放电引发非链式DF激光器关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟化氘(DF)激光器输出波长(3.5~4.1μm)处于大气透射窗口,它是激光雷达、激光光谱学、激光与物质相互作用等领域急需的中波红外激光光源。本文围绕重复频率非链式DF激光器,重点研究了大体积均匀辉光放电,光学谐振腔,重复频率运转及尾气处理等关键技术。在此基础上,进行了DF激光器增益系数测量、光谱特性分析及激光器输出性能优化实验研究,为研制具有实用价值的非链式DF激光器奠定了基础。
     为了实现大体积均匀辉光放电,研究了火花针紫外预电离放电引发非链式DF激光器(采用LC反转电路)的放电特性。采用电子连续性方程与基尔霍夫回路方程建立了描述DF激光器放电特性的数学模型,并对理论模型进行了实验验证,发现理论与实验结果相符。进而运用该模型仿真获得了有利于提升注入能量的电路参数。为了获得更大间隙的辉光放电,引进了“自引发”放电方式,它采用一种倍压式反转电路和粗糙阴极结构,无需预电离装置即可实现大体积均匀放电。建立了能够描述倍压式反转电路放电特性的数学模型,实验与模拟结果均显示,“自引发”放电引发方式具有实现更大间隙辉光放电的潜力。
     谐振腔参数对激光器输出性能和抗失调特性影响显著,理论分析了平凹腔光束宽度、远场发散角、失调灵敏度及有效模体积随后反射镜曲率半径的变化关系,获得了最佳的后反射镜曲率半径参数。同时设计了三组正分支非稳定共焦腔参数,并分析了其失调特性。运用烧蚀法分别获得了平凹腔与非稳腔的近、远场光斑,实验测量平凹腔、非稳腔的远场发散角分别为6mrad、1.2mrad。
     DF激光器在封闭循环运转时,单次充气寿命较短,工作物质的消耗和放电产物的消激发作用是导致激光输出性能下降的主要因素。提出了一种可实时梯次更新工作气体的技术方案,并分析了化学吸附剂消除放电产物中消激发作用最显著的DF分子的可行性方案。采用分子筛吸附剂和工作气体实时更新系统,可有效提升激光器输出稳定性。通过分析DF激光器放电过程中发生的化学反应,发现其工作尾气中的有害成分主要为DF及SF4。进而分析了碱性溶液洗消DF及SF4的原理,并设计了一种小型化尾气洗消装置,处理后的工作尾气可达到国家安全排放标准。
     考虑了谱线加宽对增益系数的影响,推导了运用变耦合率法计算DF激光器增益系数的算法,并运用该算法实验研究了DF激光器横截面上的二维增益分布。运用DF激光谱线分析仪测量了DF激光器的输出光谱,在3.5~4.1μm范围内测得了22条谱线。对自引发放电非链式DF激光器工作气体参数进行了优化实验,在工作气体配比SF6:D2=8:1,充气总气压为8.1kPa时:获得的最大单脉冲能量为3.6J,脉冲宽度为135ns,峰值功率为26.67MW,电光转换效率为3.1%;50Hz重频运转时获得的最大输出功率为150W,电光转换效率为2.58%,激光脉冲幅值差小于±8%。
The DF laser radiation is concentrated in the spectral range3.5~4.1μm(“transparency window” of atmosphere), which is a useful medium waves infraredlaser badly needed in laser radar, laser spectroscopy, laser interaction with matter,etc. Arounding repetitive frequency DF laser, the study was focused on keytechnologies of massive uniform discharge, optical resonator, repetition ratesoperation, tail gas treatment, etc. On this basises, the measurement of gaincoefficient, analysis of spectral character and optimizing experiments of outputperformance had been done, which could lay a foundation for practical design ofnon-chain DF laser.
     The circuit parameters of spark pin UV pre-ionization discharge non-chainpulsed DF laser (LC reverse circuit) were researched to realize the massive uniformglow discharge. Mathematical model had been established to describe its dischargeparameters using continuity-equations of electrons and Kirchhoff equations. Thenthe corresponding experiments were carried out to verify the results of this modeland the optimal circuit parameters of DF laser were obtained on theory. To obtain abigger gap glow discharge, the self-initiated volume discharge (SIVD) was imported,which realized the massive uniform glow discharge without preionization by using a voltage-doubling circuit and roughened cathode. A mathematical model wasestablished to describe the discharge parameters of this circuit. Both the experimentand calculation showed that it was easy to realize massive uniform glow dischargewith SIVD.
     The parameters of resonator have marked influences on output performancesand anti-misalignment of mirrors.The dependence of some parameters on curvatureradius of rear mirror had been analyzed, such as beam width, beam divergence angle,misalignment sensitivity, effective mode volume, and then the optimum curvatureradius of rear mirror was obtained. Three groups of unstable confocal cavityparameters had been designed and their characteristics of misalignment wereanalyzed. The laser spots of stable and unstable cavities had been measured usingthe method of laser ablation, the beam divergence angle of which were6mrad and1.2mrad respectively.
     When DF laser works at closed cycle, its working life of single gas-filled wasvery short. Consumptions of working gas and deexcite collisions of dischargingproducts were major factors for output energy lowers of DF laser. A technicalscheme which could realize real-time refresh of working gas had been introducedand feasibility study for chemical scrubber adsorbing DF molecular, which deexciteeffect was the most significant in the discharging products, had been done. Using therefresh equipment of working gas and chemical scrubber could increase workingstabilization of DF laser. Through analyzing the chemical processes which wereoccured in discharge area of DF laser, we found that the harmful ingredient in tailgas were DF and SF4. The principle of alkaline solution removing DF and SF4wasanalyzed, and miniaturized tail gas processing equipment was designed. The tail gascould meet national safety effluent standard after treating.
     Based on the influence of spectral lines broadening on gain coefficient, thealgorithm which was used to calculate gain coefficient of DF laser had been deducedusing the variable output coupling method. Gain distribution on the cross-section ofgain medium was researched on experimentally using this algorithm. The DF laser spectrum analyzer was used to measure the output spectrum of DF laser, and22lines were obtained in the spectial range:3.5~4.1μm. Working gas parameters wereoptimized for non-chain DF laser. The total pressure and optimum ratio of themixture gas (SF6-D2),are8.1kPa and8:1,respectively. The maximum single pulseenergy of3.6J, pulse width of135ns, peak power of26.67MW and electro-opticalconversion efficiency of3.1%are achieved. The maximum average power of150Wand electro-optical conversion efficiency of2.58%are achieved at50Hz, whoseamplitude difference of laser pulses is less than8%.
引文
[1] T F Deutsch. Laser emission from HF rotational transitions [J]. Appl Phys Lett,1967,11(1):18-20.
    [2] T F Deutsch. Molecular laser action in Hydrogen and deuterium halides [J].Appl Phys Lett,1967,10(8):234-236.
    [3] K L Kompa, G C Pimentel. Hydrofluoric acid chemical laser [J]. J Chem Phys,1967,47(2):857-858.
    [4] C R Jones, M I Bushwald, M Gundersen. Ammonia laser optically pumpedwith an HF laser [J]. Optical Communication,1978,24(1):27-30.
    [5] M L Wolbarsht. Laser surgery: CO2or HF [J]. IEEE Journal of quantumelectronics,1984,20(12):1427-1432.
    [6] K P Thompson, E Barraquer, J M Parel. Potential use of lasers for penetratingkeratoplasty[J]. Journal of cataract&refractive surgery,1989,15(4):397-403.
    [7] S D Velikanov, A S Elutin, E A Kudryashov, et al. Use of a DF laser in theanalysis of atmospheric hydrocarbons [J]. Quantum Electronics,1997,27(3):273-276
    [8] S D Velikanov, A S Elutin, I N Pegoev. Measurement of the coefficients ofreflection of DF laser radiation from topographic retroreflectors [J]. QuantumElectronics,1998,28(2):173-174.
    [9] V Kiernan. Lasers play a key role in missile-defense program [J]. Laser FocusWorld,2001,37(9):58-59.
    [10] V I Lazarenko, S D Velikanov, I N Pegoe, et al. Analysis of DF laserapplicability to SO2remote sensing in the atmosphere [J]. SPIE,2001,4168:232-235.
    [11] V Y Agroskin, B G Bravy, Y A Chernyshev. Aerosol sounding with a lidarsystem based on a DF laser [J]. Appl Phys B,2005,81:1149-1154.
    [12] B I Vasilev, O M Mannoun. IR differential-absorption lidars for ecologicalmonitoring of the environment [J]. Quantum Electronics2006,36(9):801-820.
    [13] F Bachmann. High Power Laser Sources for Industry and their Applications [J].SPIE,2007,6735:67350T-67351-67313.
    [14] G P Perram, M A Marciniak, M Goda. High energy laser weapons: technologyoverview[J]. SPIE,2004,5414:1-25.
    [15] G Wilson, B R Graves, S P Patterson, et al. Deuterium fluoride lasertechnology and demonstrators [J]. SPIE,2004,5414:41-51.
    [16] A.S.Boreysho, V.M.Khailov, V.M.Malkov, et al. Pressure recovery systems forhigh-power gas flow chemical lasers [J]. SPIE,2001,4184:401-405.
    [17]唐力铁.燃烧驱动DF/HF化学激光器压力恢复若干问题研究[D]:[博士学位论文].长沙:国防科学技术大学研究生院,2005.
    [18] T P Theodoros. Experimental and theoretical study of CW HF chemical laserresidual fundamental gain[D]:[PhD Thesis]. Illinoist: Aeronautical EngineeringCollege of University of Illinois,1992.
    [19] V V Apollonov, A A Belevtsev, K N Firsov, et al. Advanced studies onpowerful wide-aperture non-chain HF (DF) lasers with a self-sustained volumedischarge to initiate chemical reaction [J]. SPIE,2003,5120:529-541.
    [20] D W fradin, P P Chenausky, R J Freberg. A recirculating, self-contained DF/HFpulsed laser [J]. IEEE J Quantum electronics,1975,11(8):631-633.
    [21] R J Freberg, D W Fradin, P P Chenausky, et al. Portable chemical laser withgas recirculation [P]. United states patent,4031484,1977-06-21.
    [22] R I Rudko, Z Drozdowicz, S Linhares. High-repetition-rate, recirculatinghydrogen fluoride/deuterium fluoride laser [J]. Rev Sci Instrum,1982,53(4):452-457.
    [23] H Brunet. Improved DF performance of a repetitively pulsed HF/DF laser usinga deuterated compound [J]. SPIE,1997,3092:494-497.
    [24] H Brunet, M Mabru, F Voignier. High energy-high average power pulsedHF/DF chemical laser [J]. SPIE,1995,2502:388-392.
    [25] M R Harris, A V Morris, E K Gorton. A closed-cycle,1khz pulse repetitionfrequency, HF(DF) laser [J]. SPIE,1998,3268:247-251.
    [26] V V Apollonov, S Y Kazantsev, V F Oreshkin, et al. Nonchain clectric-discharge HF(DF) laser with a high radiation energy [J]. Quantum Electronics,1998,28(2):116-118.
    [27] V V Apollonov, S Y Kazantsev, A V Saifulin, et al. Discharge characteristics ina nonchain HF(DF) laser [J]. Quantum Electronics,2000,30(6):483-485.
    [28] V V Apollonov, K N Firsov, S Y Kazantsev, et al. High-power non-chain HF(DF) lasers initiated by self-sustained volume discharge [J]. SPIE,1998,3574:374-384.
    [29] V V Apollonov, K N Firsov, S Y Kazantsev, et al. Scaling up of non-chain HF(DF) laser initiated by self-sustained volume discharge [J]. SPIE,2000,3886:370-381.
    [30] V P Borisov, V V Burtsev, S D Velikanov, et al. Pulse-periodic electricdischarge DF laser with pulse repetition frequency up to50Hz and energy perpulse~1J [J]. Quantum Electronics,1995,25(7):617-620.
    [31] I L Butsykin, S D Velikanov, P A Evdokimov, et al. Repetitively pulsed DFlaser with a pulse repetition rate up to1200Hz and an average output powerof-25W [J]. Quantum Electronics,2001,31(11):957-961.
    [32] S D Velikanov, P Evdokimov, А F Zapolsky, et al. Pulse periodic HF (DF)–laser of atmospheric pressure with pulse repetition rate up to2200Hz [J]. SPIE,2009,7131:71310V-71311-71317.
    [33] Y N Aksenov, V P Borisov, V V Burtsev, et al. A400-W repetitively pulsed DFlaser [J]. Quantum Electronics,2001,31(4):290-292.
    [34] A N Panchenko, V F Tarasenko. Brief communications on the efficiency ofnonchain electric-discharge HF(DF) lasers [J]. Russian Physics Journal,2004,47(5):571-573.
    [35] V F Tarasenko, A N Panchenko, V M Oriovskii, et al. Efficient non-chaindischarge HF and DF lasers [J]. SPIE,2004,5448:359-365.
    [36] V F Tarasenko, A N Panchenko. Efficient discharge-pumped non-chain HF andDF lasers [J]. SPIE,2006,6101:61011P61011-61011P61019.
    [37] K Midorikawa, S Sumida, Y Sato, et al. Efficient Operation of a Low-Impedance Blumlein Discharge Initiated HF/DF Chemical Laser [J]. IEEEJournal of Quantum Electronics,1979,15(3):190-194.
    [38] D J Brink, V Hasson. Compact megawatt helium-free TEA HF/DF lasers [J]. JPhys E: Sci Instrum,1980,13:553-556.
    [39] A A Serafetinides, K R Rickwood, A D Papadopoulos. Performance Studies ofa Novel Design Atmospheric Pressure Pulsed HF/DF Laser [J]. Appl Phys B,1991,52:46-54.
    [40]柯常军,张阔海,孙科,等.重复频率放电引发的脉冲HF(DF)激光器[J].红外与激光工程,2007,36:36-38.
    [41]柯常军,李晨,谭荣清,等.电引发非链式脉冲DF激光器实验研究[J].光电子激光,2010,21(2):172-174.
    [42] P Ruan, J J Xie, L M Zhang, et al. Computer modeling and experimental studyof non-chain pulsed electric-discharge DF laser [J]. OPTICS EXPRESS,2012,20(7):28912-28922.
    [43]潘其坤,谢冀江,阮鹏,等.非链式脉冲DF激光器放电特性[J].中国激光,2013,40(5):0502009-0502001-0502006.
    [44]阮鹏,谢冀江,潘其坤,等.非链式脉冲DF化学激光器反应动力学模型[J].物理学报,2013,62(9):094208-094201-094208-094208.
    [45]阮鹏,谢冀江,张来明,等.非链式脉冲氟化氘激光器的动力学模拟和实验研究[J].中国激光,2013,40(7):0702002-0702001-0702006.
    [46] V D Bulaev, V S Gusev, S Y Kazantsev, et al. High-power repetitively pulsedelectric-discharge HF laser [J]. Quantum Electronics,2010,40(7):615-618.
    [47] A N Panchenko, V M Orlovskii, V F Tarasenko, et al. Efficient operationmodes of a non-chain HF-laser pumped by self-sustained discharge [J]. SPIE,2003,5137:303-310.
    [48]周琼,袁圣付,罗威,等.电激励泛频HF化学激光器的实验研究[J].中国激光,2010,37(9):2424-2427.
    [49] M Endo, S Nagatomo, S Takeda, et al. High-efficiency operation of chemicaloxygen-iodine laser using nitrogen as buffer gas [J]. IEEE Journal of QuantumElectronics,1998,34(3):393-398.
    [50] R A Gerber, E L Patterson, L S Blair, et al. Multi-kilojoule HF laser usingintense-electron-beam initiation of H2-F2mixtures [J]. Applied physics letters,1974,25(5):281-283.
    [51] K R Manes, H J Seguin. Analysis of the CO2TEA laser [J]. J Appl Phys,1972,43(12):5073-5078.
    [52]袁圣付,华卫红,姜宗福.采用超音速低温喷管的小型连续波DF化学激光器性能分析[J].中国激光,2003,30(4):295-299.
    [53]王红岩,张煊喆,李强,等.氮稀释高效电激励连续波HF/DF化学激光器[J].光学精密工程,2011,19(2):304-309.
    [54] T Y Tou, K KTham, W O Siew, et al. Circuit modeling of a two-stageblumlein-driven TEA-N2laser [J]. Meas Sci Technol,1998,9:1247~1251.
    [55] V V Apollonov, A A Belevtsev, K N Firsov, et al. High power pulse and pulsedperiodic nonchain HF/DF lasers [J]. SPIE,2002,4747:31-43.
    [56] A A Belevtsev, S Y Kazantsev, I G Kononov, et al. Detachment instability ofself-sustained volume discharge in active media of non-chain HF(DF) lasers [J].Quantum Electronics,2010,40(6):484~489.
    [57] K D Shirshak, K P Anup. Numerical simulation of streamers in SF6[J]. J ApplPhys,1988,63(5):1355-1362.
    [58]杨津基.气体放电[M].北京:科学出版社,1983.105-125.
    [59]柯常军,万重怡,吴谨.气体组份和峰化电容对脉冲HF激光输出特性的影响[J].中国激光,2003,30(1):1-4.
    [60] V V Apollonov, A A Belevtsev, S Y Kazantsev, et al. Development of aself-initiated volume discharge in nonchain HF lasers [J]. Quantum Electronics,2002,32(2):95-100.
    [61]王庆峰.紧凑型重复频率脉冲功率源的探索研究[D]:[博士学位论文].成都:西南交通大学,2006.
    [62]徐黎明,陈晓宁,马志瀛.六氟化硫断路器无载介质恢复特性的计算[J].中国电机工程学报,1998,18(5):315-318.
    [63]朱德恒,严璋.高电压绝缘[M].北京:电力工业出版社,1980.6-123.
    [64]周炳琨,高以智.激光原理[M].北京:国防工业出版社,2007.
    [65]吕百达.激光光学[M].北京:高等教育出版社,2003.
    [66] A E Siegman. Unstable optical resonators for laser application [C]. Proceedingsof the IEEE,1965:277-287.
    [67]程成.气体激光动力学及器件优化设计[M].北京:机械工业出版社,2008.171-188.
    [68] A E Siegman. Unstable optical resonators[J]. Applied optics,1974,13(2):353-367.
    [69] J J Xie, Q K Pan, R H Guo, et al. Dynamical analysis of acousto-opticallyQ-switched CO2laser [J]. Optics and Lasers in Engineering,2012,50:159-164.
    [70] W F Krupke, W W Sooy. Properties of an Unstable Confocal Resonator CO2Laser System [J]. IEEE Journal of quantum electronics,1969,5(12):575-586.
    [71]邵春雷.高功率TEA CO2激光器气体循环系统的设计[J].强激光与粒子束,2009,21(1):1-5.
    [72]郭劲,李殿军,王挺峰.高功率CO2激光器及其应用技术[M].北京:科学出版社,2013.
    [73]中国科学院大连化物所分子筛组.沸石分子筛[M].北京:科学出版社,1978.
    [74] Q R Fang, G S Zhu, M X, et al. A Metal-Organic Framework with the ZeoliteMTN Topology Containing Large Cages of Volume2.5nm3[J]. Angew Chem2005,44:3845–3848.
    [75] Q R Fang, G S Zhu, Z Jin, et al. A Multifunctional Metal-Organic OpenFramework with a bcu Topology Constructed from Undecanuclear Clusters [J].Angew Chem,2006,45:6126–6130.
    [76] Q R Fang, G S Zhu, Z Jin, et al. Mesoporous Metal-Organic Framework withRare etb Topology for Hydrogen Storage and Dye Assembly [J]. Angew Chem2007,46:6638-6642.
    [77] X Shi, G S Zhu, S L Qiu, et al. Zn2[(S)-O3PCH2NHC4H7CO2]2: A Homochiral3D Zinc Phosphonate with Helical Channels [J]. Angew Chem,2004:6482-6485.
    [78] X D Guo, G S Zhu, Z Y Li, et al. A lanthanide metal-organic framework withhigh thermal stability and available Lewis-acid metal sites [J]. Chem Commun,2006,42:3172-3174.
    [79] Z Jin, Y H Zhao, X J Zhao, et al. A novel microporous MOF with the capabilityof selective adsorption of xylenes [J]. Chem Commun,2010,46:8612-8614.
    [80]徐如人,庞文琴,于吉红.分子筛与多孔材料化学[M].北京:科学出版社,2004.
    [81]丁小林. SF6气体的处理作业[J].高压电器技术,1996,23(2):39-57.
    [82] C Szmytkowski, A Domaracka, P Mozejko, et al. Electron scattering by sulfurtetrafluoride (SF4) molecules [J]. J Phys B: At Mol Opt Phys2005,38:745-755.
    [83] X Zhao, V Silvia, A J Fletcher, et al. Kinetic Isotope Effect for H2and D2Quantum Molecular Sieving in Adsorption/Desorption on Porous CarbonMaterials [J]. J Phys Chem B,2006,110(20):9947-9955.
    [84] D Freude. Molecular Physics(English version)[M]. Leipzig: energy pages,lectures,publications,2004.
    [85]张春勇,郑纯智.碱性分子筛催化剂催化剂制备及在有机合成中的应用[J].精细石油化工进展,2006,7(7):41-44.
    [86]石冈,林秀英,范煜. ZSM-5分子筛的脱硅改性及加氢改质性能[J].燃料化学学报,2013,41(5):589-600.
    [87] M Ogura, S Shinomiya, J Tateno, et al. Alkali-treatment technique-new methodfor modification of structural and acid-catalytic properties of ZSM-5zeolites[J]. Appl Catal A,2001,219:33-43.
    [88]李三妹,陕绍云,贾庆明,等.介孔分子筛改性研究进展[J].硅酸盐通报,2013,32(6):1082-1086.
    [89]王风贺,瞿俊,姜炜,等.改性活性氧化铝除氟性能研究[J]. IM&P化工矿物与加工,2008(2):23-25.
    [90]谢虹,贾文波,吴志刚.活性氧化铝除氟剂的除氟性能研究[J].华中科技大学学报(医学版),2005,34(5):644-646.
    [91]党丹,丁文明,霍亚坤.几种改性活性氧化铝颗粒吸附剂除氟实验研究[J].北京化工大学学报(自然科学版),2010,37(4):113-116.
    [92]马丽萍,宁平,田森林.吸附剂原理与应用[M].北京:高等教育出版社,2010.138-144.
    [93]常雪峰.浸渍法制备改性活性氧化铝的研究[D]:[硕士学位论文].天津:天津大学化工学院,2007.
    [94]尹方平.活性氧化铝的改性及再生除氟效能研究[D]:[硕士学位论文].苏州:苏州科技学院环境科学与工程学院,2009.
    [95] K K Hellgardt, D Chadwick. Effect of pH of Precipitation on the Preparation ofHigh Surface Area Aluminas from Nitrate Solutions [J]. Ind Eng Chem Res,1998,37:405-411.
    [96]潘成强.硝酸法制备拟薄水铝石中温度影响研究[J].炼油与化工,2004,15(1):21-22.
    [97] G Paglia, C E Buckley, A L Rohl, et al. Boehmite Derived γ-AluminaSystem.1.Structural Evolution with Temperature,with the Identification andStructural Determination of a NewTransition Phase,γ'-Alumina [J]. ChemMater,2004,16:220-236.
    [98]李永祥,刘天生,高建峰.煅烧条件对制备γ-Al2O3的影响[J].华北工学院学报,2004,25(4):277-280.
    [99] N V Baranov, V A Eller, V I Mashendzhinov, et al. Discharge chemical laserwith lasant recirculating [J]. SPIE,1996,2773:73-77.
    [100] F Voignier, M Gastaud. Improved performance of a double discharge initiatedpulsed HF chemical laser [J]. Applphyslett,1974,25(11):649-650.
    [101] E Cagniot, Z D Kaddour, M Fromager, et al. Improving both transverse modediscrimination and diffraction losses in a plano-concave cavity [J]. OpticsCommunications,2008,281:4449-4454.
    [102] G R Osche. Optically cascaded pulsed DF chemical laser [J]. Applied PhysicsLetters,1977,31(1):29-31.
    [103]尹厚明,谢行滨,罗静远.化学激光手册[M].北京:科学出版社,1987.
    [104] S D Velikanov, A F Zapol'skii, Y N Frolov. Physical aspects of the operation ofHF and DF laserswith a closed active-medium replacement cycle [J]. QuantumElectronics,1997,27(1):9-12.
    [105] J L Lyman. Computer model of the SF6-H2electrical discharge chemical laser[J]. Appl Opt,1973,12(11):2736-2747.
    [106] M T Bernal, C F Mosquera, C A Raffo, et al. Model of pulsed discharge-iniciates HF chemical laser using SF6and C3H8mixture [J]. SPIE,1999,3572:434-440.
    [107] L G Christophorou, J K Olthoff. Electron interaction with SF6[J]. J PhysChemRef Data,2000,29(3):267-330.
    [108]苏毅,万敏.高能激光系统[M].北京:国防工业出版社,2006.
    [109] I Sauers, G Harman. Gaseous dielectrics VI [M]. New York: Plenum press,1991.553-561.
    [110] I Sauers, P C Votaw, G D Griffin. Production of S2F10in sparked SF6[J]. JPhys D: Appl Phys,1988,21:1236-1238.
    [111]王景儒.十氟化二硫的分析及去除方法[J].有机氟工业,1994:24-27.
    [112]王景儒.六氟化硫中的有毒物质及其防护[J].黎明化工,1995(2):6-9.
    [113]中国国家标准化管理委员会. GB7744-2008工业氢氟酸[S].北京:中国标准出版社,2009.
    [114]崔新亭,丁友胜,罗明辉,等.立式模块化分子筛吸附器[P].中国专利,2013-10-02.
    [115]郑石治.全氟化物废气处理方法[P].中国专利, CN1593723A,2005-03-16.
    [116]北京师范大学等无机化学教研室.无机化学下册(第四版)[M].北京:高等教育出版社,2003.439-482.
    [117] I Sauers, H W Ellis, L G Christophorou. Neutral decomposition products inspark breakdown of SF6[J]. IEEE Trans Electr Insul,1986,21(2):111-120.
    [118] M Piemontesi, R.Pietsch, W Zaengl. Analysis of decomposition products ofsulfur hexafluoride in negative DC corona with special emphasis on content ofH2O and O2[C]. IEEE,1994:499-503.
    [119]徐全海.废气处理系统[P].中国专利, CN101254395A,2008-09-03.
    [120]郑用琦.一种含工业氟离子废气处理的有效方法[P].中国专利,CN102389698A,2012-03-28.
    [121]冯金之,夏磊,付长红.处理萘系高效碱水剂生产中废气的方法和其专用设备[P].中国专利, CN102489121A,2012-06-13.
    [122]汪前军,吴宗斌,童健,等.一种含酸性气体的氮氧化物废气处理装置及工艺
    [P].中国专利, CN101543723A,2009-09-30.
    [123]明添,明智,明雯,等.一种处理氟化物废水废气的方法[P].中国专利,CN102350176A,2012-02-15.
    [124] J P菲利普斯, K J马林斯.一种废气处理系统[P].CN1090524C,2002-09-11.
    [125]范志刚.含氟废气处理系统装置研究[D]:[硕士学位论文].长沙:国防科学技术大学,2006.
    [126]多丽萍,金玉奇,杨柏龄.气流化学激光测试诊断技术[M].北京:科学出版社,2008.
    [127] W F Otto, J T Lewis, C S Bartolotta, et al. An automated gain measurementsystem for high-energy chemical lasers [J]. SPIE,1978,138:134-138.
    [128] R F Tate, B S Hunt, C A Helms, et al. Spatial gain measurements in a chemicaloxygen iodine laser [J]. IEEE J Quantum electronics,1995,31(9):1632-1636.
    [129]唐力铁.一种测量平均小信号增益及饱和光强方法[J].红外与激光工程,2006,35(S3):339-341.
    [130] J Altmann, P Pokrowsky. Sulfur dioxide absorption at DF laser wavelengths[J]. Applied Optics,1980,19(20):3449-3452.
    [131] P Pokrowsky. Absorption of H2S at DF laser wavelengths [J]. Applied Optics,1983,22(14):2221-2223.
    [132] T F Deaton, D A Depatie, T W Walker. Absorption coefficient measurementsof nitrous oxide and methane at DF laser wavelengths [J]. Applied physicsletters,1975,26(6):300-303.
    [133] D J Spencer, G C Denault, H H Takimoto. Atmospheric Gas Absorption at DFLaser Wavelengths [J]. Applied Optics,1974,13(12):2855-2868.
    [134]曹百灵,邬承就,饶瑞中,等. HF/DF激光传输的大气衰减特性[J].强激光与粒子束,2003,15(1):17-20.
    [135]阮鹏,谢冀江,张来明,等.紫外预电离放电引发的非链式脉冲DF激光器[J].发光学报,2013,34:450-455.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700