聚天冬氨酸阻垢性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了二氧化硫的来源与危害,并对脱硫技术的研究进展进行了概述,分析了湿法石灰/石灰石脱硫技术中存在的问题,指出向脱硫系统中添加阻垢剂是解决结垢堵塞问题的可行办法。综述了现在较为常用的湿法脱硫系统用阻垢剂,并详细介绍了聚天冬氨酸(PASP)的合成、性能及应用。本文采用静态阻垢法研究了聚天冬氨酸的阻垢性能,与聚丙烯酸(PAA)及2-膦酸基丁烷-1,2,4-三羧酸(PBTCA)进行比较,并采用旋转挂片法在模拟脱硫浆液中研究了聚天冬氨酸的阻垢过程。
     静态阻垢性能实验结果表明:对碳酸钙垢,随着阻垢剂质量浓度增加,三种阻垢剂的阻垢性能都表现出溶限效应;随着Ca2+浓度升高、HC03-浓度增大、pH上升、恒温温度升高、反应时间延长,阻垢剂的阻垢率都表现出下降趋势;三种阻垢剂的静态阻垢性能为PBTCA>PAA>PASP。对硫酸钙垢,随着阻垢剂质量浓度增加,三种阻垢剂的阻垢性能也都表现出溶限效应;随着Ca2+浓度、SO42-浓度的增加,阻垢剂的阻垢率表现出下降趋势;随着恒温温度升高、反应时间延长,三种阻垢剂的阻垢率表现出先增大后减小的阻垢效应;在实验pH的范围内,pH变化对PAA、PASP的阻CaSO4垢性能影响很小。pH>7.0时,pH对PBTCA阻垢率的影响较小,在pH为6和5时,PBTCA的阻垢率较小。
     模拟湿法石灰脱硫浆液系统中,在阻垢剂作用下,在一定的浆液恒温温度、恒温时间以及搅拌转速条件下,挂片上的结垢量随阻垢剂浓度的增大先增大后减小;恒温温度、恒温时间以及搅拌转速对单位面积挂片上的结垢量有很大影响,单位面积挂片上结垢量随恒温温度的增大而增加,随恒温时间的延长而增加,随搅拌速度的增加而减少,阻垢效果是阻垢剂作用与恒温温度、恒温时间以及搅拌转速共同作用的结果;在相同的实验条件下,PASP与PAA、PBTCA表现出了相似的阻垢效应变化规律。单位面积麻石片上的结垢量大于不锈钢挂片上的结垢量;扫描电镜图片及X射线衍射分析结果表明加阻垢剂后颗粒状晶体易形成团块状聚集在一起,不易粘附在挂片材料表面。考虑到阻垢效应及环境效益,可优先考虑使用PASP作阻垢剂。
This article summarizes the sources and hazards of sulfur dioxide, and desulfurization technology overview on the research progress. Problems existing in wet flue gas desulfurization (FGD) with lime/limestone technology are analyzed. It is thought to be a feasible solution to scaling and blocking problem to add inhibitors into wet FGD system. Scaling inhibitors in wet FGD system are introduced. We also introduce polyaspartic acid, about its synthesis, properties and applications. In this paper, we studied the scale-inhibiting properties of polyaspartic acid, and we made the comparison of those of polyacrylic acid (PAA) and 2-phosphonobutane-1,2, 4-tricarboxylic acid (PBTCA). In slurry of wet FGD system, the scaling laws under these inhibitors and the scale inhibiting process of PASP were analyzed.
     By means of Static Scale-inhibiting method, the scale-inhibiting properties of PASP, PAA and PBTCA were detected. Simultaneously, scaling laws under these inhibitors were analyzed by means of rotation specimen method. Results showed that these inhibitors had threshold effect as the dosage of inhibitors increasing. The order of scale inhibition effects against CaCO3 of three inhibitors was as follows: PBTCA>PAA>PASP. As water-bath temperature increased and reaction time extended, scale inhibition effects against CaSO4 of these inhibitors increased at first, and then decreased. pH had little impact on scale inhibition effects against CaSO4 of PAA and PBTCA. When pH>7.0, the influence of pH on scale inhibition effects against CaSO4 of PBTCA can be negligible. When pH6.0 and 5.0, that can be visible.
     The effect of several factors on scale inhibition effect of polyaspartic acid in wet flue gas desulphurization system with lime is discussed in this paper. Experimental data demonstrated that when water-bath temperature, reaction time and stirring speed increased, the mass of hanging on-chip scaling increased at the began, and then decreased as the dosage of inhibitors increasing. Water-bath temperature, reaction time and rotating speed played an important role on scaling; scale inhibition effect of polyaspartic acid in wet flue gas desulphurization system with lime was the combined action of water-bath temperature, reaction time, rotating speed and scale inhibitor. Under the same experimental conditions (60℃,5h,100 r/min), PASP, PAA and PBTCA showed the similar variation of inhibition effect. Under the same conditions (60℃,5h,100 r/min), the mass of stainless hanging on-chip scaling was bigger than that of granite hanging on-chip. The structures and properties of scale samples crystals were investigated by SEM (scanning electron microscopy) and xrd (X-ray diffraction), the analyses showed that the structure of scale samples crystals may vary with or without PASP. With PASP, it was easy to form granular crystals and agglomerate together, not easy to adhere to slide surface. So it came to scale inhibition. The scale inhibiting process of PASP was analyzed.
引文
[1]古建芹,刘大帅.促进火电企业二氧化硫减排的税收政策思考.中国财政,2009,(17):40-41
    [2]王伟能.简易湿法石灰/石灰石烟气脱硫工艺设计及实践.能源环境保护,2004,18(1):36-37
    [3]邓志文.低浓度二氧化硫技术发展和现状.有色冶金设计与研究,1994,15(3):25-27
    [4]叶大均,李宇红,徐旭常,等.高效超临界压力燃煤发电与低费用烟气净化技术.中国电力,2000,33(3):4-9
    [5]无.燃煤二氧化硫排放污染防治技术政策.中华人民共和国国务院公报.2003,(1):35-37
    [6]董广霞,傅德黔.全国火电厂二氧化硫污染现状及其控制对策.中国环境监测,2003,19(6):33-35
    [7]郝吉明,马广大.大气污染控制工程.第二版.北京:高等教育出版社,2002:305-306
    [8]张英杰,巩冠群,王兴涌.我国煤炭资源的洁净利用分析.煤炭经济研究,2006,(11):28-29
    [9]曹新鑫,高艳芳,柳菲,等.煤炭燃前脱硫工艺及其进展.煤炭技术,2008,27(4):115-117
    [10]单晓云,高志芳,侯亚红.选煤技术在降低燃煤SO2污染中的作用.选煤技术,2004,(5):3-6
    [11]田正山,王全坤,白素贞.高硫煤燃前脱硫技术.化工时刊,2009,23(7):53-56
    [12]张明旭,ShaningYu,王晓黎.用选择性絮凝技术精选细粒高硫煤.煤炭科学技术,1998,26(8):28-30
    [13]H·R·马诺切赫里等.电选法应用实践评述(Ⅰ).国外金属矿选矿,2002,39(10):4-15
    [14]邢宝林,谌伦建,潘兰英,等.煤粉磁选脱硫技术的研究现状与展望.洁净煤技术.2009,15(1):17-20
    [15]李学亮.国外煤炭脱硫降灰技术的发展趋向.中国煤炭,2000,26(7):61-63
    [16]孙丽梅,单忠健.国内外煤炭燃前脱硫工艺的研究进展.洁净煤技术,2005,11(1):55-58
    [17]常西亮,樊彩梅.煤燃前脱硫新技术.山西化工,2007,27(5):48-50
    [18]张东民,解庆林,张萍,等.煤炭脱硫的研究现状.广西轻工业,2007,23(5):84-86
    [19]章春芳,解庆林,张萍,等.煤炭生物脱硫技术研究进展.矿业安全与环保,2008,35(4):69-72
    [20]Pandey R A, Raman V K, Bodkhe S Y, et al. Microbial desulphurization of coal containing pyritic sulphur in a continuously operated bench scale coal slurry reactor. Fuel,2005,84(1):81-87
    [21]武秀琴,张建云,谷立坤.煤炭微生物脱硫技术的研究及进展.选煤技术,2009,(1):65-68
    [22]喻舒.煤炭燃前脱硫技术.电站系统工程,2005,21(5):41-42
    [23]徐宏祥,陈宣辰.煤炭生物脱硫技术的研究及其应用.煤炭技术,2009,28(7):159-160
    [24]刘远超.锅炉运行特性及工业性试验研究:[大连理工大学硕士学位论文].大连:大连理工大学,2006,3-4
    [25]卿春.循环流化床锅炉脱硫工业性试验研究:[昆明理工大学硕士学位论文].昆明:昆明理工大学,2005,15
    [26]邵斌.循环流化床锅炉脱硫问题分析.东北电力技术,2008,29(5):16-22
    [27]党小庆.大气污染控制工程技术与实践.北京:化学工业出版社,2009:215-216
    [28]郝吉明,马广大.大气污染控制工程.第二版.北京:高等教育出版社,2002:319-356
    [29]陈东,林继发.湿法烟气脱硫技术简介.陕西环境,2003,10(5):32-35
    [30]陆永祺,姜山,朱天乐.氧化镁脱硫结垢研究.环境污染治理技术与设备,2003,4(5):19-22
    [31]周大明,王雪妮.氨法烟气脱硫可行性分析及工业运行.氮肥技术,2009,30(4):48-51
    [32]蔡一峰.喷雾干燥脱硫技术介绍.电力环境保护,2005,21(2):15-16
    [33]杜冰,宗保宁,罗一斌.烟气脱硫脱氮技术进展.化学工业与工程技术,2008,29(2):26-30
    [34]王谦,张勇,李大宁.湿法烟气同时脱硫脱氮技术综述.环境科学导刊,2009,28(2):55-57
    [35]Chi en Tsung-Wen, Chu Hsin. Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaC102 solution. Journal of Hazardous Materials,2000,80(1-3):43-57
    [36]Chang S G. LBL PhoSNOX Process for Combined Removal of SO2 and NOx from Flue Gas. Environmental Progress,1992, (1):256-260
    [37]王智化,周俊虎,魏林生,等.用臭氧氧化技术同时脱除锅炉烟气中的NOx及SO2的试验研究.中国电机工程学报,2007,27(11):1-8
    [38]Jeong S M, Kin S D. Removal of NOx and SO2 by CuO/γ-Al2O3 Sorbent/Catalyst in a Fluidized-Bed Reactor. Ind Eng Chem Res,2000,39(6):1911-1916
    [39]王雁,郑楚光.CuO/γ-Al2O3烟气联合脱硫脱氮技术研究进展.环境污染治理技术与设备,2002,3(11):55-59
    [40]Juray D W, Guy B M. Investigation of simultaneous adsorption of SO2 and NOx on Na-y-alumina with transient techniques. Cataysis Today,2000,62(4):319-328
    [41]Ahmed A B, Osama I F, Noushad K, et al. Electron beam flue gas treatment technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels, Fuel,2008,28(3):1446-1452
    [42]王银生,季学李.脉冲电晕等离子体脱硫脱氮与除尘技术.上海环境科学,2000,19(1):17-20
    [43]Marilena T R, Diana I M, loan C. Emission control of SO2 and NOx by irradiation methods. Journal of Hazardous Materials,2003,97(1-3):145-158
    [44]颜俭.湿法脱硫工艺的控制氧化.电力环境保护,1997,13(2):41-44
    [45]朱治利.石灰石-石膏湿法脱硫技术中的问题.四川电力技术,2002,25(4):39-43
    [46]曾庭华,杨华,马斌,等.湿法烟气脱硫系统的安全性及优化.北京:中国电力出版社,2004:259-265
    [47]童志权.工业废气净化与利用.北京:化学工业出版社,2001:239-241
    [48]周至祥,段建中,薛建明.火电厂湿法烟气脱硫技术手册.北京:中国电力出版社,2006:58-65
    [49]肖晨畅.湿法烟气脱硫系统中阻垢添加剂的研究:[湖南大学硕士学位论文].湖南:湖南大学,2006,9-11
    [50]肖晨畅,李彩亭,李珊红,,等.腐殖酸钠在湿法石灰石烟气脱硫系统中阻垢性能的研究.环境污染与防治,2006,28(11):814-817
    [51]杨道武,朱志平,周琼花,等.湿法石灰石-石膏法烟气脱硫系统的防腐蚀.发电设备,2005,19(5):323-325
    [52]赵传军,户春,李小燕.湿法脱硫系统设备腐蚀浅析.气体净化,2007,7(2):23-24
    [53]喻舒,李小宇,朱跃.烟气脱硫装置的腐蚀与防护.锅炉制造,2006,(1):36-38
    [54]陈泽峰,冯铁玲.电厂脱硫废水处理.工业水处理,2006,26(3):86-89
    [55]管一明.燃煤电厂烟气脱硫废水处理.电力环境保护,1998,14(1):38-44
    [56]周祖飞.湿法烟气脱硫废水的处理.电力环境保护,2002,18(2):37-39
    [57]胡金榜,胡玲玲,段振亚,等.湿法烟气脱硫添加剂研究进展.化学工业与工程,2005,22(6):456-460
    [58]单婷婷,邓剑如,雷贝,等.利用混合二元酸合成混合酸二甲酯和聚酯多元醇的研究.河南化工,2007,24(8):26-28
    [59]杨磊,卢啸风.WFGD工艺典型脱硫添加剂应用探讨.电站系统工程,2007,23(3):4-7
    [60]孙文寿,吴忠标,谭天恩.硫酸镁对湿式石灰石烟气脱硫过程的影响研究.环境科学学报,2002,22(5):620-624
    [61]Daniel X J. Magnesium enrichment improves flue gas scrubbing. Power Engineering, 1980,85(9):71-72
    [62]崔丽琴,吴顺志,范祥子,等.氧化镁添加剂对旋流板塔石灰湿法脱硫效果的影响分析.煤矿环境保护,1996,10(5):21-23
    [63]孙文寿.添加剂强化石灰石/石灰湿式烟气脱硫研究:[浙江大学博士论文].杭州:浙江大学,2001,31
    [64]张新生,李长春,李光霞,等.燃煤烟气脱硫.武汉:中国地质大学出版社,1991:95
    [65]吴中标,余世清,莫建松.己二酸强化石灰石浆液溶解脱硫工艺过程研究.高校化学工程学报,2003,17(5):540-544
    [66]陈学泳,黄梅,李绍箕.有机羧酸添加剂对低浓度吸收剂脱硫效率的影响.华北电力技术,1999,(7):23-25
    [67]霍宇凝,刘珊,陆柱.新型水处理剂PASP的研究.华东理工大学学报,2000,21(3):298-300
    [68]崔科,张科.聚天冬氨酸的生物降解性能及降解机理研究.应用化工,2009,38(4):498-503
    [69]Takeshi Nakato, Masako Yoshitake. Relationships between structure and properties of polyaspartic acids. Macromolecules,1998,31(7):2107-2113
    [70]魏刚,许亚男,熊蓉春.阻垢剂的可生物降解性研究.北京化工大学学报,2001,28(1):59-62
    [71]陶虎春,黄君礼,杨士林,等.聚天冬氨酸的环境影响研究.环境科学研究,2004,17(5):32-35
    [72]Sike C S, Wheeler A P. Inhibition of Inorganic or Biological CaCO3 Deposition by Polyamino Acid Derivatives. US,4534881,1985-08-13
    [73]韶辉,冷一欣.聚天冬氨酸及其复配物对硫酸钙的阻垢性能.工业水处理,2003,23(7):30-32
    [74]徐耀军,杨文忠,唐永民,等.聚天冬氨酸的阻垢缓蚀性能.南京工业大学学报,2002,24(1):87-89
    [75]尤秀兰.绿色阻垢剂的研究进展.化学清洗,2000,16(2):36-38
    [76]胡兴刚,张小红.“环境友好”型阻垢分散剂及在油田水处理中的应用.工业水处理,2003,23(11):30-34
    [77]程传煊.表面物理化学.北京:科学技术文献出版社,1995:401
    [78]Little B J, Sikes C S. Corrosion Inhibitor by Thermal Polyaspartate in Sulfate Reactive Peptides and Polymer. ACE Symp Siries,1989,263
    [79]梅平,刘华荣,陈武.聚合物阻垢剂研究进展.化学工程师,2007,21(8):352-353
    [80]韩应琳,刁月民.水溶性聚合物分散阻垢剂结构与性能的关系.化工时刊,1993,(2):9-13
    [81]梅平,肖俊霞.膦基聚羧酸与其他水处理剂的协同效应研究.油气田环境保护,2004,14(4):26-28
    [82]韩应琳,刁月民.2-膦酸丁烷-1,2,4-三羧酸的合成.工业水处理,1993,13(6):16-19
    [83]杨红健,王芳,侯凯湖.聚天冬氨酸的结垢及其阻垢性能研究.工业水处理,2005,25(7):26-28
    [84]夏明珠,王风云,雷武.羧酸聚合物对硫酸盐垢的抑制作用和机理.石油学报,2008,24(4):460-464
    [85]苏大雄,钱枫.石灰湿法脱硫过程中pH条件对结垢的影响研究.环境污染与防治,2005,27(3):198-200
    [86]路长青,汪鹰,马迎军,等.磺酸共聚物的合成及阻垢分散性能的研究.工业水处理,1995,15(3):14-17
    [87]Yang Qingfeng, Liu Yangqiao, Gu Anzhong, et al. Investigation of Calcium Carbonate Scaling Inhibition and Scale Morphology by AFM. Journal of Colloid and Interface Science,2001,240(2):608-621
    [88]Dyer S L, Graham G M. The effect of temperature and pressure on oilfield scale formation. Journal of Petroleum Science and Engineering,2002,35(1-2):95-107
    [89]朱志良,张冰如,李继文,等.不同阻垢剂对硫酸钙结晶生长诱导期影响的动力学探讨.应用化学,2001,18(3):192-195
    [90]张玉玲,黄君礼,杨士林,等.聚天冬氨酸与聚丙烯酸对硫酸钙、碳酸钙静态阻垢性能的对比研究.东华大学学报,2004,30(5):120-123
    [91]Wen Ruimei, Deng Shouquan, Zhu Zhiliang, et al. Studies on Complexation of ATMP, PBTCA, PAA and PMAAA with Ca2+ in Aqueous Solutions. Chem res Chinese U,2004, 20(1):36-39
    [92]汪祖模.水质稳定剂.上海:华东化工学院出版社,1991:100-105
    [93]Emmanuel G, Marc D. Polyaspartate, a new alternative for the conditioning of cooling water,14th international conference on the properties of water and steam in Kyoto,2004, 587-593
    [94]Yang Qingfeng, Gu Anzhong, Ding Jie, et al. Effects of PAA and PBTCA on CaCO3 scaling in pool boiling system, Chinese J Chem Eng.,2002,10(2):190-197
    [95]张大全,刘丽佳,辛志玲,等.氧化镁湿法烟气脱硫结垢性能的研究.电力环境保护,2007,23(6):20-22
    [96]王剑波,卢园,曹怀宝.聚天冬氨酸阻垢机理研究.安徽理工大学学报,2009,29(1):23-26
    [97]Bansal B, Muller-Steinhagen H, Chen X D. Effect of suspended particles on crystallization fouling in plate heat exchangers. Journal of heat transfer,1997,119(3): 568-574
    [98]Markus Forster, Matthias Bohnet. Modification of molecular interactions at the interface crystal heat transfer surface to minimize heat exchanger fouling. Int J Therm Sci,2000, 39(7):697-708
    [99]李进勇.环保型阻垢缓蚀剂的研制与机理研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2008:56-62
    [100]杨传芳,徐敦颀,沈自求.表面材质及Mg2+对CaCO3结垢的影响.高校化学工程学报,1994,8(7):313-317
    [101]Zhao Q, Liu Y, Wang S. Surface modification of water treatment equipment for reducing CaSO4 scale formation. Desalination,2005,180(1-3):133-138
    [102]张仲彬,徐志明,邱振波.表面特性和流动特性对结垢诱导期影响的实验研究.工程热物理学报,2009,30(1):144-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700