磁敏感加权成像在新生儿脑损伤病变中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察正常新生儿脑在磁敏感加权成像上的表现,并探讨纠正胎龄足月的早产儿和出生28天内的足月新生儿脑在SWI的图像上是否有差异。
     材料和方法:10例临床上无脑损伤的高危因素及临床表现的新生儿,为排除其他疾病可能引起的脑损伤而进行常规MRI检查,结果显示未见明显异常。10例新生儿中5例为纠正胎龄足月的早产儿,5例为出生28天内的足月儿。应用西门子Avanto 1.5T超导型MR扫描系统的fast SWI序列,进行SWI检查。扫描时间为3分29秒。观察SWI图上正常新生儿脑的表现。
     结果:10例新生儿成功进行SWI序列。SWI图上新生儿脑实质呈现比较均匀的等信号,灰白质分界不清,脑实质内除了连续的呈低信号的静脉,其余区域未见异常低信号影;脑室系统呈现较正常脑实质略低的中等信号。MinIP图可清晰显示新生儿主要的静脉和脑表面的细小静脉。对SWI图进行不同层厚的MinIP重建,可提供更全面的关于静脉和解剖部位的信息。
     结论:纠正足月龄的早产儿和28天内的足月儿的脑SWI图像未见显著不同,正常新生儿SWI图除了静脉呈低信号,其余脑实质内未见低信号影。SWI图MinIP图能有助于显示新生儿脑静脉。
     第二部分磁敏感加权成像在新生儿颅内出血的应用
     目的:探讨SWI在新生儿颅内出血的应用价值。
     材料和方法:对596例临床怀疑脑损伤的新生儿同时进行常规MRI和SWI扫描,常规MRI和/或SWI上诊断为脑出血的病例共134例,其中早产儿81例,足月儿53例。分析不同部位颅内出血在SWI上的表现;记录常规MRI和SWI检测的出血病例数和出血灶数目,并记录最大出血灶的面积。
     结果:134例中19例仅显示颅内脑外出血(17例为硬膜下出血,1例为硬膜下出血伴蛛网膜下腔出血,1例为硬膜外出血),19例均在SWI图像中显示,但其中1例硬膜下出血在常规MRI上未显示。115例新生儿在SWI图像上显示存在脑内出血,其中16例常规MRI未显示。98例新生儿颅内出血(包括生发基质-脑室内出血、大脑和小脑实质出血)最大病灶的面积在SWI上大于常规MRI的T2WI序列,两者之间的差异有统计学意义(Z=-8.337,P<0.01)。生发基质-脑室内出血(6个部位)中,除了中脑导水管出血外,其它5个部位的检出阳性数均是SWI明显优于常规MRI,两者之间的差异有统计学意义(P<0.05)。SWI对蛛网膜下腔出血的检出阳性数明显优于常规MRI,两者之间的差异有统计学意义(P<0.05);对硬膜下出血和硬膜外出血的检出阳性数上,两者之间的差异无统计学意义(P>0.05)。
     结论:SWI较常规MRI在检出新生儿各种类型的脑内出血和蛛网膜下腔出血的阳性率、病灶数目、大小方面有着明显的优势,可作为常规MRI的有力的补充。
     第三部分磁敏感加权成像在新生儿脑白质损伤中的应用
     目的:探讨磁敏感加权成像在新生儿脑白质损伤病变(斑点状白质病变和囊性脑室周围白质软化)中的应用价值。
     方法:对2008年8月-2010年4月中我院常规MRI上显示为斑点状白质病变(punctate white matter lesions, PWML)和囊性脑室周围白质软化(Periventricular leukomalacia, PVL)的新生儿进行SWI检查。其中PWML64例,PVL29例。64例1PWML病例中34例早产儿,30例足月儿,根据T2WI上信号特征将PWML病变分为两组:第一组病变在T2WI上呈等信号;第二组病变在T2WI上呈低信号,分别观察两组PWML在SWI上的表现。29例PVL病例中24例早产儿,5例足月儿观察PVL的囊性病变区有无出血和侧枝静脉形成。
     结果:64例PWML中仅6例(9.4%)在SWI可见斑点状低信号出血。第一组共17例,仅1例SWI示相应PWML区域显示出血,其余16例SWI示相应PWML区域未显示出血;第二组共47例,其中42例SWI上相应PWML区域未显示出血,仅5例SWI示相应PWML区域显示出血。29例PVL病例常规MRI未显示囊性病变区存在出血和侧枝静脉形成,在SWI图像上,29例PVL中6例(20.7%)囊性病变区域见斑点状低信号的出血,23例(79.3%)SWI上相应区域未见呈低信号的出血灶;29例PVL中18例(62.1%)在囊性病变区域见侧枝静脉形成,其余11例(37.9%)SWI上PVL区域未见明显的侧枝静脉形成。
     结论:SWI能鉴别新生儿脑T1高信号而T2等或低信号的PWML内是否存在出血,新生儿大部分PWML在SWI上显示无出血。SWI能显示常规MRI上难以显示的PVL囊性病变区域是否存在出血和侧枝静脉形成,可作为常规MRI的补充。
PartⅠThe application of MR susceptibility weighted imaging in normal neonatal brain
     Objective:To investigate the the appearance of normal neonatal brain on susceptibility weighted imaging.
     Methods:Ten neonates without high risks of brain injury and the manifestation of neonatal brain injury were examined with a 1.5T MR imaging system (Avanto; Siemens, Erlangen, Germany). All of 10 neonates were performed with conventional MRI sequences and SWI. The routine MR imaging protocol included sagittal and transverse T1-weighted, transverse T2-weighted, transverse Flair(fluid-attenuated inversion recovery) and transverse diffusion-weighted imaging. There were no abnormal appearances on conventional MRI. Among of 10 neonates,5 neonates were preterm at term-equivalent age, another 5 neonates were term neonates. The acquisition time of SWI was 3 minutes and 29 seconds. To assess appearance and signal-intensity changes of the healthy neonatal brain on SWI.
     Results:All of 10 neonates were successfully performed with conventional MRI sequences and SWI. The cerebral parenchyma has intermediate signal intensity with loss of gray/white matter differentiation. There is partial suppression of cerebrospinal fluid (CSF) signal with the ventricles of intermediate signal, slightly hypointense to brain. The small cortical veins are seen as linear hypointensities. The MinIP images improve visualisation of cortical veins and demonstrates their tubular nature enabling differentiation from focal hemorrhagic lesions. Conclusions:There was no evidence difference on SWI between preterm at term-equivalent age and term neonates. The cortical veins are hypointense on SWI, and there no other hypointense in pararenchyma of neonatal brain.
     The MinIP images improve visualisation of veins.
     PartⅡThe application of MR susceptibility weighted imaging in intracranial hemorrhage of neonate
     Objective To evaluate neonatal intracranial hemorrhage with susceptibility weighted imaging (SWI), and to explore the value and limitation of SWI compared with conventional magnetic resonance imageing.
     Materials and Methods We conducted a prospective study including 596 neonates who were suspected injury of brin. All MR examinations were performed at 1.5 Tesla unit including conventional MR(T1, T2 and Flair sequences), DWI and SWI. Among 596 neonates there were 134 neonates with intracranial hemorrhage detected on routine MRI sequence and/or SWI.Among neonates with intracranial hemorrhage there were 81 preterm and 53 term neonates. To access neonatal intracranial hemorrhage appearance on SWI, and compare the numbers and areas of hemorrhage on conventional MRI sequences and SWI.
     Results Among 134 neonates with intracranial hemorrhage, there were only 19 case showed extracerebral hemorrhage (17 cases subdural hemorrhage, and 1 case extradural hemorrhage with subarachnoid hemorrhage, and 1 case extradural hemorrhage), all 19 cases were showed on SWI, and 1 case with subdural hemorrhage did not showed on conventional MRI sequences.115 case were detected with parenchymal hemorrhage, and among them 16 cases did not be detected on conventional MRI sequences.98 cases with parenchymal hemorrhage were measured the maximal areas, the maximal areas of hemorrhage was larger on SWI than conventional,the statistical differences were considered as statistically significant (Z =-8.337, P<0.01). Six areas of germinal matrix hemorrhage/intraventricular hemorrhage, except the hemorrhage of aqueduct of mesencephalon, other 5 areas with hemorrhage were deteced more cases on SWI than conventional MRI sequences, the statistical differences were considered as statistically significant (P<0.05).SWI detected more cases with subarachnoid hemorrhage than conventional MRI sequences. There was no significant differences when compared subdural hemorrhage and extradural hemorrhage detected on SWI and conventional MRI.
     Conclusions:SWI is a potent examination for cerebral bleeding displaying due to the higher sensitivity compared with the other conventional MRI sequences, and has predominant advantage over conventional MRI sequences in detecting intracranial hemorrhage of neonate
     PartⅢThe application of MR susceptibility weighted imaging in neonatal white matter injury
     Objective:To evaluate neonatal white matter injuty (punctate white matter lesions and periventricular leukomalacia) in neonatal brain injury with susceptibility weighted imaging,and to explore the value and limitation of SWI compared with conventional magnetic resonance imageing.
     Materials and Methods:We conducted a prospective study including 64 neonates presenting with PWML and 29 neonates presenting with periventricular leukomalacia at first MRI. All MR examinations were performed at 1.5 Tesla unit including conventional MR (T1, T2 and Flair sequences), DW1 and SWI. PWML were defined as punctuate lesions with T1 hyperintensity and T2 isointensity or hypointensity in the white matter. Among neonates with PWML there were 34 preterm and 30 term neonates. PWML were classified into two groups:1) T1 hyperintensity and T2 isointensity; 2) T1 hyperintensity and T2 hypointensity. To analyze whether two groups of PWML contains hemorrhage on SWI. Among neonates with PVL there were 24 preterm and 5 term neonates. To accesse whether PVL contains hemorrhage and/or collateral vein on SWI.
     Results:Among all cases of PWML, there are only 6 cases (9.4%) showed evidence of hemorrhage on SWI. There were 17 cases in group 1, only 1 case showed punctate hypointensity in the areas of PWML on SWI, and other 16 cases showed no hemorrhage on SWI.47 cases were in group 2, only 5 cases showed evidence of hemorrhage on SWI, and other 42 cases were absent hemorrhage on SWI. Among 29 cases with PVL, there were 6 (20.7%) cases showed punctate hypointensity in the areas of PVL on SWI, and other 23 cases were abent hemorrhage on SWI. There were 18 (62.1%) cases showed collateral vein in the areas of PVL on SWI, and other 11 cases were abent collateral vein in the areas of PVL on SWI.
     Conclusion:Most areas of PWML in neonatal brain showed no hemorrhage on SWI. SWI can help identify whether PWML of neonates contains hemorrhage. SWI also can help identify whether PVL of neonates contains hemorrhage and collateral vein.
引文
[1]Tong KA, Ashwal S, Obenaus A, et al. Susceptibility-weighted MR imaging: a review of clinical applications in children(Review) [J]. Am J Neuroradiol,2008,29(1):9-17.
    [2]Mittal S, Wu Z, Neelavalli J, et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2[J]. AJNR Am J Neuroradiol,2009,30(2):232-252.
    [3]Harder SL, Hopp KM, Ward H, et al. Mineralization of the deep gray matter with age:a retrospective review with susceptibility-weighted MR imaging[J]. AJNR,2008,29(1):176-183.
    [4]Mori N, Miki Y, Kikuta K, et al. Microbleeds in moyamoya disease: susceptibility-weighted imaging versus T2*-weighted imaging at 3 Tesla[J]. Invest Radiol,2008,43(8):574-579.
    [5]Zhu WZ, Qi JP, Zhan CJ, et al. Magnetic resonance susceptibility weighted imaging in detecting intracranial calcification and hemorrhage[J]. Chin Med J (Engl),2008,121 (20):2021-2025.
    [6]Santhosh K, Kesavadas C, Thomas B, et al. Susceptibility weighted imaging:a new tool in magnetic resonance imaging of stroke[J]. Clin Radiol,2009,64(1):74-83.
    [7]Wu Z, Li S, Lei J, et al. Evaluation of traumatic subarachnoid hemorrhage using susceptibility-weighted imaging [J]. Am J Neuroradiol, 2010,31(7):1302-1310.
    [8]Babikian T, Freier MC, Tong KA, et al. Susceptibility weighted imaging: neuropsychologic outcome and pediatric head injury [J]. Pediatr Neurol, 2005,33(3):184-194.
    [9]Huang AH, Robertson RL. Spontaneous superficial parenchymal and leptomeningeal hemorrhage in term neonates[J]. Am J Neuroradiol,2004, 25(3):469-475
    [10]祁英,王晓明.磁敏感加权成像在探测新生儿局灶性脑白质损伤[J].中国医学影像技术,2010,26(1):193-194.
    [11]刘啟泽,刘国瑞,陈俊斌.磁敏感加权成像技术在新生儿缺氧缺血性脑病检查和诊断中的价值[J].实用医技杂志,2009,16(6):429-430.
    [12]詹传银,苏欢欢,张琳等.3.0T磁敏感加权成像在新生儿颅内出血中的应用价值[J].临床放射学杂志,2010,29(11):1520-1523.
    [13]Reichenbach JR, Venkatesan R, Schillinger DJ, et al. Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent[J]. Radiology,1997,204(1):272-277.
    [14]Ong BC, Stuckey SL. Susceptibility weighted imaging:a pictorial review[J]. J Med Imaging Radiat Oncol,2010,54(5):435-449.
    [15]Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment. Stroke,2004,35(8):1989-1994.
    [16]Sehgal V, Delproposto Z, Haacke EM, et al. Clinical applications of neuroimaging with susceptibility-weighted imaging[J]. J Magn Reson Imaging,2005,22(4):439-450.
    [17]Tong KA, Ashwal S, Holshouser BA, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results[J]. Radiology,2003,227 (2) 332-339.
    [18]Wycliffe ND, Choe J, Holshouser B, et al. Reliability in detection of hemorrhage in acute stroke by a new three-dimensional gradient recalled echo susceptibility-weighted imaging technique compared to computed tomography:a retrospective study[J]. J Magn Reson Imaging,2004,20(3): 372-377.
    [19]Linfante I, Llinas RH, Caplan LR, et al. MR I features of intracerebral hemorrhage within 2 hours from symptom onset[J]. Stroke,1999,30(11): 2263-2267.
    [20]Sehgal V, Delproposto Z, Haddar D et al. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses [J]. J Magn Reson Imaging,2006,24(1):41-51
    [21]Li D, Waight DJ, Wang Y. In vivo correlation between blood T2* and oxygen saturation[J]. J Magn Reson Imaging,1998,8(6):1236-1239.
    [22]Hoogenraad FGC, Reichenbach JR, Haacke EM, et al. In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 Tesla by measuring changes in susceptibility and velocity[J]. Magn Reson Med,1998,39(1):97-107.
    [23]Amemiya S, Aoki S, Takao H. Venous congestion associated with developmental venous anomaly:findings on susceptibility weighted imaging[J]. J Magn Reson Imaging,2008,28(6):1506-1509.
    [24]Rcichenbach JR, Jonetz-Mentzel L, Fitzek C, et al. High-resolution blood oxygen-level dependent MR venography (HRBV):a new technique[J]. Neuroradiology,2001,43(5):364-369.
    [25]Wu Z, Mittal S, Kish K et al. Identification of calcification with MRI using susceptibility-weighted imaging:a case study [J]. J Magn Reson Imaging,2009,29(1):177-182.
    [26]Zhu WZ, Qi JP, Zhan CJ, et al. Magnetic resonance susceptibility weighted imaging in detecting intracranial calcification and hemorrhage[J]. Chin Med J (Engl),2008,121 (20):2021-2025.
    [27]Tong KA, Ashwal S, Holshouser BA, et al. Diffuse axonal injury in children:clinical correlation with hemorrhagic lesions [J]. Ann Neurol, 2004,56(1):36-50.
    [28]Mary AR. MRI of the neonatal brain[M]. London:Harcourt publishers, 2002,172.
    [29]Niwa T, Aida N, Shishikura A, Fujita K, Inoue T. Susceptibility-weighted imaging findings of cortical laminar necrosis in pediatric patients[J]. AJNR,2008,29(9):1795-1798.
    [30]徐塞英.主编.实用儿科放射诊断学[M].北京:北京出版社,1998,87-88.
    [31]邵肖梅,桂永浩.主编.胎儿和新生儿脑损伤[M].上海:上海科学教育出版社,2008,276.
    [32]Argyropoulou MI. Brain lesions in preterm infants:initial diagnosis and follow-up[J]. Pediatr Radiol,2010,40(6):811-818.
    [33]Papile LA, Burstein J, Burrstein R, et al. Incidence and evolution of subependymal and intraventricular hemorrhage:a study of infants with birth weights less than 1,500 gm [J].J Pediatr,1978,92(4):529-534.
    [34]Rutherford MA, Supramaniam V, Ederies A, et al. Magnetic resonance imaging of white matter diseases of prematurity [J]. Neuroradiology,2010, 52(6):505-521.
    [35]Whitelaw A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus:pathogenesis and future interventions [J]. Semin Neonatol,2001,6(2):135-146.
    [36]Vasileiadis GT, Gelman N, Han VK, et al. Uncomplicated intraventricular hemorrhage is followed by reduced cortical volume at near-term age [J]. Pediatrics,2004,114(3):e367-372.
    [37]Scavarda D, Bednarek N, Litre F, et al. Acquired aqueductal stenosis in preterm infants:an indication for neuroendoscopic third ventriculostomy [J]. Childs Nerv Syst,2003,19(10-11):756-759.
    [38]潘恩源,陈丽英.主编.儿科影像学诊断[M].北京:人民卫生出版社2007,137-138.
    [39]Tam EW, Miller SP, Studholme C, et al. Differential effects of intraventricular hemorrhage and white matter injury on preterm cerebellar growth [J]. J Pediatr,2011,158(3):366-371.
    [40]Steggerda SJ, Leijser LM, Wiggers-de Bruine FT, et al. Cerebellar injury in preterm infants:incidence and findings on US and MR images [J]. Radiology,2009,252(1):190-199.
    [41]Castro Conde JR, Martinez ED, Rodriguez RC,et al. CNS siderosis and dandy-walker variant after neonatal alloimmune thrombocytopenia [J]. Pediatr Neurol,2005,32(5):346-349.
    [42]Messerschmidt A, Brugger PC, Boltshauser E, et al. Disruption of cerebellar development:potential complication of extreme prematurity [J]. Am J Neuroradiol,2005,26(7):1659-1667.
    [43]Felderhoff-Mueser U, Rutherford MA, Squier WV, et al. Relationship between MR imaging and histopathologic findings of the brain in extremely sick preterm infants [J]. AJNR,1999,20(7):1349-1357.
    [44]Volpe JJ. Brain injury in premature infants:a complex amalgam of destructive and developmental disturbances [J]. Lancet Neurol,2009,8(1): 110-124.
    [45]Miller SP, Cozzio CC, Goldstein RB, et al. Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings [J]. AJNR,2003,24(8):1661-1669
    [46]Panigrahy A, Bluml S. Advances in magnetic resonance imaging of the injured neonatal brain [J]. Pediatr Ann,2008,37(6):395-402.
    [47]Swarte R, Lequin M, Cherian P, et al. Imaging patterns of brain injury in term-birth asphyxia [J]. Acta Paediatr,2009,98(3):586-592.
    [48]Burns CM, Rutherford MA, Boardman JP, et al. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia [J]. Pediatrics,2008,122(1):65-74.
    [49]Amenghi LA, Fumagalli M, Righini A, et al. Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions[J]. Neuroradiology,2007,49(2):161-167.
    [50]朱文珍,漆剑频,夏黎明,等.新生儿缺氧缺血性脑病MRI表现及其与预后的关系[J].临床放射学杂志,2006,25(7):666-670.
    [51]Dyet LE, Kennea N, Counsell SJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment [J]. Pediatrics,2006,118(2):536-548.
    [52]Ramenghi LA, Fumagalli M, Righini A, et al. Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions [J]. Neuroradiology,2007,49(2):161-167.
    [53]Miller SP, Cozzio CC, Goldstein RB, et al. Comparing the diagnosis of white matter injury in premature newborns with serial MR imaging and transfontanel ultrasonography findings [J]. AJNR,2003,24(8):1661-1669
    [54]Counsell SJ, Rutherford MA, Cowan FM, et al. Magnetic resonance imaging of the preterm brain injury [J]. Arch Dis Child,2002, 88(4):F269-F274.
    [55]Cornette LG, Tanner, SF, Ramenghi LA, et al. Magnetic resonance imaging of the infant brain:anatomical characteristics and clinical significance of punctate lesions [J]. Arch Dis Child Fetal Neonatal Ed,2002,86(3):F171-F177.
    [56]Ernst M, Baryonic A. Magnetic resonance imaging in perinatal asphyxia [J]. Arch Dis Child Fetal Neonatal Ed,1995,72(1):F62-F70.
    [57]Arthur R. Magnetic resonance imaging in preterm infants [J]. Pediatr Radiol,2006,36(7):593-607.
    [58]Sie LT, Hart AA, van Hoof J, et al. Predictive value of neonatal MRI with respect to late MRI findings and clinical outcome. A study in infants with periventricular densities on neonatal ultrasound[J]. Neuropediatrics,2005,36(2):78-89.
    [59]Dyet LE, Kennea N, Counsell SJ, et al. Natural history of brain lesions in extremely preterm infants studied with serial magnetic resonance imaging from birth and neurodevelopmental assessment[J]. Pediatrics,2006,118(2):536-548.
    [60]Panigrahy A, Bluml S. Advances in magnetic resonance imaging of the injured neonatal brain [J]. Pediatr Ann,2008,37(6):395-402.
    [61]Niwa T, Aida N, Shishikura A, et al. Susceptibility-weighted imaging findings of cortical laminar necrosis in pediatric patients [J]. AJNR, 2008,29(9):1795-1798.
    [62]Kesavadas C, Santhosh K,, Thomas B, et al. Signal changes in cortical laminar necrosis-evidence from susceptibility-weighted magnetic resonance imaging[J]. NEURORADIOLOGY 2009,51 (5):293-298.
    [63]Rutherford MA, Supramaniam V, Ederies A, et al. Magnetic resonance imaging of white matter diseases of prematurity [J]. Neuroradiology.2010, 52(6):505-521.
    [64]Wu Z, Mittal S, Kish K, et al. Identification of calcification with MRI using susceptibility-weighted imaging:a case study [J]. J Magn Reson Imaging,2009,29(1):177-182.
    [65]龙晚生,罗学毛,梁长虹,李晓群,苏荣森,梁健强,等.儿童脑室周围软化症的临床和MRI诊断[J].中华放射学杂志,1998,32(5):303-305.
    [66]Bax M, Tydeman C, Flodmark 0. Clinical and MRI correlates of cerebral palsy:the European Cerebral Palsy Study [J]. JAMA,2006, 296(13):1602-1608.
    [67]陈丽英.头颅磁共振成像在早产儿的临床应用[J].中国实用儿科杂志,2000,15(12):756-758.
    [68]Deguchi K, Oguchi K, Matsuura N, Armstrong DD, Takashima S. Periventricular leukomalacia:relation to gestational age and axonal injury[J]. Pediatr Neurol,1999,20(5):370-374.
    [69]Johnston MV. Selective vulnerability in the neonatal brain [J]. Ann Neurol,1998,44(2):155-156.
    [70]De Vries LS, Van Haastert IL, Rademaker KJ, et al. Ultrasound abnormalitiespreceding cerebral palsy in high-risk preterm infants[J]. J Pediatr,2004,144(6):815-820.
    [71]Inder T, Huppi PS, Zientara GP, et al. Early detection of periventricular leukomalacia by diffusion-weighted magnetic resonance imaging techniques [J]. J Pediatr.1999,134(5):631-634.
    [72]Bozzao A, Di Paolo A, Mazzoleni C, et al. Diffusion-weighted MR imaging in the early diagnosis of periventricular leukomalacia [J]. Eur Radiol,2003,13(7):1571-1576.
    [73]Wu Z, Mittal S, Kish K, et al. Identification of calcification with MRI using susceptibility-weighted imaging:a case study [J]. J Magn Reson Imaging,2009,29(1):177-182.
    [74]黄新明,孙斌,薛蕴.磁敏感加权成像检测帕金森病患者脑铁沉积[J].中华医学杂志,2010,90(43):3054-3058.
    [75]Haacke EM, Makki M, Ge Y, et al. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging [J]. J Magn Reson Imaging,2009,29(3):537-544.
    [1]Reichenbach JR, Venkatesan R, Schillinger DJ, et al. Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent[J]. Radiology,1997,204(1):272-277.
    [2]Hoogenraad FG, Reichenbach JR, Haacke EM, et al. In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 tesla by measuring changes in susceptibility and velocity[J]. Magn Reson Med,1998,39(1):97-107.
    [3]Gomori JM, Grossman RI, Yu-Ip C, et al. NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity [J]. J Comput Assist Tomogr,1987,11 (4):684-690.
    [4]Haacke EM, Cheng NY, House MJ, et al. Imaging iron stores in the brain using magnetic resonance imaging[J]. Magn Reson Imaging,2005,23 (1):1-25.
    [5]Li D, Waight DJ, Wang Y. In vivo correlation between blood T2* and oxygen saturation [J]. J Magn Reson Imaging.1998,8 (6):1236-1239.
    [6]Thulborn KR, Waterton JC, Matthews PM, et al. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field[J]. Biochim Biophys Acta.1982; 714 (2):265-270.
    [7]Sehgal V, Delproposto Z, Haacke M, et al. Clinical applications of neuroimaging with susceptibilityweighted imaging[J]. J Magn Reson Imaging,2005,22 (4):439-450.
    [8]Cheng YC, Haacke EM. Predicting BOLD signal changes as a function of blood volume fraction and resolution [J]. Nmr Biomed.2001,14 (7-8) 468-477.
    [9]Haacke EM, Lai S, Yablonskiy DA, et al. In vivo validation of the BOLD mechanism:a review of signal changes in gradient echo functional MRI in the presence of flow [J]. Int J Imaging Syst Technol.1995,6(2-3): 153-163.
    [10]Lin W, Mukher jee P, An H, et al. Improving highresolution MR bold venographic imaging using a T1 reducing contrast agent [J]. J Magn Reson Imaging.1999,10 (2):118-123.
    [11]Sedlacik J, Helm K, Rauscher A, et al. Investigations on the effect of caffeine on cerebral venous vessel contrast by using susceptibility-weighted imaging (SWI) at 1.5,3 and 7T [J]. Neuroimage, 2008,40 (1):11-18.
    [12]Rauscher A, Sedlacik J, Barth M, et al. Nonnvasive assessment of vascular architecture and function during modulated blood oxygenation using susceptibility weighted magnetic resonance imaging [J]. Magn Reson Med,2005,54(1):87-95.
    [13]Abduljalil AM, Schmalbrock P, Novak V, et al. Enhanced gray and white matter contrast of phase susceptibility-weighted images in ultra-high-field magnetic resonance imaging [J]. J Magn Reson Imaging, 2003,18(3):284-290.
    [14]Haacke EM, Xu Y, Cheng YC, et al. Susceptibility weighted imaging (SWI) [J]. Magn Reson Med,2004,52(3):612-618.
    [15]Reichenbach JR, Barth M, Haacke EM, et al. High-resolution MR venography at 3.0 Tesla[J]. J Comput Assist Tomogr,2000,24(6): 949-957.
    [16]Lou X, Ma L, Wang FL, et al. Susceptibility-weighted imaging in the diagnosis of early basal ganglia germinoma [J]. Am J Neuroradiol, 2009,30(9):1694-1699.
    [17]. Pinker K, Noebauer-Huhmann IM, Stavrou Ⅰ, et al. High-field, high-resolution, susceptibility-weighted magnetic resonance imaging: improved image quality by addition of contrast agent and higher field strength in patients with brain tumors [J]. Neuroradiology,2008, 50(1):9-16.
    [18]Pinker K, Noebauer-Huhmann IM, Stavrou I, et al. High-resolution contrastenhanced susceptibility-weighted MR imaging at 3 T in patients with brain tumors:correlation with positron-emission tomography and histopathologic findings [J]. Am J Neuroradiol,2007, 28 (7):1280-1286.
    [19]. Mittal S, Wu Z, Neelavalli J, et al. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2[J]. Am J Neuroradiol,2009,30 (2):232-252.
    [20]Wu Z, Mittal S, Kish K, et al. Identification of calcification with magnetic resonance imaging using susceptibility-weighted imaging:a case study [J]. J Magn Reson Imaging,2009,29 (1):177-182.
    [21]Sehgal V, Delproposto Z, Haddar D, et al. Susceptibility-weighted imaging to visualize blood products and improve tumor contrast in the study of brain masses [J]. J Magn Reson Imaging,2006,24(1):41-51.
    [22]Tynninen O, Aronen HJ, Ruhala M, et al. MRI enhancement and microvessels density in gliomas, correlation with tumor cell proliferation [J]. Invest Radiol,1999,34(6):427-434.
    [23]Li C, Ai B, Li Y, et al. Susceptibility-weighted imaging in grading brain astrocytomas [J]. Eur J Radiol,2010,75(1):e81-85.
    [24]Hori M, Ishigame K, Kabasawa H, et al. Precontrast and postcontrast susceptibility-weighted imaging in the assessment of intracranial brain neoplasms at 1.5 T [J]. Jpn J Radiol,2010,28(4):299-304.
    [25]Ong BC, Stuckey SL. Susceptibility weighted imaging:a pictorial review [J]. J Med Imaging Radiat Oncol,2010,54(5):435-449.
    [26]Kidwell CS, Saver JL, Villablanca JP, et al. Magnetic resonance imaging detection of microbleeds before thrombolysis:an emerging application [J]. Stroke,2002,33(1):95-98.
    [27]Hermier M, Nighoghossian N. Contribution of susceptibility-weighted imaging to acute stroke assessment [J]. Stroke,2004,35(8): 1989-1994.
    [28]Wycliffe ND, Choe J, Holshouser B, et al. Reliability in detection of hemorrhage in acute stroke by a new three-dimension gradient recall echo susceptibility-weighted imaging technique compared to computed tomography:a retrospective study [J]. J Magn Reson Imaging,2004, 20(3):372-377.
    [29]Lee JM, Vo KD, An H, et al. Magnetic resonance cerebral metabolic rate of oxygen utilization in hyperacute stroke patients [J]. Ann Neurol,2003,53(2):227-232.
    [30]Tong KA, Ashwal S, Obenaus A, et al. Susceptibility-weighted MR imaging:a review of clinical applications in children (Review) [J]. Am J Neuroradiol,2008,29(1):9-17.
    [31]Linfante I, Llinas RH, Caplan LR, et al. MRI features of intracerebral hemorrhage within 2 hours from symptom onset [J]. Stroke,1999,30(11): 2263-2267.
    [32]沈天真,陈星荣.神经影像学[M].上海科学技术出版社2004:424.
    [33]Lee BC, Vo KD, Kido DK, et al. MR high-resolution blood oxygenation level-dependent venography of occult (low-flow) vascular lesions [J]. Am J Neuroradiol,1999,20(7):1239-1242.
    [34]Rcichenbach JR, Jonetz-Mentzel L, Fitzek C, et al. High-resolution blood oxygen-level dependent MR venography (HRBV):a new technique[J]. Neuroradiology,2001,43(5):364-369.
    [35]Essig M, Reichenbach JR, Schad JR, et al. High-resolution MR venography of cerebral arteriovenousmal formations. Magn Reson Imaging[J],1999,17(10):1417-1425.
    [36]Sigmund GA, Tong KA, Nickerson JP, et al. Multimodality comparison of neuroimaging in pediatric traumatic brain injury[J]. Pediatr Neurol, 2007,36(4):217-226
    [37]Tong KA, Ashwal S, Holshouser BA, et al. Diffuse axonal injury in children:clinical correlation with hemorrhagic lesions[J]. Ann Neurol,2004,56(1):36-50.
    [38]Babikian T, Freier MC, Tong KA, et al. Susceptibility weighted imaging:neuropsychologic outcome and pediatric head injury [J]. Pediatr Neurol,2005,33(3):184-194.
    [39]Shen Y, Kou Z, Kreipke CW, et al. In vivo measurement of tissue damage, oxygen saturation changes and blood flow changes after experimental traumatic brain injury in rats using susceptibility weighted imaging [J]. Magn Reson Imaging,2007,25(2):219-227.
    [40]Tong KA, Ashwal S, Holshouser BA, et al. Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury improved detection and initial results [J]. Radiology,2003,227(2): 332-339.
    [41]Sigmund GA, Tong KA, Nickerson JP, et al. Multimodality comparison of neuroimaging in pediatric traumatic brain injury [J]. Pediatr Neurol,2007,36(4):217-226.
    [42]Ashwal S, Holshouser BA, Tong KA. Use of advanced neuroimaging techniques in the evaluation of pediatric traumatic brain injury [J]. Dev Neurosci,2006,28(4-5):309-326.
    [43]Kraft E, Trenkwalder C, Auer DP. T2*-weighted MRI differentiates multiple system atrophy from Parkinson's disease [J]. Neurology,2002, 59(8):1265-1267.
    [44]Tan IL, van Schijndel RA, Pouwels PJ, et al. MR venography of multiple sclerosis[J]. Am J Neuroradiol,2000,21(6):1039-1042.
    [45]Haacke EM, Makki M, Ge Y, et al. Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging[J]. J Magn Reson Imaging,2009,29(3):537-544.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700