拟合检测单元杂波特性,消除了噪声影响,提高了多个通道杂波之间的相关性,改善了杂波抑制性能,而且该方法具有很好的通道误差稳健性,仿真数据处理和实测数据处理验证了该方法的有效性
     3.多通道SAR多目标高概率检测与高精度成像方法
     在多通道SAR-GMTI系统中,目标运动会导致目标的越距离单元走动和方位调频率偏移由于目标的运动参数未知,传统的SAR-GMTI处理方法利用静止场景参数对目标进行聚焦,这会导致目标散焦检测概率下降等问题另外,传统的方法只能在目标检测并进行目标逐一提取以后逐一对目标进行参数估计,这将带来很大的运算复杂度针对这些问题,本论文提出了一种不需要动目标运动参数等先验知识的多目标高概率检测和成像方法该方法首先利用Keystone变换和相位补偿滤波器组消除目标距离走动,后利用LVD变换对多个目标在LVD平面同时进行聚焦在该平面对目标进行目标检测后,可以得到这些目标的多普勒调频率,最后可以实现目标SAR成像实测数据处理证明该方法能够克服目标越距离单元走动和调频率偏移导致的散焦问题,从而有效提高了动目标的检测概率
     4.机载双基正侧阵雷达杂波抑制方法
     机载双基雷达收发分置的双基结构使杂波二维分布呈现距离依赖性,导致空时自适应处理很难得到独立同分布的距离样本来估计杂波统计特性,因而杂波抑制性能很差针对此问题,提出了利用MIMO或者重叠子阵交替发射的机载双基正侧阵雷达杂波抑制方法这两种方法利用发射端空间自由度信息使机载双基正侧阵雷达的杂波脊落在发射和接收空间频率以及多普勒频率构成的三维频率空间的一个平面上,并且目标通常具有一定径向速度而不落在该平面由于该杂波平面具有距离平稳性,这保证了空时自适应处理可以有效地抑制该杂波平面,进而能够有效抑制距离非平稳杂波
     5.运动目标空时参数快速估计方法
     常规的运动目标空时参数估计方法需要参数精细搜索,估计精度和搜索的步长有关,计算量很大针对此问题,提出了两种目标空时参数快速估计方法:基于多项式求根的目标空时参数最大似然估计方法利用目标所在频率附近的3个频率通道的导向矢量做自适应滤波得到3个不同的自适应权矢量和输出响应,用多项式求根方法估计得到目标的空时频率;基于二阶多项式拟合的目标空时参数最大似然估计算法利用对目标频率滤波后响应主瓣附近的三个频率的输出,进行二阶多项式拟合,通过求解极值得到目标空时频率的最大似然估计值这两种方法大大降低了目标空时参数估计的计算复杂度,且在得到与参数搜索方法类似的估计精度时计算量均远远小于参数搜索方法
The moving target detection (MTD) is one of the most important functions of radarsystem. The MTD performance is mainly dominated by the performances of cluttersuppression and target focusing. Clutter suppression can be realized effectivelyexploiting the degrees of freedom (DOF) of multiple antennas. Therefore, how toimprove the coherence of different channels and how to suppress the clutter effectivelybecome the most important subjects of MTD technique. Along with the development ofthe MTD research, the motion parameters estimation and the imaging of the movingtarget also become an important demand and a researching subject.
     This dissertation is mainly devoted to two subjects: one is how to improve the MTDperformance containing how to suppress the clutter and focus the targets effectively;one is how to estimate the target parameters effectively. The main research results are asfollows:
     1. The channel equalization and moving target detection and location formulti-channel SAR-GMTI,
     Improving the coherence of different channels is the key problem in MTD forairborne multi-channel SAR-GMTI system. Aiming at the problem, a novel channelequalization method is presented, and a technique for moving target detection (MTD)and location based on which is further proposed. This method first realizes circuitscalibration utilizing the leaking signals, then implements fast and slow time calibrationand compensates the channel differences via iteration after range compression, after thatrealizes MTD by clutter cancellation and imaging, finally obtains target parameters byestimating moving target Doppler shift. The channel equalization method needs nopriori knowledge such as the parameters of antenna and the plane’s movement, andavoids image registration and auto adaptive clutter cancellation method. Thus it’s ofless computation and easy to realize. The experiment result of real data proved that themethod can achieve a clutter cancellation ratio of more than20dB, and it has gooddetection and location performance.
     2. Multi-channel SAR-GMTI based on total least squares method
     Aiming at the poor clutter suppression performance induced by noise and poorclutter coherence in multi-channel SAR-GMTI, a method for SAR-GMTI based on totalleast squares is presented. The method adopts adjacent pixels around detection pixel tofit it under total least squares criterion, which can eliminate the influence of noise andimprove clutter coherence, thus lead to performance improvement on clutter suppression. Besides, the method is robust to error. Finally, simulation results and realdata processing are given to demonstrate the effectiveness of the method.
     3. The detection with high detection probability and the imaging with highaccuracy for multiple targets in multi-channel SAR
     For Multi-channel SAR-GMTI system, the movement of the targets leads to rangecell movement (RCM) and the shift of their Doppler rates. As the motion parameters ofthe targets are unknown, they are focused using the parameters of the stationary scene,which will induce their defocus and the degrade of their detection probability. Inaddition, the targets are extracted from SAR image and processed to obtain their motionparameters singly, which brings great computation complexity. To solve the problems, anew method to moving target imaging and detection with high detection probability ispresented. It first corrects RCM using Keystone transform and filter group whichcompensating phases of the target. Then LVD transform is performed to focusing thetargets. After detecting the moving targets in the LVD plane, the Doppler rates of themultiple targets are obtained. At last, targets imaging is realized in SAR image. Theprocessing of real data testifies that it can overcome RCM and the defocus induced bychirp rate shift, therefore improves the detection probability of targets efficiently.
     4. Clutter suppression algorithm for airborne bistatic sidelooking radar
     A simultaneous transmitter and receiver motion of the bistatic radar complicatesthe clutter spectra over range and makes the clutter spectra range-dependent [1].Range-dependent clutter makes space time adaptive processing (STAP) difficult toobtain independently and identically distributed (i.i.d.) secondary data used forcovariance matrix estimation, which will lead to the decline of the clutter suppressionperformance. To solve the problem, two clutter suppression algorithms for airbornebistatic sidelooking radar using MIMO or overlapped subarray alternate transmitting aredeveloped. In the methods, by incorporating the transmit degree of freedom (DOF), thebistatic clutter ridge turns to be a three-dimensional ridge. Moreover, the clutter ridgesof all range bins locate in the same plane of the three-dimensional space, while themoving targets don’t because of their radial velocity. For the clutter in the plane isrange-independent, it can be suppressed effectively by3-dimensional STAP.
     5. Fast algorithm for moving target space-time parameters estimation
     The traditional method for moving target space-time parameters estimation needsrefined parameter searching, which leads to heavy computation burden. And itsestimation accuracy is related to the searching pace. To overcome the problem, two fastalgorithms for target space-time parameters estimation are developed: The maximum likelihood estimation based on polynomial rooting performs adaptive processing usingthe steering vectors of the three frequency channels neighbor to that of the target. In thisway, three adaptive weights and three response output are obtained. Then the space-timeparameters of the target are estimated by rooting a polynomial; the maximum likelihoodestimation based on quadratic polynomial approximation performs the quadraticpolynomial approximation of the spectrum of the frequency response using the outputof the three channels round which of the target. Then the space-time parameters of thetarget are estimated by calculating the extremum. The two methods effectively lower thecomputation complexity of the target space-time parameters estimation. Compared toparameter grid searching methods, their computation complexity is much decreasedwhile in the same accuracy.
引文
[1]保铮,邢孟道,王彤.雷达成像技术[M].电子工业出版社,2006.
    [2] J. N. Entzminger, C. A. Fowler, W. J. Kenneally. Joint STARS and GMTI: Past,present and future [J]. IEEE Trans on AES,1999,35(2):748-761.
    [3] J. H. Ender, A. R. Brenner. PAMIR: a wideband phased array SAR MTI system [J].IEE Radar, Sonar, and Navigation,2003,150(3):162-172.
    [4] S. Chiu, C. Livingstone, I. Sikaneta, et al.. RADARSAT-2moving object detectionexperiment (MODEX)[C]. In Proc. IGARSS, Boston, MA, Jul,2008,1:13-16.
    [5] Raney R. K. Synthetic aperture imaging radar and moving targets[J]. IEEE Trans onAES,1971,7(3):499-505.
    [6] A. Freeman, A. Currie. Synthetic aperture radar (SAR) imaging of movingtargets[J]. GEC Journal of Research,1987,5(2):106-115.
    [7] H. Chen, C. McGillem. Target motion compensation by spectrum shifting in SAR[J]. IEEE Trans on AES,1992,28(3):895-910.
    [8] F. N. Morphet, R. W. Payne. Combined moving target detection and syntheticaperture radars [J]. Military Microwave,1986:212-215.
    [9] J. A. Legg, A. G. Bolton, D. A. Gray. SAR moving target detection using anon-uniform PRI [C]. In Proc. of EUSAR’96, Konigswinter, Germany,1996:423-426.
    [10]S. Barbarossa. Doppler-rate filtering for detecting moving targets with syntheticaperture radars [C]. International Society for Optics and Photonics,1989:140-147.
    [11]王盛利.雷达信号处理的新方法——匹配傅里叶变换研究[D].西安电子科技大学,2003.
    [12]何峻湘,李景文,周荫清.动目标合成孔径雷达成象的二次相位匹配滤波法[J].电子与信息学报,1996,18(1):38-44.
    [13]S. Barbarossa. Detection and imaging of moving objects with synthetic apertureradar. Rart1: Optimal detection and parameter estimation theory [J]. IEE Proc-F,1992,139(1):79-88.
    [14]S. Barbarossa, A. Farina. Detection and imaging of moving objects with syntheticaperture radar. Part2: Joint time-frequency analysis by Wigner-Ville distribution[J].IEE Proc-F,1992,139(1):89-97.
    [15]S. Barbarossa, A. Farina. A novel procedure for detection and focusing movingobjects with SAR based on the Wigner-Ville distribution[C]. Proc of IEEEInternational Radar Conference, Arlington, VA,1990:44-50.
    [16]L. Cohen. Time-frequency distributions–a review [J]. Proc. of IEEE,1989,77(7):941-981.
    [17]S. Barbarossa, A. Zanalda. A combined Wigner-Ville and Hough transform for crossterms suppression and optimal detection and parameter estimation[C]. Proc ofICASSP, San Francisco, USA,1992,5:173-176.
    [18]Y. F. Mao, G. A. Chen, J. F. Wang. SAR/INSAR imaging of multiple targets basedon combination of WVD and HT[C]. CIE International Conference on Radar ICR,Beijing, China,1996:342-345.
    [19]M. N. Ferrara, A. Torre. A complete definition of a moving target, after itsrecognition, using the inverse SAR analysis[C]. International Radar SymposiumIRS, Munich, Germany,1998,3:1217-1223.
    [20]W. Rieck. SAR imaging of moving targets: application of time-frequencydistribution for single and multi-channel data[C]. EUSAR, Konigswinter, Germany,1996:431-434.
    [21]M. Kirscht. Detection and velocity estimation of moving objects in a sequence ofsingle-look SAR images[C]. IGARSS, Lincoln, Nebraska, USA,1996,1:333-335.
    [22]M. Kirscht. Detection and Focused imaging of moving objects evaluating asequence of single-look SAR images[C]. The Third IARSC, Copenhagen, Denmark,1997,1:393-400.
    [23]M. Kirscht. Detection, velocity estimation and imaging of moving targets withsingle-channel SAR[C]. EUSAR, Friedrichshafen, Germany,1998:587-590.
    [24]Perry R. P., R. C. DiPietro and R. L. Fante, SAR imaging of moving targets[J].IEEE Trans. on Aerosp. Electron. Syst.,1999,35(1):188-200.
    [25]许超,柴振明.基于近似小波变换与时频分析的SAR运动目标检测[J].电子学报,1997,25(6):54-57.
    [26]KAZUO.OUCHI. On the mutlilook images of moving targets by synthetic ApertureRadar [J]. IEEE Trans on AP,1985,33(8):823-827.
    [27]陈广东,朱兆达,朱岱寅.抑制SAR图像中静止背景检测慢速动目标[J].电子与信息学报,2005,27(8):1229-1232.
    [28]陈广东,朱兆达,朱岱寅.分数傅立叶变换用于抑制SAR杂波背景检测慢速动目标[J].航空学报,2005,26(6):748-753.
    [29]周峰,李真芳,保铮.基于两视处理的单通道SAR地面运动目标检测和定位方法[J].西电学报,2006,33(5):673-677.
    [30]陈广东,朱兆达,朱岱寅,江伟光.检测SAR图像中径向慢速动目标.电子与信息学报,2005,27(9):136l-1364.
    [31]冯宏川,王岩飞.一种基于自孔径的GMTI方法[J].电子与信息学报,2007,29(2):397-400.
    [32]R. Klemm. Space—time adaptive processing: principles and applications [M]. IEERadar, Sonar, Navigation and Avionics9, IEE Press,1998.
    [33]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,1999.
    [34]H. S. Wang. Mainlobe Clutter Cancellation by DPCA for Space-Based Radars[J],Aerospace Applications Conference,1991. Digest,1992IEEE,3-8Feb199l:1-128.
    [35]L. Lightstone,D. Faubert,G. Remple. Multiple phase center DPCA for airborneradar,IEEE National Radar Conference,1991:36-40.
    [36]P. G. Richardson. Relationships between DPCA and adaptive space-time processingtechniques for clutter suppression, IEEE International Radar Conference, Paris’94:295-300.
    [37]T. J. Nohara. Comparison of DPCA and STAP for space-based radar, IEEEInternational Radar Conference,1995:113-119.
    [38]Chen Jianwen, Wang Yongliang,Huang Fukan, et a1..Research0n multiple phasecenter multiple delay taps DPCA for airborne radar, International Conference0nComputational Electromagnetics and Its Applications, Beijing, China,1999:1-4.
    [39]陈建文.机载雷达空时自适应处理方法研究[D],博士学位论文,国防科技大学,2000.
    [40]宁蔚.机载/星载雷达地面运动目标检测方法研究[D],博士学位论文,西安电子科技大学,2005.
    [41]J. H. Ender. The airborne experimental multi-chamel SAR system AER-II [C].inProc EUSAR Conf., Germany,1996:49-52.
    [42]J. H. Ender. Signal processing for multi-channel SAR applied to the experimentalSAR System AER [C]. Intern. Radar Conf., Paris, May1994:220-225.
    [43]J. H. Ender. Space-time processing for multichannel synthetic aperture radar [J].Electronics&Communication Engineering Journal, February1999:29-38.
    [44]Federica Bordoni, Fulvio Gini, Fabrizio Lombardini and Lucio Verrazzani. A classof algorithms for multibadeline ATI oceanic surface velocity estimation in presenceof bimodal Doppler spectrum[C]. EUSAR2002:117-120.
    [45]F. Lombardini, F. Gini and P. Matteucci. Multibaseline ATI-SAR for Robust oceansurface velocity estimation in presence of bimodal Doppler spectrum [C].IGARSS’01, IEEE2001International,2001,1:578-580.
    [46]Friedlander, B., Porat, B. VSAR: A high resolution radar system for detection ofmoving targets. IEE Proceeding-Radar, Sonar Navigation,1997,144(4):205-218.
    [47]B. Friedlander, B. Porat. VSAR: A high resolution radar system for ocean imaging.IEEE Trans on AES,1998,34(3):755-776.
    [48]L. E. Brennan, L. S. Reed. Theory of adaptive radar[J]. IEEE trans on AES,1973,9(2):237-252.
    [49]L. E. Brennan, J. D. Mallett. Adaptive arrays in airborne MTI radar[J]. IEEE Transon AP,1976,24(5):60-615.
    [50]J.Ward.Space-Time Adaptive Processing for Airborne Radar Systems.LincolnLab,Mass,InSt Tecllllol,Lexington,MA,Tech Rep1015,DTIC AD-A293032,1994..
    [51]R. Klemm. Principles of Space-Time Adaptive Processing [M]. London, U. K.: InstElect Eng,2002.
    [52]Bao Zheng, Liao Guisheng, et a1.. Adaptive Spatial-temporal Processing forAirborne Radars [J].Chinese Joumal of Electronics,1993,1.2(1):1-7.
    [53]廖桂生,保铮,许志勇.机载雷达空时二维自适应处理框架及其应用[J].中国科学(E辑),1997,1.27(4):336-341.
    [54]廖桂生,保铮,张玉洪.机载雷达时-空二维部分联合自适应处理[J].电子科学学刊,1993,15(6):575-580.
    [55]廖桂生.相控阵天线AEW雷达时-空二维自适应处理[D].博士学位论文,西安电子科技大学,1992.
    [56]王彤.机载雷达简易STAP方法及其应用[D].博士学位论文,西安电子科技大学,2001.
    [57]王永良.新一代机载预警雷达的空时二维自适应处理[D].博士学位论文,西安电子科技大学,1994.
    [58]吴仁彪.机载相控阵雷达时空二维自适应滤波的理论与实现[D].博士学位论文,西安电子科技大学,1993.
    [59]张良.机载相控阵雷达降维STAP研究[D].博士学位论文,西安电子科技大学,1999.
    [60]E. F. Stockburger, D. N. Held. Interferometric moving ground target imaging[C].IEEE International Radar Conference,1995:438-443.
    [61]E. Yadin. Evaluation of noise and clutter induced relocation errors in SAR MTI [C].In:1995IEEE International Radar Conference,1995:650-655.
    [62]E. Yadin. A performance evaluation model for a two port interferometer SAR-MTI[C]. In1996IEEE International Radar Conference,1996:261-266.
    [63]李景文,李春生,周荫清.三孔径INSAR动目标检测和成像[J].电子学报,1999,27(6):40-43.
    [64]A Roth. TerraSAR-X Science Plan, Munich, Germany, DLR Oberpfaffenhofen,2004.
    [65]M. Suess, S. Riegger, W. Pitz, ct a1.. TerraSAR-X: Design and performance. InProc. EUSAR, Cologne, Germany, Jun2002:49-52.
    [66]J. Mittermayer, H. Runge. Conceptual Studies for exploiting the TerraSAR-X dualreceive antenna. in Proc. IGARSS, Toulouse, France,2003:2140-2142.
    [67]R Romeiter, H Breit, M Eineder, et a1.. On the suitability of TerraSAR-X splitantenna mode for current measurelnents by along-track interferometry. In Proc.IGARSS, Toulouse, France,2003:1320-1322.
    [68]H. Runge, M. Eineder, G. Palubinskas et a1.. Traffic monitoring with TerraSAR-X.in Proc. IRS,Berlin,Germany,2005:629-634.
    [69]R. Romeise, H. Runge. Theoretical evaluation of several possible along-trackInSAR modes of TerraSAR-X for ocean current measurements [J].IEEE Trans onGRS,2007,45(1):21-35.
    [70]A. Luscombe. The Radarsat Project [J]. IEEE Canadian Review,1995(21).
    [71]T. J. Nohara, P. Weber, A. Premj, et al. SAR-GMTI processing with Canada’sRadarsat2Satellite [C]. Adaptive Systems for Signal Processing, Communications,and Control Symposium2000, IEEE,2000:379-384.
    [72]M. V. Drago evic and C. E. Livingstone, Demonstration of RADARSAT-2movingobject detection experiment (MODEX) capabilities for maritime surveillance [C].in Proc. IRS, Hamburg, Germany, Sep.2009:83–87.
    [73]M. V. Drago evic and S. Chiu, Extending airborne SAR-ATI algorithms to theRADARSAT-2moving object detection experiment (MODEX)[C]. in Proc.IGARSS, Boston, MA, Jul.2008(1):165–168.
    [74]S. Chiu and C. E. Livingstone, A comparison of displaced phase centre antenna andalong-track interferometry techniques for RADARSAT-2ground moving targetindication [J]. Can. J. Remote Sens., Feb.2005,31(1):37-51.
    [75]M. V. Drago evic and S. Chiu, Space-based motion estimators—Evaluation withthe first RADARSAT-2MODEX data [J]. IEEE Geosci. Remote Sens. Lett., Jul.2009,6(3):438–442.
    [76]S. Chiu and M. V. Drago evic, Velocity estimation with RADARSAT-2movingobject detection experiment mode. in Proc. Int. Conf. Space Technol.,2009.
    [77]J. H. Ender. Detection and estimation of moving target signals by multi-channelSAR[J]. AEU International Journal of Electronics and Communications,1992,50(2):150-156.
    [78]J. H. Ender. Detection and estimation of moving target signals by multi-channelSAR[C]. EUSAR’96, Konigswinter, Germany,1996:411-417.
    [79]D. J. Coe, R. G. White. Moving target detection in SAR imagery: experimentalresults [C]. IEEE International Radar Conference,1995:644-649.
    [80]W. E. Ng, Zhang C B, Lu Y H, et al. Simulated DPCA performance for dualchannel SAR processing [C]. IGARSS’99Proceedings, IEEE1999International.1999:547-549.
    [81]J. H. Ender. Space-time processing for multichannel synthetic aperture radar [J].Electronics&Communication Engineering Journal, February1999,11(1):29-38.
    [82]S. Barbarossa, A. Farina. Detection and imaging of moving objects with SAR by ajoint space-time-frequency processing[C]. CIE1991International Conference onRadar ICR, Beijing, China,1991:307-311.
    [83]S. Barbarossa, A. Farina. Space-time-frequency processing of synthetic apertureradar signals[J]. IEEE Trans on AES,1994,30(2):341-358.
    [84]Zhao Z. Q., Huang S. J.. A research of moving targets detection and imaging ofSAR[C]. EUSAR’96, Konigswinter, Germany,1996:427-430.
    [85]Zhao Z. Q., Huang S. J., Gu D. R..Moving targets detectionof synthetic apertureradar [J].电子学报,1997,25(3):50-54.
    [86]J. R. Fienup,―Detecting moving targets in SAR imagery by focusing,‖IEEE Trans.Aerosp. Electron. Syst., Jul.2001,37(3):794–809.
    [87]J. Dias and P. Marques, Multiple moving targets detection and trajectoryparameters estimation using a single SAR sensor [J]. IEEE Trans. Aerosp. Electron.Syst., Apr.2003,39(2):604–624.
    [88]S. Chiu and C. E. Livingstone. A comparison of displaced phase centre antenna andalong-track interferometry techniques for RADARSAT-2ground moving targetindication [J]. Can. J. Remote Sens., Feb.2005,31(1):37–51.
    [89]S. Chiu and M. Dragosevic. Estimating along-track speed of a moving target in thepresence of acceleration [C]. In Proc. of EUSAR’2010, Berlin,2010:317-320.
    [90]Stefan V. Baumgartner, Gerhard Krieger. Fast GMTI algorithm for trafficmonitoring based on a priori knowledge [J]. IEEE Trans. on GRS.2012,50(11):4626-4641.
    [91]S. Chiu, Moving target parameter estimation for RADARSAT-2moving objectdetection experiment (MODEX)[J]. Int. J. Remote Sens., May2010,31(15):4007–4032.
    [92]Zhu S. Q., Liao G. S., Y. Qu, Liu X. Y., and Zhou Z. G., A new slantrange velocityambiguity resolving approach of fast moving targets for SAR system [J]. IEEETrans. Geosci. Remote Sens., Jan.2010,48(1):432–451.
    [93]钱江,孙光才,李凉海,邢孟道.一种多通道SAR地面快速目标高概率检测方法[J].电波科学学报,2011,26(2):354-361.
    [94]Sun G C, Xing M D, Xia X-G, et al.. Robust Ground Moving-Target Imaging UsingDeramp–Keystone Processing [J]. IEEE trans. on GRS,2013,51(2):966-982.
    [95]D. Cristallini, D. Pastina, F. Colone, and P. Lombardo, Efficient detection andimaging of moving targets in SAR images based on Chirp Scaling [J]. IEEE Trans.on GRS,2013,51(4):2403-2416.
    [96]Willis N J.Bistatic radar [M].2nd ed.Raleigh,NC,USA: SciTecb Publishing Inc.,1995.
    [97]Meng Xiangdong.Wang Tong,Wu Jianxin,et al..Bistatic clutter analysis and rangeambiguity resolving for space time adaptive processing[J].IET Radar, Sonar andNavigation,2009,3(5):502-511.
    [98]刘锦辉,廖桂生,李明.甚长基线的双基地机载雷达杂波建模与分析[J].系统工程与电子技术,2011,33(3):523-527.
    [99]Borsari G.Mitigating Effects on STAP Processing Caused by an Inclined Array[C].In Proc. of IEEE Radar Conference, Dallas, IEEE,1998:135-140.
    [100] Lapierre F D,Droogenbroeck M V,Verly J G.New Methods for Handing theRange Dependence of the Clutter Spectrum in Non-sidelooking Monostatic STAPRadars[C]. In Proc. of2003International Conference on Acoustiee,Speech,andSignal Processing.Hong Kong:IEEE,2003(5):73-76.
    [101] Zatman M A.The Properties of Adaptive Algorithms with Time VaryingWeights[C]. In Proc. of IEEE Sensor Array and Multichannel Signal ProcessingWorkshop, Cambridge: IEEE,2000:82-86.
    [1] Trygve Sparr, Moving target motion estimation and focusing in SAR images [C].Radar Conference,2005IEEE International, May2005:290-294.
    [2]陈广东,朱兆达,朱岱寅.在强杂波背景SAR图像中检测动目标[J].系统工程与电子技术,2005,27(9):1568-1571.
    [3] E.F.Stockburger, D.N.Held, Interferometric moving ground target imaging [C],Proceedings of the IEEE International Radar Conference,Alexandria VA, USA,May1995:438-443.
    [4] Caputi W J.Stretch, A time-transformation Technique [J]. IEEE Trans.AES,1971,7(2):269-278
    [5]李景文,李春升,周荫清.三孔径INSAR动目标检测和成像[J].电子学报,1999,27(6):40-43
    [6]郑明洁,杨汝良,基于DPCA和干涉技术的SAR动目标检测[J].电子与信息学报,2003,25(11):1525-1530
    [7] C. H. Giehull, Ground moving target parameter estimation for two channel SAR [J].IEE, proc. Radar Sonar Naving, Jan2006,153(3):224-233.
    [8] M. Soumekh, B. Himed. Multi-Channel Signal Subspace Processing Methods forSAR-MTI [C]. Proc. IEEE Radar Conference, Huntsville, AL, May5-8,2003:126-132.
    [9]李真芳.分布式小卫星SAR/InSAR/GMTI处理方法[D].西安:西安电子科技大学,2006.
    [1]保铮,邢孟道,王彤.雷达成像技术[M].电子工业出版社,2006.
    [2] D. Cerutti-Maori, I. Sikaneta, C. H. Gierull. Optimum SAR/GMTI Processing andIts Application to the Radar Satellite RADARSAT-2for Traffic Monitoring[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(10):3868-3881.
    [3] Cerutti-Maori, D., Sikaneta, I. A Generalization of DPCA Processing forMultichannel SAR/GMTI Radars[J]. IEEE Transactions on Geoscience and RemoteSensing,2013,51(1):560-572.
    [4]郑明洁,杨汝良.基于DPCA和干涉技术的SAR动目标检测[J].电子与信息学报,2003,25(11):1525-1530.
    [5] Golub G H, Van Loan C F. An analysis of the total least squares problem[J]. SIAMJournal on Numerical Analysis,1980,17(6):883-893.
    [6] Rahman M A, Yu K B. Total least squares approach for frequency estimation usinglinear prediction[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1987,35:1440-1454.
    [7] Davila C E. An efficient recursive total least squares algorithm for FIR adaptivefiltering. IEEE Transactions on Signal Processing,1994,42(2):268-80.
    [8] Schoukens J, Pintelon R, Vandersteen G. Frequency-domain system identificationusing nonparametric noise models estimated form a small number of data sets.Automatica,1997,33(6):1073-1086.
    [9] Kay S M. Modern Spectral Estimation: Theory and Applications. Englewood Cliffs,NJ: Prentice-Hall,1988.
    [10]张贤达.矩阵分析与应用.清华大学出版社.2004.
    [11]Mehrdad Soumekh, Braham Himed. SAR-MTI processing of multi-channelairborne radar measurement (MCARM) data [A]. Radar Conference, Proceedingsof IEEE,2002:24-28.
    [12]郑明洁.合成孔径雷达动目标检测和成像研究[D].北京:中国科学院电子研究所,2003.6.
    [1] D. Cerutti-Maori, I. Sikaneta, C. H. Gierull. Optimum SAR/GMTI Processing andIts Application to the Radar Satellite RADARSAT-2for Traffic Monitoring[J]. IEEETrans. Geosci. Remote Sens.,2012,50(10):3868-3881.
    [2] Drago evic M. V., Burwash W. and Chiu S.. Detection and Estimation WithRADARSAT-2Moving-Object Detection Experiment Modes[J]. IEEE Transactionon Geoscience and Remote Sensing,2012,50(9):3527-3543.
    [3] Baumgartner S. V. and Krieger G.. Fast GMTI Algorithm For Traffic MonitoringBased On A Priori Knowledge[J]. IEEE Transactions on Geoscience and RemoteSensing,2012,50(11):4626-4641.
    [4]张佳佳,周芳,孙光才,邢孟道,保铮.基于机载前向阵雷达的三通道斜视SAR-GMTI技术研究[J].电子与信息学报,2012,34(2):344-350.
    [5] Paulo A. C. M. and Jose M. B. D. Velocity estimation of fast moving targets using asingle SAR sensor[J]. IEEE Trans. Aerosp. Electron. Syst.,2005,41(1):75–89.
    [6] Marques P. and Dias J.. Moving targets velocity estimation using aliased SARraw-data from a single sensor[C]. in Proc.4th EUSAR, Cologne, Germany, Jun.2002:389–392.
    [7] Rüegg M., Meier E., and Nüesch D. Capabilities of dual-frequency millimeter waveSAR with monopulse processing for ground moving target indication[J]. IEEE Trans.Geosci. Remote Sens.,2007,45(3):539–860.
    [8] Wang G., Xia X.-G., Chen V. C., and Fiedler R. L.. Detection, location and imagingof fast moving targets using multi-frequency antenna array SAR[J]. IEEE Trans.Aerosp. Electron. Syst.,2004,40(1):345–355,
    [9] Li G., Xu J., Peng Y. N., and Xia X. G... Location and imaging of moving targetsusing nonuniform linear antenna array SAR[J]. IEEE Trans. Aerosp. Electron. Syst.,2007,43(3):1214-1220.
    [10]Wang G., Xia X.-G., and Chan V. C.. Dual-speed SAR imaging of moving targets[J].IEEE Trans. Aerosp. Electron. Syst.,2006,42(1):368-876.
    [11]Li G., Xia X.-G., Xu J., and Peng Y. N.. A velocity estimation algorithm of movingtargets using single antenna SAR[J]. IEEE Trans. Aerosp. Electron. Syst.,2009,45(3):1052-1062.
    [12]Xu J., Yu J., Peng Y. N., and Xia X.-G.. Radon–Fourier transform for radar targetdetection, I: Generalized Doppler filter bank[J]. IEEE Trans. Aerosp. Electron. Syst.,2011,47(2):1186-1202.
    [13]梁毅,王虹现,邢孟道,保铮.调频连续波SAR慢速动目标参数估计与成像[J].系统工程与电子技术,2011,33(5):1001-1006.
    [14]Marco M., Elisa G., Alessio B., et al. Non-cooperative maritime target imaging withan FMCW SAR system[C]. Synthetic Aperture Radar,2012. EUSAR.9th EuropeanConference on Topic(s): Fields, Waves&Electromagnetics,2012:127-130.
    [15]Cristallini D., Pastina D., Colone F., Lombardo P. Efficient Detection and Imagingof Moving Targets in SAR Images Based on Chirp Scaling[J]. IEEE Transaction onGeoscience and Remote Sensing, Digital Object Identifier10.1109/TGRS.2012.2210556.
    [16]钱江,苏军海,李凉海,邢孟道.利用KWT进行动目标成像的三通道SAR-GMTI快速目标运动参数估计[J].电子与信息学报,2010,32(7):1660-1667.
    [17]Perry R. P., R. C. DiPietro and R. L. Fante, SAR imaging of moving targets[J].IEEE Trans. Aerosp. Electron. Syst.,1999,35(1):188-200.
    [18]Zhu D. Y., Li Y., and Zhu Z. D., A keystone transform without interpolation forSAR ground moving-target imaging[J]. IEEE Geosci. Remote Sens. Lett.,2007,4(1):18-22.
    [19]钱江,孙光才,李凉海,邢孟道.一种多通道SAR地面快速目标高概率检测方法[J].电波科学学报,2011,26(2):354-361.
    [20]Zhu S. Q., Liao G. S., Qu Y., Zhou Z. G., and Liu X. Y.. Ground moving targetsimaging algorithm for synthetic aperture radar[J]. IEEE Trans. Geosci. RemoteSens.,2011,49(1):462–477.
    [21]Carrara W. G., Goodman R. S., Majewski R. M. Spotlight synthetic aperture radar:signal processing algorithms[M]. Boston: Artech House,1995:245-287.
    [22]D. E. Wahl, P. H. Eichel., D. C. Ghiglia and C. V. Jakowatz. Phase gradientautofocus–a robust tool for high resolution SAR phase correction[J]. IEEE Trans.Aerosp. Electron. Syst.,1994,30(3):827-834.
    [23]Lv X. L., Bi G. A., Wan C. R. and Xing M. D.. Lv’s Distribution: Principle,Implementation, Properties, and Performance[J]. IEEE Transsactions on SignalProcessing,2011,59(8):3576-3591.
    [24]Lv X. L., Xing M. D., Zhang S. H. and Bao Z.. Keystone transformation of theWigner-Ville distribution for analysis of multicomponent LFM signals[J], IEEE onSignal Process.,2009,89:791-806.
    [25]Lv X. L., Xing M. D., Zhang S. H. ISAR imaging of maneuvering targets based onthe range centroid Doppler technique[J]. IEEE Trans. On Image Process.,2010,19(1):1-13.
    [26]Almeida L. B.. The fractional Fourier transform and time-frequencyRepresentations[J]. IEEE Trans. Signal Process.,1994,42(11):3084-3091.
    [27]刘安娜,陈力,赵斐,匡纲要.基于DPCA—FrFT的三通道SAR—GMTI方法[J].电子学报,2011,39(9):2091-2097.
    [28]Sun Huadong, Zhang Lizhi and Jin Xuesong. Parameter Estimations Based onDPCA-FrFT Algorithm for Three-channel SAR-GMTI System[C]. IntelligentComputation Technology and Automation (ICICTA),2011International Conference,2011,2:640-644.
    [29]Tao R., Li Y. L. and Wang Y. L. Short-time fractional Fourier transform and itsapplications[J]. IEEE Trans. Signal Process.,2010,58(5):2568–2580.
    [30]Fienup J. R., Detecting moving targets in SAR imagery by focusing[J]. IEEE Trans.Aerosp. Electron. Syst.2001,37(3):794-809.
    [1] Melvin, W. L., Callahan, M. J., and Wicks, M. C. Bistatic STAP: application toairborne radar[C]. Proc. IEEE Radar Conf., Long Beach, CA, April2002:1-7.
    [2] Himed, B., Zhan, Y., and Hajjari, A. STAP with angle-Doppler compensation forbistatic airborne radars[C]. Proc. IEEE Radar Conf., Long Beach, CA, April2002:123-127.
    [3] Melvin, W. L., Himed, B., and Davis, M. Doubly adaptive bistatic clutterfiltering[C]. Proc. IEEE Radar Conf., Huntsville, AL, May2003:171–178.
    [4] Melvin, W. L., and Davis, M. Adaptive cancellation method for geometry-inducednonstationary bistatic clutter environments[J]. IEEE Trans. Aerosp. Electron. Syst.,2007,43(2):651–672.
    [5]冯坤菊,王春阳,段垣丽等.机载双基地STAP的OP-DW预处理算法及其性能研究[J].电子学报,2011,39(3):700-704.
    [6] Colone, F., Fornari, M., Lombardo, P. A spectral slope-based approach formitigating bistatic STAP clutter dispersion[C]. Proc. IEEE Radar Conf., Waltham,MA, April2007:408-413.
    [7] Lapierre, F. D., and Verly, J. G. Registration-based solutions to the range dependenceproblem in STAP radars[C]. Adaptive Sensor Array Processing Workshop,Lexington, MA, March2003:1341-1245.
    [8] Ries, P., Lapierre, F. D., and Verly, J. G. Geometry-induced range-dependenceCompensation for Bistatic STAP with Conformal arrays[J]. IEEE Trans. Aerosp.Electron. Syst.,2011,47(1):275-294.
    [9] Lapierre, F. D., and Verly, J. G. Computationally-efficient range-dependencecompensation method for bistatic radar STAP[C]. Proc. IEEE International RadarConf., Toulouse, France, October2004:1209-1214.
    [10]李迎春,李景文.改进的非均匀频率采样配准双基杂波抑制方法[J].电波科学学报,2011,26(1):102-107.
    [11]张柏华,谢文冲,王永良,张永顺.基于最大似然估计的机载双基地雷达距离模糊杂波抑制方法[J].电子学报,2011,39(12):2836-2840.
    [12]彭晓瑞,谢文冲,王永良.一种基于空时内插的双基地机载雷达杂波抑制方法[J].电子与信息学报,2010,32(7):1697-1703.
    [13]郁文贤,张增辉,胡卫东.基于频率非均匀采样杂波谱配准的天基雷达STAP方法[J].电子与信息学报,2009,31(2):358-362.
    [14]Vijay V.,Jeffrey L. K. Joint space-time interpolation for distorted linear and bistaticarray geometries [J].IEEE Trans.On Signal Processing,2006,56(3):848-860.
    [15]李明.机载阵列雷达抑制非均匀杂波的STAP方法研究[D].[博士学位].西安电子科技大学,2011.
    [16]Lim, C. H., and Mulgrew, B. Prediction of inverse covariance matrix (PICM)sequences for STAP [J]. IEEE Signal Processing Letters, April2006,13(4):236-239.
    [17]段克清,谢文冲,王永良,张增辉.一种稳健的共形阵机载雷达杂波抑制方法[J].电子学报,2011,39(6):1321-1325.
    [18]S Beau, S Marcos. Taylor series expansions for airborne radar space-time adaptiveprocessing. IET Radar, Sonar&Navigation, March2011,5(3):266-278.
    [19]Bliss, D. W., and Forsythe, K. W. Multiple-input multiple-output (MIMO) radar andimaging: Degrees of freedom and resolution. Proc.37th IEEE Asilomar Conf.Signals, Systems, Computers, Pacific Grove, CA, Nov.2003:54–59.
    [20]Fishler, E., Haimovich, A., Blum, R. S., Cimini, L. J., Chizhik, D., and Valenzuela,R. A. Spatial diversity in radars—models and detection performance [J]. IEEE Trans.Signal Process., Mar.2007,54(3):823–837.
    [21]Chen, C. Y., and Vaidyanathan, P. P. MIMO radar space-time adaptive processingusing prolate spheroidal wave functions [J]. IEEE Trans. Signal Process., Feb.2008,56(2):623-635.
    [22]Wang, G. H., and Lu, Y. L. Clutter rank of STAP in MIMO radar with waveformdiversity [J]. IEEE Trans. Signal Process., Feb.2010,58(2):938-943.
    [23]Ries, P., NEYT, X., Lapierre, F. D., and Verly, J. G. Fundamentals of spatial andDoppler frequencies in radar STAP [J]. IEEE Trans. Aerosp. Electron. Syst., July2008,44(3):1118-1134.
    [24]Liu, B. Effect of timing jitter on performance of MTI filters [J]. IEEE Trans. Aerosp.Electron. Syst., May1989,25(3):335-342.
    [1]王永良,彭应宁.空时自适应信号处理[M].北京:清华大学出版社,2000年.
    [2] M. I. SKOLNIK, Radar Handbook [M]. New York: McGraw-Hill,1990:705-713.
    [3]周红,黄晓涛,常玉林,等.子带子孔径ATI地面运动目标检测及参数估计方法[J].电子与信息学报,2010,32(1):62-68.
    [4]文珺,廖桂生,朱圣棋.基于InSAR构型的地面运动目标检测与测速方法[J].系统工程与电子技术,2010,32(3):495-498.
    [5]赵永波,张守宏.雷达低角跟踪环境下的最大似然波达方向估计方法[J].电子学报,2004,32(9):1520-1523.
    [6]刘颖,廖桂生,周争光.对图像配准误差稳健的分布式星载SAR地面运动目标检测及高精度的测速定位方法[J].电子学报,2007,35(6):1009-1015.
    [7] DUSAN A. Weighted multipoint interpolated DFT to improve amplitude estimationof multifrequency signal [J]. IEEE Trans. On Instrumentation and Measurement,2002,51(2):287-292.
    [8] ALBERTO B, GIOVANNI F, CARLA T. Monitoring of induction machines bymaximum covariance method for frequency tracking [J]. IEEE Trans. On IndustryApplications,2006,42(1):69-78.
    [9] HONG D, KIM D, LEE Y. A simple interpolation technique for the DFT for jointsystem parameters estimation in burst MPSK transmissions [J]. IEEE Trans. OnCommunications,2003,51(7):1051-1056.
    [10]I.S.REED, J.D.MALLETT, L.E.BRENNAN. Rapid convergence rate in adaptivearrays [J]. IEEE Transactions on Aerospace and Electronic Systems,1974, vol.AES-10:853-863.
    [11]ZAKHAROV Y V, BARONKIN V M, TOZER T C. DFT-based frequencyestimators with narrow acquisition range [J]. IEE Proc. Commun.,2001,148(1):1-7.
    [12]WU Jianxin, WANG Tong, BAO Zheng. Fast Realization of Maximum LikelihoodAngle Estimation with Small Adaptive Uniform Linear Array [J]. IEEE Trans. OnAntennas and Propagation,2010,58(12):3951-3960.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700