基于燃料分层分布的烟气循环烧结工艺仿真与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:我国的钢铁产量连续多年居世界第一,但是钢铁生产过程的能耗量和排放水平均远高于世界先进水平,节能减排潜力巨大。而铁矿石烧结在我国的钢铁企业生产过程中能耗居第二,排放居第一,对钢铁工业的节能减排起着决定性作用,因此,研究开发能降低铁矿石烧结过程的能源消耗量和烟气排放量的烧结改进工艺对我国钢铁行业的可持续发展具有重要意义。
     烟气循环烧结技术通过对烧结烟气的循环使用,可以提高料层温度的稳定性和降低烟气排放量,燃料分层布料技术通过对烧结料层内固体燃料的合理分布,可以降低固体燃料的消耗,使料层温度分布更加合理。目前国内外对这两种铁矿石烧结过程节能减排技术的研究和应用处在起步阶段,研究方式也多是半工业化试验,而随着计算机仿真技术的发展和对铁矿石烧结过程各种机理研究的不断深入,使得利用数值仿真技术对铁矿石烧结过程节能减排的研究更方便和直接。
     论文通过对铁矿石烧结过程的流动、传热、传质、料层结构变化机理的深入分析,建立了完整的铁矿石烧结传输过程的非稳态数学模型和数值方法。利用此模型对常规烧结工艺过程进行了模拟计算,根据料层温度在深度方向上的分布以及烧结烟气随时间的变化,提出了以部分烧结烟气和烧结矿冷却过程产生的废气相混合的烟气循环烧结改进工艺以及燃料分层布料烧结改进工艺。在烟气循环烧结工艺的研究过程中,根据对烧结系统的余热利用以及减量排放侧重点的不同提出了三种烟气循环烧结方案,并首次提出了基于料层温度的烧结矿质量评价指标;在燃料分层布料烧结工艺的研究过程中,提出了以料层最高温度为控制目标的基于深度单元的燃料分层分布工艺。并基于这两种烧结改进工艺,创新性地提出了基于燃料分层分布的烟气循环烧结综合优化工艺。对文中提出的各种烧结工艺均进行了模拟计算和效益分析。
     研究发现,烟气循环烧结工艺对烧结过程的改善主要体现在降低烧结烟气的排放处理量和提高料层上部温度两方面;燃料分层布料烧结工艺对烧结过程的改善主要体现在使料层的最高温度在深度方向上分布更均匀和促进燃料的合理利用两方面;基于燃料分层布料的烟气循环烧结综合优化工艺则能全面提高烧结矿质量评价指标,增加烧结系统余热利用量,降低烧结周期、固体燃料使用量、烟气排放处理量以及SO2总排放量。本文所提出的三种烧结改进工艺中,在提高质量与节能减排效益方面综合优化工艺最优,在提高产量方面烟气循环烧结工艺最优。
     该研究有助于理解铁矿烧结传输过程的机理,为铁矿石烧结过程节能减排的研究提供了参考依据,并且对于提高铁矿石烧结过程的生产效率,降低烧结系统运行成本,提高企业竞争力具有重要意义。
Abstract:The steel production of China ranking first in the world last for many years, but the energy consumption and emissions in steel production process are much higher than the advanced level of the world. This creates a huge potential for energy-saving and emission-reduction. In China, iron ore sintering plays a crucial role in iron and steel industry for its energy consumption ranking second and emissions ranking first in the steel production process. Therefore, it is of great significance for sustainable development of iron and steel industries to research and develop improved iron ore sintering technology which can reduce energy consumption and flue gas emissions.
     Flue gas circulation sintering (FGCS) technology can improve the stability of the sintered bed temperature and reduce emissions by recycling flue gas. Fuel layered distribution (FLD) technology can reduce the consumption of solid fuel and rationalize the distribution of sintered bed temperature through distributing solid fuel reasonably. Till now, research and application of the two technologies are still in infancy and most of the research methodologies are semi-industrial tests. Due to the development of computer simulation technique and the intensive study of various mechanisms in sintering process, it is more convenient and direct to study the energy-saving and emission-reduction in iron ore sintering.
     An unsteady mathematical model and numerical methods of transport process in iron ore sintering are established through intensively studying the mechanisms of flow, heat and mass transfer as well as structure change. The conventional sintering process is simulated with this model. The FGCS process of mixing flue gas in sintering and exhaust gas in sinter cooling and fuel layered distribution sintering (FLDS) process are proposed according to the distribution of sintered bed temperature in the depth direction and the flue gas changes over time. In researching the FGCS process, three schemes are proposed in accordance with different emphasis of waste heat utilization and emission-reduction in sintering system, and the quality evaluating indicator of sinter based on sintered bed temperature is first put forward., The FLD technology based on depth unit is proposed in researching the FLDS process, and its control target is the highest temperature of sintered. The synthetical optimization sintering process (SOSP) is innovatively proposed based on the two technologies above. Simulation and benefit analysis of the processes in the thesis are accomplished.
     The research result reveals that the improvements of sintering by using the FGCS process are reducing the flue gas emissions and improving the temperature of top sintered bed, the FLDS process can ameliorate the sintering through uniformizing the highest temperature distribution in depth direction and promoting the rational use of fuel, the SOSP can comprehensively improve quality evaluating indicator of sinter and waste heat utilization and decrease sintering cycle, solid fuel usage, flue gas emissions and total emissions of sulfur dioxide. In the above three processes, the SOSP is optimum in improving sinter quality and the effect of energy-saving and emission-reduction, and the FGCS process is optimum in increasing production.
     This study will help to understand the mechanisms of complex transport process in iron ore sintering and providing references for studing on sintering energy-saving and emission-reduction. The research is significant in increasing productivity, decreasing operating costs and improving competitiveness of iron and steel enterprise.
引文
[1]Cappel F, Wenderborn H.铁矿粉烧结[M].杨永宜.北京:冶金工业出版社,1979.25-27.
    [2]唐贤容,王笃阳,张清岑.烧结理论与工艺[M].长沙:中南工业大学出版社,1992.16-21.
    [3]徐瑞图,吴胜利.中国铁矿石烧结研究[M].北京:冶金工业出版社,1997.7-17,203-211,242-249.
    [4]周建男.钢铁生产工艺装备新技术[M].北京:冶金工艺出版社,2002.34-36.
    [5]Muchi I, Higuchi J. Theoretical analysis on the operation of sintering[J]. The Iron and Steel Institute of Japan,1970,56 (3):371-381.
    [6]Toda H, Kato K. Theoretical investigation of sintering process[J]. Transactions ISIJ, 1984,24(3):178-186.
    [7]夏德宏,焦红蕾,张刚,等.烧结工序中燃烧与传热过程的数值模拟[J].工业炉,2006,28(3):30-32,52.
    [8]Yang W, Choi S, Choi E S, et al. Combustion characteristics in an iron ore sintering bed—evaluation of fuel substitution [J]. Combustion and Flame,2006,145(3): 447-463.
    [9]Alazmi B, Vafai K. Analysis of fluid flow and heat transfer interfacial conditionsbetween a porous medium and a fluid layer [J]. International Journal of Heat and Mass Transfer,2001,44(9):1735-1749.
    [10]龙红明.铁矿石烧结过程热状态模型的研究与应用[D].长沙:中南大学,2007,17-21.
    [11]Hekkala L, Harkki J. Mathematical model of heat and mass transfer in the steel belt sintering process[C].10th International Ferroalloys Congress, Cape Town:The Southern African Institute of Mining and Metallurgy,2004.585-592.
    [12]吴胜利,王代军,李林.当代大型烧结技术的进步[J].钢铁,2012,47(9):1-8.
    [13]胡俊鸽,周文涛,赵小燕.日本降低生产成本的烧结技术进展[J].冶金丛刊,2010(5): 46-50.
    [14]Arbithuber C, Jorgl H P, Raml H. Fuzzy control of an iron ore sintering plant [J]. Control Engineering Practice,1995,3(12):1669-1674.
    [15]Wu M, Duan P, Cao W H, et al. An intelligent control system based on prediction of the burn-through point for the sintering process of an iron and steel plant[J]. Expert Systems with Applications,2012,39(5):5971-5981.
    [16]Francik P, Jan M. Ability for Self-Pelletization of iron ores and magnetite concentrates [J]. Journal of iron and Steel Research International,2011,18(6):1-7.
    [17]Maruoka N, Mizuochi T, Purwanto H, et al. Feasibility study for recovering waste heat in the steelmaking industry using a chemical recuperator [J]. ISIJ International, 2004,44(2):257-262.
    [18]胡俊鸽,周文涛,郭艳玲.烧结新技术及其在国内的推广前景分析[J].世界钢铁,2011(6):47-52.
    [19]Zou Z Y, Huang T C, Yang X S. Mathematical model and computer simulation of moisture transfer process during sintering[J]. Transactions of NFsoc,1995,5(1): 15-20.
    [20]Gupta S S, Venkataramana R. Mathematical model of air flow during iron ore sintering process [J]. Iron and Steelmaker,2000,27(12):35-41.
    [21]Sadrnezhaad S K, Ferdowsi A, Payab H. Mathematical model for a straight grate iron ore pellet induration process of industrial scale [J]. Computational Materials Science, 2008,44(2):296-302.
    [22]Yang W, Choi S, Choi E S, et al. Mathematical model of thermal processes in an iron ore sintering bed[J]. Metals and Materials International,2004,10(5):493-500.
    [23]Sadmezhaad S K, Ferdowsi A, Payab H. Mathematical model for a straight grate iron ore pellet induration process of industrial scale [J]. Computational Materials Science, 2008,44(2):296-302.
    [24]Tan P, Neuschutz D. CFD modeling of sintering phenomena during iron ore sintering [J]. Multiphase phenomena and CFD modeling and simulation in materials processes symposium,2004.451-459.
    [25]裴元东,赵志星,马泽军,等.国外铁矿粉烧结理论与技术的进展(一)[J].烧结球团,2010,35(3):1-6.
    [26]Oyama N, Iwami Y, Yamamoto T, et al. Development of secondary-fuel injection technology for energy reduction in the iron ore sintering process [J]. ISIJ International, 2011,51(6):913-921.
    [27]唐先觉,何国强.论我国30年来铁矿烧结的技术进步[J].烧结球团,2009,34(6):1-4.
    [28]郜学.中国烧结行业的发展现状和趋势分析[J].钢铁,2008,43(1):85-88.
    [29]周翔.我国烧结工序技术进步及“十二五”展望[J].中国钢铁业,2011(11):23-25.
    [30]梁雪梅,朱德庆,江涛,等.烧结节能技术现状与发展[J].烧结球团,2000,25(4):1-4.
    [31]蔡九菊,董辉,杜涛,等.烧结过程余热资源分级回收与梯级利用研究[J].钢铁,2011,46(4):88-92.
    [32]陈丽云,张春霞,郦秀萍,等.钢铁工业“十一五”节能减排回顾及对策措施建议[J].冶金能源,2012,31(3):3-5.
    [33]蔡九菊,孙文强.中国钢铁工业的系统节能和科学用能[J].钢铁,2012,47(5):1-8.
    [34]郜学.我国烧结球团行业脱硫现状及减排对策[J].烧结球团,2008,33(3):1-6.
    [35]徐国群.烧结余热回收利用现状与发展[J].世界钢铁,2009,(5):27-29.
    [36]王兆鹏,胡晓民.烧结余热回收发电现状及发展趋势[J].烧结球团,2008,33(1):31-35.
    [37]李春风.对我国烧结烟气脱硫工作的回顾与展望[J].冶金经济与管理,2011(2):9-12.
    [38]向婕,吴敏,曹卫华,等.基于模糊满意度的烧结过程多目标优化控制[J].化工学报,2010,61(8):2138-2143.
    [39]汪保平,吴朝刚,顾云松.马钢300m2烧结机带冷烟气余热发电工程[J].烧结球团,2007,32(2):8-12.
    [40]胡长庆,师学峰,张玉柱,等.烧结余热回收发电关键技术[J].钢铁,2011,46(1):86-91.
    [41]Ikehara S, Kuba S, Terada Y, et al. Application of exhaust gas recirculation system to Tobata No.3 sinter plant [J]. Journal of the Iron and Steel Institute of Japan,1995, 81(11):49-52.
    [42]卢红军,戚云峰.烧结余热的基本特点及对烧结余热发电的影响[J].烧结球团,2008,33(1):35-38.
    [43]赵斌,杜小泽,崔健,等.烧结旋冷机余热梯级发电技术研究[J].中国电机工程学报,2012,32(8):37-43.
    [44]卢红军,周长强.济钢320m2烧结机的余热发电系统[J].冶金能源,2008,27(1):55-57.
    [45]CaputoA C, Pelagagge P M. Fuzzy control of heat recovery systems from solid bed cooling [J]. Applied Thermal Engineering,2000,20(1):49-67.
    [46]Horio K, Kitamura N, Ariake Y. Waste energy recovery at Kashima steel works [J]. Iron Steel Engineer,1982,59(7):30-36.
    [47]Tanaka N. Waste heat recovery from sintering plants [J]. Transactions ISIJ,1980, 20(3):200-203.
    [48]Worrell E, Price L, Martin N. Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector [J]. Energy,2001,26(5): 513-536.
    [49]宋存义,陈凯华.铁矿石烧结过程中二氧化硫的分布特征及生成机理[C].//2010年全国炼铁生产技术会议暨炼铁年会论文集,北京:中国金属学会,2010.159-164.
    [50]邱金厚,何晓义,胡晓松.包钢炼铁厂一烧热风烧结技术应用[J].包钢科技,2006,32(6):8-10.
    [51]Environment Resources Management. Technical note on best available techniques to reduce emissions of pollutants into the air from sinter plants, pelletisation and blast furnaces[R]. Brussels:European Commission,1995.
    [52]Joachim W, Jorgen O. Environmental protection in iron ore sintering by waste gas recirculation[J]. MPT International,1995(4):120-126.
    [53]毛艳丽,陈妍,曲余玲.烧结工序节能降耗的技术措施[J].冶金能源,2010,29(5):9-11.
    [54]Noda H, Ichikawa K, Machida S, et al. Operation conditions of iron ore sintering process combined with oxygen enrichment and exhaust gas recirculation system [J]. Journal of ISIJ,2001,87(5):305-312.
    [55]Ahn H, Choi S, Cho B. Process modeling of an iron ore sintering bed for flue gas recirculation [J]. Kosco Symposium,2011,16(4):23-30.
    [56]Jiang T, Fan Z Y, Zhang Y B, et al. A simulation study on flue gas circulating sintering for iron ores[C].2nd International Symposium on High-Temperature Metallurgical Processing, New Jersey:The Minerals, Metals and Materials Society(TMS),2011. 33-40.
    [57]董辉,郭宁,杨柳青,等.烧结余热利用中烧结混合料干燥过程实验研究[J].东北大学学报:自然科学版,2010,31(4):546-549.
    [58]李光辉,姜涛,范振宇,等.烟气循环烧结新技术的研究[C].2010年全国炼铁生产技术会议暨炼铁学术年会文集,北京:中国金属学会,2010.1184~11870.
    [59]Environmental Resources Management. Integrated pollution prevention and control (IPPC) best available techniques reference document on the production of iron and steel[R]. Brussels:European Commission,2001.
    [60]Fleischanderl A, Aichinger C, Zwittag E. New developments for achieving environmentally friendly sinter production-eposint and MEROS[C].5th China International Steel Congress, Shanghai, China,2008.102-108.
    [61]Fleischanderl A, Fingerhut W. MEROS-latest state of the air in dry sinter gas cleaning[C].2007中国钢铁年会论文集,北京:中国金属学会,2007.453-460
    [62]白晨光,谢皓,邱贵宝,等.烧结料层中的蓄热模型[J].重庆大学学报,2008, 31(9):1002-1007.
    [63]黄柱成,江源,毛晓明,等.铁矿烧结中燃料合理分布研究[J].中南大学学报:自然科学版,2006,37(5):884-890.
    [64]吴胜利,陈东峰,赵成显,等.提高厚料层烧结燃料燃烧性的试验研究[J].钢铁,2010,45(11):16-21.
    [65]范晓慧,彭坤乾,陈许玲,等.铁矿石烧结料层温度模拟模型[J].矿冶工程,2012,32(2):67-70.
    [66]Ehlers W, Volk W. On theoretical and numerical methods in the theory of porous media based on polar and non-polar elasto-plastic solid materials [J]. International Journal of Solids and Structures,1998,35(34):4597-4617.
    [67]Komarov S V, Shibata H, Hayashi N, et al. Numerical and experimental investigation on heat propagation through composite sinter bed with non-uniform voidage: mathematical model and its experimental verification [J]. Journal of Iron and Steel Research International,2010,17(10):1-7.
    [68]Mitterlehner J, Loeffler G, Winter F, et al. Modeling and simulation of heat front propagation in the iron ore sintering process [J]. ISIJ International,2004,44(1): 11-20.
    [69]Pelagagge P M, Caputo A C, Cardarelli G. Optimization criteria of heat recovery from solid beds [J]. Applied Thermal Engineering,1997,17(1):57-64.
    [70]Pelagagge P M, Caputo A C, Cardarelli G Comparing heat recovery schemes in solid beds cooling [J]. Applied Thermal Engineering,1997,17(11):1045-1054.
    [71]Minoura T, Sakamoto Y, Hashimoto K, et al. Heat transfer and fluid flow analysis of sinter coolers with considerations of size segregation and initial temperature distribution [J]. Heat Transfer-Japanese Research,1990,19(6):537-555.
    [72]Yang W, Ryu C, Choi S. Modeling of combustion and heat transfer in an iron ore sinter-ing bed with considerations of multiple solid phases [J]. ISIJ International, 2004,44(3):492-499.
    [73]Tan P, Hurtado I, Neuschutz A. Thermodynamic modeling of PCDD/Fs formation in thermal processes [J]. Environmental Science and Technology,2001,35(9): 1867-1874.
    [74]Tan P, Neuschutz D. Study on polychlorinated dibenzo-p-dioxin/furan formation in iron ore sintering process [J]. Metallurgical and Materials Transactions B,2004,35(5): 983-991.
    [75]Caputo A C, Cardarelli G, Pelagagge P M. Analysis of heat recovery in gas-solid moving beds using a simulation approach [J]. Applied Thermal Engineering,1996, 16(1):89-99.
    [76]夏德宏,张刚.烧结机热工过程优化探讨[J].冶金能源,2004,23(4):10-13.
    [77]龙红明,范晓慧,毛晓明,等.基于传热的烧结料层温度分布模型[J].中南大学学报:自然科学版,2008,39(3):436-442.
    [78]彭坤乾.烧结料层温度模拟模型和烧结矿质量优化专家系统的研究[D].长沙:中南大学,2011.37-43.
    [79]张家元,李黎,张小辉.基于数值模拟的烧结终点在线控制[J].烧结球团,2011,36(3):5-9.
    [80]苏浩.烟气循环烧结过程数值仿真与优化研究[D].长沙:中南大学,2012.34-47.
    [81]张玉柱,艾立群.钢铁冶金过程的数学解析与模拟[M].北京:冶金工业出版社,1997.96-99.
    [82]Shibata J. Analysis of sintering process by the mathematical model [J]. Mathematical and Computer Modelling,1988(11):956-961.
    [83]Leong J C, Jin K W, Shiau J S, et al. Effect of sinter layer porosity distribution on flow and temperature fields in a sinter cooler [J]. International Journal of Minerals, Metallurgy and Materials,2009,16(3):265-272.
    [84]Vanderheyden B, Mathy C. Mathematical model of the sintering process taking into account different input gas conditions [J]. Revue de Metallurgie,2001,98(3): 251-257.
    [85]Chen Y C, Sun Y M, Mou J L, et al. Application of orthogonal array tests method to optimize operating conditions for iron ore sintering [J]. ISIJ International,2009,49(5): 743-748.
    [86]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用[M].北京:科学出版社,2006.28-32.
    [87]Ergun S. Fluid flow through packed columns [J]. Chemical Engineering Progress, 1952,48(2):89-94.
    [88]Brouwers. Heat transfer between a fluid-saturated porous medium and a permeable wall with fluid injection or withdrawal [J]. International Journal of Heat and Mass Transfer,1994,37(6):989-996.
    [89]张小辉,张家元,戴传德,等.烧结矿冷却过程数值仿真与优化[J].化工学报,2011,62(11):3081-3087.
    [90]Li H G, Zhang J L, Pei Y D, et al. Melting characteristics of iron ore fine during sintering process [J]. Journal of Iron and Steel Research,2011,18(5):11-15.
    [91]Dash I R, Rose E. Simulation of a sinter strand process [J]. Ironmaking and Steelmaking,1978,5(1):25-31.
    [92]Ramos M V, Kasai E, Kano J, et al. Numerical simulation model of the iron ore sintering process directly describing the agglomeration phenomenon of granules in the packed bed [J]. ISIJ International,2000,40(5):448-454.
    [93]鞭岩,森山昭.冶金反应工程学[M].蔡志鹏,谢裕生.北京:科学出版社,1981.282-288.
    [94]Lovel R, Vining K R, Amico M D. The influence of fuel reactivity on iron ore sintering [J]. ISIJ International,2009,49(2):195-202.
    [95]郝继锋,宋存义,钱大益,等.烧结烟气脱硫技术的研究[J].钢铁,2006,41(8):76-78.
    [96]Ooi C T, Thompson D, Anderson R D, et al. The effect of charcoal combustion on iron-ore sintering performance and emission of persistent organic pollutants [J]. Combustion and Flame,2011,158(5):979-987.
    [97]Hong Y, Fegley B. The kinetics and mechanism of pyrite thermal decomposition [J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1997,101(12): 1870-1881.
    [98]赵声萍,蒋军成,郑洁.FeS热分解动力学的热分析[J].重庆大学学报,2011,34(1):140-144.
    [99]Ozpozan N, Arslan H, Ozpozan T, et al. Thermal decomposition kinetics of some metal complexes of N, N-Diethyl-N'-benzoylthiourea[J]. Journal of Thermal Analysis and calorimetry,2000,61(3):955-965.
    [100]Manovica V, Grubor B. Modeling of inherent SO2 capture in coal particles durin combustion in fluidized bed [J]. Chemical Engineering Science,2006,61(5): 1676-1685.
    [101]Jin M J, Hou Y C, Wu W Z, et al. Solubilities and thermodynamic properties of SO2 in ionic liquids [J]. The Journal of Physical Chemistry B,2011,115(20):6585-6591.
    [102]赵伟,彭乔.二氧化硫在海水中的溶解性研究[J].热力发电,2009,38(4):35-38.
    [103]Shih S M, Hung J T, Wang T Y, et al. Kinetics of the reaction of sulfur dioxide with calcium oxide powder [J]. Journal of the Chinese Institute of Engineers,2004,35(4): 447-454.
    [104]Crnkovic P M, Pagliuso J D. Kinetics study of the SO2 sorption by Brazilian dolomite using thermogravimetry [J]. Thermochimica Acta,2006,447(12):161-166.
    [105]Duan E H, Guo B, Zhang M M, et al. Efficient capture of SO2 by a binary mixture of caprolactam tetrabutyl ammonium bromide ionic liquid and water [J]. Journal of Hazardous Materials,2011(194):48-52.
    [106]Sato S, Kawaguchi T, Ichidate M, et al. Melting model of iron ore sintering [J]. Journal of ISIJ,1984,70(7):657-664.
    [107]Kasama S.评价烧结矿透气性的孔隙结构分析新方法[J].武钢技术,1996,34(2):7-13.
    [108]Patisson F, Bellot J P. Mathematical modeling of iron ore sintering process [J]. Ironmaking and Steelmaking,1991,18(2):89-95.
    [109]刘斌,冯妍卉,姜泽毅,等.烧结床层的热质分析[J].化工学报,2012,63(5):1344-1353.
    [110]Strezov V, Evans J T, Zymla V, et al. Structural deterioration of iron ore particles during thermal processing [J]. International Journal of Mineral Processing,2011, 100(1):27-32.
    [111]Litster J D, Waters A G. Kinetics of iron ore sintered feed granulation [J]. Powder Technology,1990,62(2):125-134.
    [112]Leong J C, Jin K W, Shiau J S, et al. Effect of sinter layer porosity distribution on flow and temperature fields in a sinter cooler [J]. International Journal of Minerals, Metallurgy and Materials,2009,16(3):265-272.
    [113]龙红明.铁矿粉烧结原理与工艺[M].北京:冶金工业出版社,2010.97-123.
    [114]Mitra K, Nath N K. Analysis of two-layer sintering process foe different bed heights by genetic algorithm [C]. Proceedings of 16th IFAC World Congress, Czech Republic, 2005.1688-1693.
    [115]范振宇.烟气循环烧结的基础研究[D].长沙:中南大学,2011,25-32.
    [116]张家元,田万一,戴传德,等.环冷机分层布料仿真与优化[J].化工学报,2012,63(5):1386-1390.
    [117]吴海涛.烧结烟气脱硫存在的问题及源头控制的设想[J].中国冶金,2011,21(11):5-7.
    [118]Arens M, Worrell E, Schleich J. Energy intensity development of the German iron and steel industry between 1991 and 2007 [J]. Energy,2012,45(1):786-797.
    [119]Caputo A C, Pelagagge P M. Economic design criteria for cooling solid beds [J]. Applied Thermal Engineering,2001,21(12):1219-1230.
    [120]杨红博,李咸伟,俞勇梅,等.热风烧结对二嗯英生成的影响研究[J].烧结球团,2011,36(11):47-51.
    [121]Lv P, Zheng M H, Liu W B, et al. Estimation and characterization of PCDD/Fs and dioxin-like PCBs from Chinese iron foundries [J]. Chemosphere,2011,82(5): 759-763.
    [122]Zandi M, Martinez P M, Fray A T. Biomass for iron ore sintering [J]. Minerals Engineering,2010,23(14):1139-1145.
    [123]国外铁矿粉造块编写组.国外铁矿粉造块[M].北京:冶金工业出版社,1981.41-46.
    [124]潘建.烧结烟气减量排放基础理论与工艺研究[D].长沙:中南大学,2007.47-56.
    [125]翟林智,钟秦,王娟.可再生乙二胺湿法烟气脱硫实验研究[J].中国电机工程学报,2009,29(29):57-61.
    [126]张军红,徐南平,谢安国.烧结过程降低固体燃耗途径的探讨[J].冶金能源,2002,21(1):25-27.
    [127]Jiang Y, Huang Z C, Xu B, et al. Lower fuel consumption model and air-flow segregation feeding system for sintering [J]. Journal of Central South University of technology(English Edition),2011,18(6):1917-1923.
    [128]李希超.混合料的偏析布料法[J].烧结球团,1993,18(5):13-18.
    [129]Hogg R. Mixing and segregation in powders:evaluation, mechanisms and processes [J]. KONA Powder and particle Journal,2009,27:3-17.
    [130]Radhakrishnan V R, Ram K M. Mathematical model for predictivecontrol of the bell-less top charging system of a blast furnace [J]. Journal of Process Control,2001, 11(5):565-586.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700