新型表面分子印迹技术的建立及其在环境保护中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属离子废水及含酚废水是造成水污染的主要来源,对人类社会已经造成了很大的危害。因此,通过分子设计,制备既能够高效地处理废水中的污染物,又能够有效地分离和回收有用物质的高性能(高结合容量、高选择性)材料,具有重要的环境保护与资源再利用价值。本课题首先制备了两种接枝型复合材料并充分研究了它们对重金属离子及酚类物质的吸附性能与吸附机理。在此基础上,本课题在国际范围内首次提出并建立了一种新型的表面分子印迹技术,在硅胶表面实施了重金属离子及酚类物质的分子(离子)印迹,制备了三类高性能的分子(离子)表面印迹材料,充分研究了它们对模板分子(离子)的结合性能与识别机理。所制备的分子(离子)表面印迹材料对重金属离子以及酚类物质等环境污染物具有高效的去除能力。本课题的研究结果在环境保护与治理领域具有重要的科学意义与应用价值。
     通过γ-氯丙基三甲氧基硅烷的媒介,采用“接枝到”("graft to")的方法将功能大分子聚乙烯亚胺(polyethyleneimine, PEI)接枝到硅胶微粒表面,制备了接枝型复合材料PEI/SiO2;考察研究了PEI/SiO2对Cu2+、Cd2+、Pb2+、Zn2+、Cr3+等重金属离子的吸附性能与吸附机理。实验结果表明,PEI/SiO2对Cu2+、Cd2+、Pb2+、Zn2+、Cr3+等重金属离子具有强的螯合吸附能力。PEI/SO2对重金属离子的吸附属于单分子层化学吸附,吸附行为符合Langmuir吸附模型。吸附容量受pH以及温度的影响很大,在重金属离子不发生水解的pH值范围内,随着pH的增大,吸附容量增高;吸附容量随温度升高而增大,充分显示出化学吸附的特征。
     在上述研究基础上,以Cu2+、Cd2+、Pb2+、Cr3+为模板离子,环氧氯丙烷为交联剂,对化学接枝在硅胶微粒表面的功能大分子PEI进行了重金属离子印迹,制备了四种重金属离子的表面印迹材料IIP-PEI/SiO2;考察研究了IIP-PEI/SiO2对模板离子的结合性能与识别选择性。实验结果表明,IIP-PEI/SiO2对模板离子具有优良的结合亲和性与特异的离子识别选择性。与印迹之前的接枝型复合材料PEI/SiO2相比,重金属离子印迹材料IIP-PEI/SiO2对模板离子的选择性系数提高了14-60倍。离子印迹材料IIP-PEI/SiO2还具有良好的脱附性能与重复使用性能,用0.1mol·L-1的盐酸就可以实现重金属离子的脱附,而且重复使用性能好,使用10次以后结合容量基本不变。
     对于接枝型复合材料PEI/SiO2,还深入考察研究了它对苯酚及对硝基苯酚等酚类物质的吸附性能与吸附机理。实验结果表明,凭借氢键相互作用与静电相互作用的协同,PEI/SiO2对酚类物质具有很强的吸附作用,吸附属于单分子层的物理吸附,吸附行为符合Freundlich吸附模型。吸附容量受pH以及温度的影响很大,吸附容量随介质pH的增大呈现先增大后降低的规律,在pH为7时,吸附容量最大;吸附容量随温度升高而降低,显示出物理吸附的特点。
     在上述研究的基础上,分别以苯酚及对硝基苯酚为模板分子,乙二醇二缩水甘油醚为交联剂,对化学接枝在硅胶微粒表面的功能大分子PEI进行了苯酚及对硝基苯酚分子印迹,制备了苯酚及对硝基苯酚分子的表面印迹材料MIP-PEI/SiO2。考察研究了两种分子印迹材料MIP-PEI/SiO2对模板分子的结合性能与识别选择性。实验结果表明,两种印迹材料MIP-PEI/SiO2对模板分子具有优良的结合亲和性与特异的分子识别选择性。与印迹之前的接枝型复合材料PEI/SiO2相比,分子印迹材料MIP-PEI/SiO2对模板分子的选择性系数提高了11-40倍。MIP-PEI/SiO2还具有良好的脱附性能与重复使用性能,用0.1mol·L-1的盐酸就可以实现苯酚及对硝基苯酚的脱附,使用10次以后结合容量基本不变。
     通过3-(甲基丙烯酰氧)丙基三甲氧基硅烷的媒介,采用“接枝于”("graft from")的方法将功能大分子聚甲基丙烯酸(polymethylacrylic acid, PMAA)接枝到硅胶微粒表面,制备了接枝型复合材料PMAA/SiO2;考察研究了PMAA/SiO2对苯酚的吸附性能与吸附机理。凭借氢键相互作用,PMAA/SiO2对苯酚具有强的吸附作用,吸附属于单分子层的物理吸附,吸附行为符合Freundlich吸附模型。吸附容量受pH以及温度的影响很大,吸附容量随介质pH的增大而降低;吸附容量随温度升高而减小,显示出物理吸附的特点。
     在上述研究的基础上,以苯酚为模板分子,乙二醇二缩水甘油醚为交联剂,对化学接枝在硅胶微粒表面的功能大分子PMAA进行了苯酚分子印迹,制备了苯酚分子的表面印迹材料MIP-PMAA/SiO2。考察研究了MIP-PMAA/SiO2对苯酚的结合性能与识别选择性。实验结果表明,MIP-PMAA/SiO2对苯酚具有优良的结合亲和性与特异的分子识别选择性。与印迹之前的接枝型复合材料PMAA/SiO2相比,苯酚分子印迹材料MIP-PMAA/SiO2对苯酚的选择性系数提高了22-25倍。MIP-PMAA/SiO2具有良好的脱附性能与重复使用性能,用0.01mol·L-1的氢氧化钠溶液就可以实现苯酚的脱附,使用10次以后结合容量基本不变。
Wastewater containing heavy-metal ions and phenolic compound are primary source of water pollution, and has been caused great endangerment for the human society. Therefore, via the molecule design, preparing the high-performance material, which can be used effectively not only for treating pollutant in wastewater but also for separating and reclaiming pollutant, have important environment protection and resource recycling value. Two kinds of grafted composited materials were prepared and its adsorption abilities and mechanism towards heavy-metal ions and phenolic compound were researched. On the base of this, noval surface molecular imprinting technology was founded firstly in the international range. Three kinds of high-performance heavy-metal ion and phenolic compound-imprinted materials were prepared and its binding abilities and recongnizing mechanism towards template were researched. The prepared molecularly imprinted materials possess effective removing ability to heavy-metal ions and phenolic compound. The investigation results possess important scientific significance and applied value in environment protection and treatment.
     Functional macromolecule polyethyleneimine (PEI) was grafted onto the surface of silica gel particles with the "graft to" method using y-chloropropyl trimethoxy silane as coupling agent, and the grafted composited material PEI/SiO2 was prepared. The adsorption abilities and mechanism of PEI/SiO2 towards Cu2+, Cd2+, Pb2+, Zn2+, and Cr3+ ions were studied. The experiment results showed that PEI/SiO2 possesses very strong chelating adsorption ability for Cu2+, Cd2+, Pb2+, Zn2+ and Cr3+ ions. The adsorption is chemical adsorption with monomolecular layer and accord with the Langmuir adsorption model. The pH and temperature have great influence on the adsorption capacity. The adsorption capacity increases with the decreases of pH before the heavy-metal ions were hydrolyzed. The adsorpyion capacity increases with the increases of temperature and this displayed the character of chemical adsorption.
     The functional macromolecules PEI on the surface of silica gel particles were ionic imprinted using Cu2+, Cd2+, Pb2+, Cr3+ as template ion and epichlorohydrin as crosslinking reagent and four surface ion-imprinted materials IIP-PEI/SiO2 were prepared. The binding ability and recognizing selectivity of IIP-PEI/SiO2 towards template ion were researched. The experiment results showed that IIP-PEI/SiO2 possesses very excellent binding affine and recognizing selectivity towards template ion. The selectivity coefficient of IIP-PEI/SiO2 towards template ion was 14-60 times than that of PEI/SiO2. IIP-PEI/SiO2 possesses well elute and reuse property. The adsorbed metal ions could be eluted easily from IIP-PEI/SiO2 using 0.1mol·L-1 hydrochloric acid as eluent, and the binding capacity of IIP-PEI/SiO2 remains unchanged nearly after 10 times use.
     The adsorption abilities and mechanism of PEI/SiO2 towards phenol and p-nitrophenol were also studied. The experiment results showed that PEI/SiO2 possesses very strong adsorption ability for phenol and p-nitrophenol by way of hydrogen bond interaction and electrostatic interaction. The adsorption is physical adsorption with monomolecular layer and accord with the Freundlich adsorption model. The pH and temperature have great influence on the adsorption capacity. The adsorption capacity was the highest at pH of 7. The adsorpyion capacity increases with the decreases of temperature and this displayed the character of physical adsorption.
     The functional macromolecules PEI on the surface of silica gel particles were molecular imprinted using phenol and p-nitrophenol as template molecule and ethylene glycol diglycidyl ether as crosslinking reagent and two surface molecular-imprinted materials MIP-PEI/SiO2 were prepared. The binding ability and recognizing selectivity of MIP-PEI/SiO2 towards template molecule were researched. The experiment results showed that MIP-PEI/SiO2 possesses very excellent binding affine and recognizing selectivity towards template molecule. The selectivity coefficient of MIP-PEI/SiO2 towards template molecule was 11-40 times than that of PEI/SiO2. MIP-PEI/SiO2 possesses well elute and reuse property. The adsorbed phenol and p-nitrophenol could be eluted easily from MIP-PEI/SiO2 using 0.1mol·L-1 hydrochloric acid as eluent, and the binding capacity of MIP-PEI/SiO2 remains unchanged nearly after 10 times use.
     Functional macromolecule polymethylacrylic acid (PMAA) was grafted onto the surface of silica gel particles with the "graft from" method using 3-methacryloxypropyl trimethoxysilane as coupling reagent, and the grafted composited material PMAA/SiO2 was prepared. The adsorption abilities and mechanism of PMAA/SiO2 towards phenol were studied. The experiment results showed that PMAA/SiO2 possessess strong adsorption ability for phenol by way of hydrogen bond interaction. The adsorption is physical adsorption with monomolecular layer and accord with the Freundlich adsorption model. The pH and temperature have great influence on the adsorption capacity. The adsorption capacity decreases with the increases of pH. The adsorpyion capacity increases with the decreases of temperature and this displayed the character of physical adsorption.
     The functional macromolecules PMAA on the surface of silica gel particles were molecular imprinted using phenol as template molecule and ethylene glycol diglycidyl ether as crosslinking reagent, and the phenol suface molecular-imprinted material MIP-PMAA/SiO2 was prepared. The binding ability and recognizing selectivity of MIP-PMAA/SiO2 towards phenol were researched. The experiment results show that the MIP-PMAA/SiO2 possesses very excellent binding affine and recognizing selectivity towards phenol. The binding capcity remains unchanged nearly. The selectivity coefficient of MIP-PMAA/SiO2 towards phenol was 22-25 times than that of PMAA/SiO2. MIP-PMAA/SiO2 possesses well elute and reuse property. The adsorbed phenol could be eluted easily from MIP-PMAA/SiO2 using 0.01mol·L-1 sodium hydroxide as eluent, and the binding capacity of MIP-PMAA/SiO2 remains unchanged nearly after 10 times use.
引文
[1]闻瑞梅.半导体工业废水、废气中砷、磷、硫、氟、氯及氮氧化物和重金属的综合治理[J].电子学报,2000,28(11):1-4.
    [2]陈凡植,陈庆邦,陈淦康等.从铜镍电镀污泥中回收金属铜和硫酸镍[J1.化学工程,2001,29(4):28-33.
    [3]姜岩,闻建平,胡宗定.工业废水处理新技术与新方法的研究进展[J].化工进展,2004,23(3):256-259.
    [4]周全法,李峰,朱雯等.贵金属深加工的废水处理方案[J].贵金属,2002,23(4):64-70.
    [5]刘兴洁,张光华.有机/无机高分子絮凝剂在制革废水处理中的应用综述[J].中国皮革,2005,34(1):16-19.
    [6]张嫦.机械工业废水中重金属离子的处理工艺研究[J].环境污染与防治,2003,25(6):348-350.
    [7]赵红霞,周萌.重金属对水生动物毒性的研究进展[J].中国兽医杂志,2004,40(4):39-41.
    [8]城市水质标准及污水综合排放标准.中华人民共和国.2005.
    [9]孙建民,于丽青,孙汉文.重金属废水处理技术进展[J].河北大学学报(自然科学版),2004,24(4):438-443.
    [10]谢华林,李立波.改性沸石对重金属离子吸附性能的试验研究[J].非金属矿,2005,28(1):47-49.
    [11]李爱阳,褚宏伟.改性斜发沸石处理电镀废水中的重金属离子[J].材料保护,2004,37(6):37-40.
    [12]黄少云,葛学贵,石磊等.介微孔复合沸石分子筛对重金属离子吸附性能的实验研究[J].岩石矿物学杂志,2004,23(1):57-60.
    [13]陈林,谭欣,马红钦等.膨润上的改性及对重金属离子吸附研究进展[J].现代化工,2002,22:88-90.
    [14]夏畅斌.膨润土对Zn和Cd离子的吸附作用研究[J].矿产综合利用,2000,4:34-36.
    [15]梁文懂,刘强.用改性磷灰石去除废水中重金属离子的研究[J].武汉科技大学学报(自然科学版),2001,23(3):242-244.
    [16]Radi S, Ramdani A, Lekchiri Y, et al. Extraction of metal ions from water with tetrapyrazolic macrocycles bound to Merrifield resin and silica gel [J]. Journal of Applied Polymer Science,2000,78:2495-2499.
    [17]李维实,张一烽,沈之荃.新型螯合树脂研究(Ⅰ)-以聚硫醚为主链伯胺型树脂的合成及吸附性能[J].高等学校化学学报,1998,19(2):322-325.
    [18]周定.新型鳌合树脂-木屑柠檬酸醋的合成及其应用[J].环境化学,1984,3(6):30-35.
    [19]刘春萍,曲荣君,刘淑芬等.甲醛-苯氧乙酸树脂对金属离子的交换性能研究[J].离子交换与吸附,2002,18(3):199-204.
    [20]罗道成,易平贵,陈安国等.腐植酸树脂对电镀废水中重金属离子的吸附[J].材料保护,2002,35(4):54-56.
    [21]徐厚才,罗运军,谭惠民等.树形聚酰胺与Cu2+的络合作用[J].分析测试学报,2001,20(3):1-4.
    [22]杨云峰,刘强.聚甲基丙烯酸螯合树脂的研究[J].华北工学院学报,2000,21(4):319-322.
    [23]曲荣君,刘春萍,阮文举等.新型醇胺螯合树脂的合成及其红外光谱研究[J].光谱学于光谱分析,1997,17(5):29-33.
    [24]贺小进,谭天伟,戚以政等.球形壳聚糖树脂制备方法及吸附性能研究[J].离子交换与吸附,2000,16(1):47-53.
    [25]彭长宏,汪玉庭,程格等.接枝羧基壳聚糖的合成及其对重金属离子的吸附性能[J].环境科学,1998,19(5):29-33.
    [26]刘峥,田兴乐,蒋先明.交联壳聚糖缩水杨醛螯合树脂的制备及性能研究[J].离子交换与吸附,1999,15(5):432-439.
    [27]袁彦超,石光,陈炳稔等.交联壳聚糖树脂吸附Cu2+的机理研究[J].离子交换与吸附,2004,20(3):223-230.
    [28]庄华,张征林,金万勤等.交联聚氨基壳聚糖螯合树脂的制备及吸附性能研究[J].离子交换与吸附,2001,17(6):507-514.
    [29]季君晖.壳聚糖对Cu2+吸附行为及机理研究[J].离子交换与吸附,1999,15(6):511-517.
    [30]孙昌梅,曲荣君,王春华等.基于壳聚糖及其衍生物的金属离子吸附剂的研究进展[J].离子交换与吸附,2004,20(2):184-102.
    [31]刘秀芝,肖玲,杜予民等.邻氨基苯酚改性壳聚糖树脂的制备及吸附性能的研究[J].离子交换与吸附,2002,18(5):399-405.
    [32]刘春萍,孙琳,徐强等.胺固化环氧酚醛树脂对Cu(Ⅱ)的吸附与富集[J].烟台师范学院学报(自然科学版),2004,20(1):50-53.
    [33]Radi S, Ramdani A, Lekchiri Y, et al. Preparation of pyrazole compounds for attachment to chelating resins [J]. European Polymer Journal,2000,36:1885-1892.
    [34]Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment [J]. Progress in Polymer Science,2005,30:38-70.
    [35]Babel S, Kurniawan T A. Low-cost adsorbents for heavy metals uptake from contaminated water:a review [J]. Journal of Hazardous Materials,2003,97:219-243.
    [36]Yang D, Chang X J, Liu Y W, et al. Synthesis and efficiency of a spherical macroporous epoxy-polyamide chelating resin for preconcentrating and separating trace noble metal ions [J]. Microchimica Acta,2004,14:788-782.
    [37]Chattopadhyay P, Sinha C, Pal D K. Preparation and properties of a new chelating resin containing imidazolylazo groups [J]. Fresenius'Journal of Analytical Chemistry, 1997,357:368-372.
    [38]Sun Y C, Tu Y L, Mierzwa J. Chelating resin preconcentration and Hg(II) assisted elution followed by differential-pulse anodic stripping voltammetry for the determination of Cd, Cu, and Pb in seawater [J]. Fresenius'Journal of Analytical Chemistry,1998,360:550-555.
    [39]Chang X J, Gong B L, Su Z X, et al. ICP-OES determination of traces of Ru, Au, V and tipreconcentrated and separated by a new poly(epoxy-melamine) chelating resin from solutions [J]. Fresenius'Journal of Analytical Chemistry,1998,360:736-739.
    [40]Gueguen C, Dominik J, Perret D. Use of chelating resins and inductively coupled plasma mass spectrometry for simultaneous determination of trace and major elements in small volumes of saline water samples [J]. Fresenius'Journal of Analytical Chemistry,2001,370:909-912.
    [41]Jain V K, Pandya R A, Pillai S G, et al. Application of a chelate forming calyx [4] arene-ovanillinthiosemicarbazone resin to the separation, preconcentration and trace determination of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) in natural water samples [J]. Microchimica Acta,2004,25:723-734.
    [42]Chevallier P, Soutif J C, Brosse J C, et al. Synthesis of poly(amide-ester)s from 2,6-pyridine dicarboxylic acid and ethanolamine derivatives investigation of the polymer sorption behaviour towards heavy metal ions [J]. Reactive and Functional Polymers, 1999(42):129-146.
    [43]Senkal B F, Bicak N. Glycidyl methacrylate based polymer resins with diethylene triamine tetra acetic acid functions for efficient removal of Ca(Ⅱ) and Mg(Ⅱ) [J]. Reactive and Functional Polymers,2001,49:151-157.
    [44]Andersen H B. Toxicity identification evaluations (TIEs) of freshwater samples using a metal chelating resin [J]. Bulletin of Environmental Contamination and Toxicology, 2004,72:697-705.
    [45]Doi T. Obata H, Maruo M. Shipboard analysis of picomolar levels of manganese in seawater by chelating resin concentration and chemiluminescence detection [J]. Analytical and Bioanalytical Chemistry,2004,378:1288-293.
    [46]Karin C J, Mauro C M, Laranjeira A, et al. Chitosan functionalized with 2-[bis(pyridy lmethyl) aminomethyl]-4-methyl-6-formyl-phenol:equilibrium and kinetics of copper(Ⅱ) adsorption [J]. Polymer,2004,45:6285-6290.
    [47]Guibal E. Interactions of metal ions with chitosan-based sorbents:a review [J]. Separation and Purification Technology,2004,38:43-74.
    [48]Krajewska B. Application of chitin and chitosan-based materials for enzyme immobilizations:a review [J]. Enzyme and Microbial Technology,2004,35:126-139.
    [49]Xi F N, Wu J M. Macroporous chitosan layer coated on non-porous silica gel as a support for metal chelate affinity chromatographic adsorbent [J]. Journal of Chromatography A,2004,1057:41-47.
    [50]Karin C J, Valfredo T F, Mauro C M L, et al. Synthesis and characterization of modified chitosan through immobilization of complexing agents [J]. Macromolecular Symposia,2005,229:203-207.
    [51]Shigehiro H, Min Z, Hideki Y, et al. Chemical modification and some aligned composites of chitosan in a filament state [J]. Macromolecular Bioscience,2003,3: 620-628.
    [52]Ricardo N, Javier G, Imelda S, et al. Recovery of metal ions by chitosan:sorption mechanisms and influence of metal speciation [J]. Macromolecular Bioscience,2003, 3:552-561.
    [53]Vieira E F S, Cestari A R, Santos E B, et al. Interaction of Ag(Ⅰ), Hg(Ⅱ), and Cu(Ⅱ) with 1,2-ethanedithiol immobilized on chitosan:Thermochemical data from isothermal calorimetry [J]. Journal of Colloid and Interface Science,2005,289: 42-47.
    [54]Kartal S N, Imamura Y. Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan [J]. Bioresource Technology,2005,96: 389-392.
    [55]Ng J C Y, Cheung W H, Mckay G. Equilibrium studies of the sorption of Cu(II) ions onto chitosan [J]. Journal of Colloid and Interface Science,2002,255:64-74.
    [56]Rhazi M, Desbrieres G, Tolaimate A, et al. Influence of the nature of the metal ions on the complexation with chitosan:Application to the treatment of liquid waste [J]. European Polymer Journal,2002,38:1523-1530.
    [57]Jin L, Bai R B. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads [J]. Langmuir,2002,18(25):9765-9770.
    [58]徐满才,史作清,何炳林.超高交联聚苯乙烯吸附剂的合成、结构与性能[J].离子交换与吸附,1994,10(6):555-562.
    [59]张华,逯阳,肖长发.载双硫腙螯合纤维制备及富集重金属离子研究[J].离子交换与吸附,2005,21(5):469-473.
    [60]孙言志,纪春暖,唐清华等.聚苯乙烯负载2-氨基-5-乙基-1,3,4-噻二唑螯合树脂的合成及其吸附性能[J].离子交换与吸附,2005,21(5):432-436.
    [61]魏荣卿,朱建星,刘晓宁等.Mannich反应制备氨基树脂及由其制备的螯合树脂的吸附性能[J].现代化工,2005,25(6):30-33.
    [62]贾莉英,陈晓青,危俊婷等.新型离子交换树脂的合成及其对Rb+的交换性能[J]. 中南工业大学学报,2001,32(1):54-57.
    [63]俞善信,易丽,王彩荣.聚苯乙烯三乙醇胺树脂对水中镉离子的吸附[J].化工环保,2000,20(1):46-47.
    [64]Maeda H, Egawa H. Removal and recovery of nickel ion in sodium citrate solution with chelating resin containing triethylenetetramine side chain [J]. Journal of Applied Polymer Science,2003,45(1):173-176.
    [65]刘春萍,曲荣君,孙琳等.多胺型螯合树脂对重金属离子的吸附研究[J].离子交换与吸附,1998,14(6):548-553.
    [66]刘春萍,曲荣君,孙琳等.多胺型螯合树脂对Au(Ⅲ)的吸附性能[J].离子交换与吸附,2001,17(4):339-344.
    [67]曲荣君,刘春萍,阮文举等.多胺型螯合树脂的合成及其对Ag(Ⅰ)的吸附[J].材料研究学报,1999,13(1):51-57.
    [68]董绮功,张军平,李亚荣等.新型含氮、硫纤维素螯合树脂的合成及其吸附性能[J].高等学校化学学报,2003,24(4):719-723.
    [69]Ku Y, Lee K C. Removal of phenols from aqueous solution by XAD-4 resin [J]. Journal of Hazardous Materials,2000,80:59-68.
    [70]Li A M, Zhang Q X, Chen J L, et al. Adsorption of phenolic compounds on Amberlite XAD-4 and its acetylated derivative MX-4 [J]. Reactive and Functional Polymers, 2001,49:225-233.
    [71]MacDonald J A F, Evans M J B. Adsorption and enthalpy of phenol on BPL carbon [J]. Carbon,2002,40:703-707.
    [72]Kim S, Kim Y K. Apparent desorption kinetics of phenol in organic solvents from spent activated carbon saturated with phenol [J]. Chemical Engineering Journal,2004, 98:237-243.
    [73]Tryba B, Tsumura T, Janus M, et al. Carbon-coated anatase:adsorption and decomposition of phenol in water [J]. Applied Catalytic B,2004,50:177-183.
    [74]Al-Asheh S, Banat F, Abu-Aitah L. Adsorption of phenol using different types of activated bentonites [J]. Separation and Purification Technology,2003,33:1-10.
    [75]Akbal F. Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant [J]. Journal of Environmental Management,2005,74:239-244.
    [76]吴慧英,施周,陈积义等.两种微波-活性炭法对苯酚的去除效果及其效能比较[J].中国给水排水,2008,24(23):52-56.
    [77]冯臻.微波法制备有机膨润土吸附污染水中铅和苯酚的特性[J].无机盐工业,2008,40(6):47-49.
    [78]谢祖芳,晏全,周振.201树脂吸附硝基苯酚的热力学研究[J].化工时刊,2008,22(4):23-25.
    [79]王小梅,彭江鸣,赵晨曦等.大孔交联聚(对乙烯基苄基苯胺)树脂对苯酚的吸附[J].化学学报,2008,66(8):990-994.
    [80]王小梅,赵晨曦,黎成勇等.聚(N-甲基-N-对乙烯基苄基乙酰胺)对水中苯酚的吸附[J].应用化学,2008,25(6):714-717.
    [81]熊春华,吕建.大孔树脂对有机废水中苯酚的吸附性能[J].水处理技术,2008,34(2):24-27.
    [82]彭成松,王少宝,张晓梅.新型羟丙基-p-环糊精交联聚合物的合成及其对苯酚的吸附[J].应用化工,2008,37(3):287-290.
    [83]潘梅,李海宗,费正皓.双官能基修饰的超高交联吸附树脂对2,4-二氯苯酚的吸附性能研究[J].应用化工,2008,37(5):483-486.
    [84]Seetharam G B, Saville B A. Degradation of phenol using tyrosinase immobilized on siliceous supports [J]. Water Research,2003,37:436-440.
    [85]Bagirova N A, Shekhovtsova T N, van Huystee R B. Enzymatic determination of phenols using peanut peroxidase [J]. Talanta,2001,55:1151-1164.
    [86]马海娟,李光明,方萍等.诺卡氏菌株C-14-1对苯酚降解特性的研究[J].水处理技术,2008,34(12):43-47.
    [87]李志刚,胡筱敏,闫海生等.Mn/Ce/La复合催化剂湿式氧化处理苯酚废水的研究[J].安全与环境学报,2008,8(2):65-67.
    [88]张乐观,朱新锋.微球负载TiO2催化剂的制备与降解苯酚性能[J].化工进展,2008,27(4):577-580.
    [89]Peter A G C, Amaia Z E. Molecularly Imprinted Polymers:Snthesis and Characterization [J]. Journal of Chromatography B,2004,804:173-184.
    [90]Joshi V P, Karode S K, Kulkarni M G, et al. Novel Separation Strategies Based on Molecularly Imprinted Adsorbents [J]. Chemical Engineering Science,1998,53(13): 2271-2284.
    [91]吐尔洪·买买提,阿布力克木·阿布力孜,王吉德等.一种分子印迹聚合物荧光敏感膜的制备及对胺碘酮含量的测定[J].分析化学,2007,35(7):1059-1062.
    [92]Ivanka D, Irina K, Ventsislava G, et al. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury [J]. Talanta,2009,78: 523-529.
    [93]Beatriz C, Michael J W, Evgeny N V, et al. Molecular Imprinting for the Selective Adsorption of Organosulphur Compounds present in Fuels [J]. Analytica Chimica Acta,2001,435:83-90.
    [94]Ridvan S, Ebru B, Aruzu E, et al. Preconcentration of Copper on Ion-selective Imprinted Polymer Microbeads [J]. Analytica Chimica Acta,2003,480:251-258.
    [95]Chen W, Liu F, Xu Y T, et al. Molecular Recognition of Procainamide-imprinted Polymer [J]. Analytica Chimica Acta,2001,432:277-282.
    [96]卢彦兵,梁志武,项伟中等.奎宁分子印迹聚合物的合成与性能研究[J].分析科学学报,2000,16(4):310-313.
    [97]Oliver B. Catalytically Active Polymers Obtained by Molecular Imprinting and Their Application in Reaction [J]. Biomolcular Engineering,2001,18:1-7.
    [98]Orhan G, Xa S Y, onder P. Metal Ion Templated Chemosensor for Metal Ions Base on Fluorescence Quenching [J]. Sensors Actuators B,2002,85:86-89.
    [99]赖家平,何锡文,郭洪声等.分子印迹技术的回顾、现状与展望[J].分析化学研究报告,2001,29(7):836-844.
    [100]Peter A G C, Klaus M. Molecular Imprinting:Recent Developments and the Road Ahead [J]. Reactive and Functional Polymers,1999,41:115-124.
    [101]周勤,袁笑一.分子印迹技术及其在环境领域的应用[J].科技通报,2005,21(1):110-114.
    [102]Wulff G. Molecular Recognition in Polymers Prepared by Imprinting with Template, Polymeric Reagents and Catalytics [J]. Acs Symposium Series,1986,308(2): 186-200.
    [103]Wulff G,Vesper W, Einsler R G, et al. Sythetic Polymers with Chiral Cavities [J]. Makromol Chem,1977,178(11):2799-2802.
    [104]Norrlow O, Glad M, Mosbach K. Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates [J]. Journal of Chromatography,1984,299(1):29-41.
    [105]Lei Y, Klaus M. Molecularly imprinted microspheres as antibody binding mimics [J]. Reactive and Functional Polymers,2001,48:149-157.
    [106]Perez-Moral N, Mayes A G. Comparative study of imprinted polymer particles prepared by different polymerisation methods [J]. Analytica Chimica Acta,2004, 504(1):15-21.
    [107]刘峥,温玉清,黄美春.铜离子印迹聚合物的制备及吸附性能[J].桂林工学院学报,2007,1(27):106-110.
    [108]李琼,杜艳丽,杨科珂等.谷胱甘肽分子印迹聚合物的制备及其性能研究[J].高等学校化学学报,2007,6(28):1059-1063.
    [109]苏立强,王远,韩爽等.(2-甲基丙烯酰胺)乙氧基-2-甲基丙烯酸乙二醇单酯基质分子印迹手性分离介质的合成与表征[J].分析化学,2008,12(36):1732-1734.
    [110]张朝晖,张华斌,胡宇芳等.L-组氨酸手性识别印迹固定相的制备及表征[J].高等学校化学学报,2008,10(29):1941-1946.
    [110]张圣祖,付新建,王宏等.胆固醇分子印迹的聚合有机凝胶及其吸附性能研究[J].高分子学报,2009,3:244-248.
    [111]Mercedes G, Riansares M, Carmen C, et al. Different formats of imprinted polymers for determining organotin compounds in environmental samples [J]. Journal of Environmental Management,2009,90:S69-S76.
    [112]Cem E, Muge A, Nilay B, et al. Highly selective ion-imprinted particles for solid-phase extraction of Pb2+ ions [J]. Materials Science & Engineering C,2009, doi: 10.1016/j.msec.2009.07.012.
    [113]Guo J J, Cai J B, Su Q D. Ion imprinted polymer particles of neodymium:synthesis, characterization and selective recognition [J]. Journal of rare earths,2009,27:22-27.
    [114]Ivanka D, Irina K, Ventsislava G,et al.Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury[J]. Talanta,2009,78: 523-529.
    [115]Sellergren B. Imprinting Dispersion Polymers:a New Class of Easily Accessible Affinities Stationary Phases [J]. Journal of Chromatography,1994,673(1):133-141.
    [116]Berglund J, Nicholls I A, Lindbladh C, et al. Recognition in Molecularly Imprinted Polymer α2 adrenoreceptor Mimics [J]. Bioorganic and Medicinal Chemistry Letters, 1996,6(18):2237-2242.
    [109]Norrlow O, Glad M, Mosbach K. Acrylic Polymer Preparations Containing Recognition Sites Obtained by Imprinting with Substrates [J]. Journal of Chromatography,1984,299(1):29-41.
    [110]Dhal P K, Vidyasankar S, Arnold F H. Surface Grafting of Functional Polymers to Macrcporous Poly(trimethyllolpropane triethyacrylate) [J]. Chemistry of Materials, 1995,7(1):154-162.
    [111]李保利,张敏,姜萍等.表面接枝分子印迹聚合物微球的合成及评价[J].分析化学研究报告,2007,65(10):955-961.
    [112]Claudia S, Barbel R, Andrew J H, et al. Grafting of Molecularly Imprinted Polymer Films on Silica Supports Containing Surface-Bound Free Radical Initiators [J]. Macromolecules,2002,35(1):79-91.
    [113]Tae H K, Chang D K, Heesook C, et al. Facile Preparation of Core-Shell Type Molecularly Imprinted Particles:Molecular Imprinting into Aromatic Polyimide Coated on Silica Spheres [J]. Macromolecules,2005,38(15):6423-6428.
    [114]Natalia P, Andrew G M. Noncovalent Imprinting in the Shell of Core-Shell Nanoparticles [J]. Langmuir,2004,20(9):3775-3779.
    [115]Jainamma M, Shea K J. Imprinted Polymer Membranes for the Selective Transport of Targeted Neutral Molecules [J]. Journal of the American Chemical Society,1996, 118(34):8154-8155.
    [116]Volkmann A, Bruggemann O. Catalysis of an ester hydrolysis applying molecularly imprinted polymer shells based on an immobilised chiral template [J]. Reactive and Functional Polymers,2006,66(12):1725-1733.
    [117]Lu Y, Zhao B, Ren Y, et al. Water-assisted formation of novel molecularly imprinted polymer membranes with ordered porous structure [J]. Polymer,2007,48(21): 6205-6209.
    [118]Tatiana A S, Heike M, Sergiy A P, et al. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization [J]. Journal of Chromatography A,2001,907:89-99.
    [119]Mena M L, Martinez-Ruiz P, Reviejo A J, et al. Molecularly imprinted polymers for on-line preconcentration by solid phase extraction of pirimicarb in water samples [J]. Analytica Chimica Acta,2002,451:297-304.
    [120]罗勇,刘岚,李丽虹等.硅胶表面茶碱分子印迹聚合物的制备和性能研究[J].中山大学学报(自然科学版),2005,44(6):49-53.
    [121]Volkmann A, Bruggemann O. Catalysis of an ester hydrolysis applying molec-ularly imprinted polymer shells based on an immobilised chiral template [J]. Reactive and Functional Polymers,2006,66(12):1725-1733.
    [122]周艳梅,徐文国,童爱军.硅胶表面牛血清白蛋白分子印迹聚合物的制备及分子识别性能[J].分析化学,2006,34(11):1551-1554.
    [123]Li F, Jiang H, Zhang S. An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(Ⅱ) from aqueous solution [J]. Talanta,2007,71:1487-1493.
    [124]Ebru B, Arzu E, Erol A, et al. Cr(Ⅲ)-imprinted polymeric beads:Sorption and preconcentration studies [J]. Journal of Hazardous Materials,2007,140:110-116.
    [125]Chang X J, Jiang N, Zheng H, et al. Solid-phase extraction of iron (Ⅲ) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique [J].Talanta,2007,71:38-43.
    [126]Li F, Jiang H Q, Zhang S S. An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(Ⅱ) from aqueous solution [J]. Talanta,2007,71:1487-1493.
    [127]Zhang N, Hu B, Huang C Z. A new ion-imprinted silica gel sorbent for on-line selective solid-phase extraction of dysprosium(Ⅲ) with detection by inductively coupled plasma-atomic emission spectrometry [J]. Analytica Chimica Acta,2007,597: 12-18.
    [128]Su H, Li J, Tan T. Adsorption mechanism for imprinted ion (Ni2+) of the surface molecular imprinting adsorbent (SMIA) [J]. Biochemical Engineering Journal,2008, 39:503-509.
    [129]朱丽华,罗玮,沈先涛等.一种颗粒表面分子印迹吸附剂及其制备方法[P].华中科技大学,2008.
    [130]Zhang N, Suleiman J B, He M, et al. Chromium(Ⅲ)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection [J]. Talanta,2008,75:536-543.
    [131]冀峰,赵利霞,冯钦忠等.硅胶表面扑灭津分子印迹材料的制备及性能表征[J].分析化学,2008,7(367):920-924.
    [132]王玲玲,闫永胜,邓月华等.铅离子印迹聚合物的制备、表征及其在水溶液中的吸附行为研究[J].分析化学,2009,4(37):537-542.
    [133]周雪,何锡文,陈朗星等.氨基硅球表面印迹牛血清白蛋白分离条件的初步探讨[J].分析化学,2009,2(37):174-180.
    [134]Tan J, Wang H F, Yan X P. A fluorescent sensor array based on ion imprinted mesoporous silica [J]. Biosensors and Bioelectronics,2009,24:3316-3321.
    [135]Huo H Y, Su H J, Tan T W. Adsorption of Ag+ by a surface molecular-imprinted biosorbent [J]. Chemical Engineering Journal,2009,150:139-144.
    [136]Li C X, Pan J M, Gao J, et al. An ion-imprinted polymer supported by attapulgite with a chitosan incorporated sol-gel process for selective separation of Ce(III) [J]. Chinese Chemical Letters,2009,20:985-989.
    [137]Candan N, Tuzmen N, Andac M, et al. Cadmium removal out of human plasma using ion-imprinted beads in a magnetic column [J]. Materials Science and Engineering C,2009,29:144-152.
    [138]An F Q, Gao B J, Feng X Q. Adsorption performance and mechanism of 2,4,6-trinitrotoluene on a novel adsorption material polyvinylbenzyl acid/SiO2 [J]. Applied Surface Science,2009,255:5031-5035.
    [139]An F Q, Gao B J, Feng X Q. Adsorption and recognition properties of ionic imprinted polyamine IIP-PEI/SiO2 towards Pb2+ ion [J]. Journal of Applied Polymer Science,2009,112:2241-2246.
    [140]An F Q, Feng X Q, Gao B J. Adsorption of aniline from aqueous solution using novel adsorbent PAM/SiO2 [J]. Chemical Engineering Journal,2009,151:183-187.
    [141]An F Q, Gao B J, Feng X Q. Adsorption mechanism and property of novel composite material PMAA/SiO2 towards phenol [J]. Chemical Engineering Journal,2009,153: 108-113.
    [142]An F Q, Feng X Q, Gao B J. Adsorption mechanism and property of a novel adsorption material PAM/SiO2 towards 2,4,6-trinitrotoluene [J]. Journal of Hazardous Materials,2009,168:352-357.
    [143]An F Q, Gao B J, Feng X Q. Adsorption of 2,4,6-trinitrotoluene on a novel adsorption material PEI/SiO2 [J]. Journal of Hazardous Materials,2009,166: 757-761.
    [144]An F Q, Gao B J, Feng X Q. Adsorption and recognizing ability of molecular imprinted polymer MIP-PEI/SiO2 towards phenol [J]. Journal of Hazardous Materials, 2008,157:286-292.
    [145]An F Q, Gao B J. Adsorption of phenol on a novel adsorption material PEI/SiO2 [J]. Journal of Hazardous Materials,2008,152:1186-1191.
    [146]An F Q, Gao B J. Chelating adsorption properties of PEI/SiO2 for plumbum ion [J]. Journal of Hazardous Materials,2007,145:495-500.
    [147]安富强,高保娇,李刚.硅胶表面铜(Ⅱ)离子印迹聚乙烯亚胺的制备及结合特性研究[JJ.高分子学报,2007,4:366-373.
    [148]Gao B J, An F Q, Zhu Y. Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles [J]. Polymer,2007,48:2288-2297.
    [149]Gao B J, An F Q, Liu K K. Studies on chelating adsorption properties of novel composite material polyethyleneimine/silica gel for heavy-metal ions [J]. Applied Surface Science,2006,253:1946-1952.
    [150]Gao B J, Wang J, An F Q, et al. Molecular imprinted material prepared by novel surface imprinting technique for selective adsorption of pirimicarb [J]. Polymer,2008, 49:1230-1238.
    [151]Gao B J, Lu J H, Chen Z P, et al. Preparation and recognition performance of cholic acid-imprinted material prepared with novel surface-imprinting technique [J]. Polymer,2009,50:3275-3284.
    [152]Gao B J, Li Y B, Chen Z P. Adsorption behaviour of functional grafting particles based on polyethyleneimine for chromate anions [J]. Chemical Engineering Journal, 2009,150:337-343.
    [153]安富强,高保娇,冯晓琴等.一种硅胶表面酚类分子印迹聚合物的制备方法[P].申请号:200810080050.X.
    [154]An F Q, Gao B J. Adsorption characteristics of Cr(Ⅲ) ionic imprinting polyamine on silica gel surface [J]. Desalination, doi:10.1016/j.desal.2009.04.004.
    [155]An F Q, Gao B J, Feng X Q. Binding and Recognition Ability of Molecularly Imprinted Polymer towards p-Nitrophenol [J]. Journal of Applied Polymer Science, Accepted.
    [1]An F Q, Gao B J. Chelating adsorption properties of PEI/SiO2 for plumbum ion [J]. Journal of Hazardous Materials,2007,145:495-500.
    [2]Amara M, Kerdjoudj H. Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions:Application to the separation of metallic ions [J]. Talanta,2003,60:991-1001.
    [3]Jain V K, Sait S S, Shrivastav P, et al. Application of chelate forming resin Amberlite XAD-2-o-vanillinthiosemicarbazone to the separation and preconcentration of copper(Ⅱ), zinc(Ⅱ) and lead(Ⅱ) [J]. Talanta,1997,45:397-404.
    [4]Torres J D, Faria E A, Prado A G S. Thermodynamic studies of the interaction at the solid/liquid interface between metal ions and cellulose modified with ethylenediamine [J]. Journal of Hazardous Material,2006,129:239-243.
    [5]Sales J A A, Faria F P, Prado A G S, et al. Attachment of 2-aminomethyl-pyridine molecule onto grafted silica gel surface and its ability in chelating cations [J]. Polyhedron,2004,23:719-725.
    [1]An F Q, Gao B J, Feng X Q. Adsorption and recognition properties of ionic imprinted polyamine IIP-PEI/SiO2 towards Pb2+ ion [J]. Journal of Applied Polymer Science, 2009,112:2241-2246.
    [2]安富强,高保娇,李刚.硅胶表面铜(Ⅱ)离子印迹聚乙烯亚胺的制备及结合特性研究[J].高分子学报,2007,4:366-373.
    [3]Gao B J, An F Q, Zhu Y. Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles [J]. Polymer,2007,48:2288-2297.
    [4]Gao B J, An F Q, Liu K K. Studies on chelating adsorption properties of novel composite material polyethyleneimine/silica gel for heavy-metal ions [J]. Applied Surface Science,2006,253:1946-1952.
    [5]An F Q, Gao B J. Adsorption characteristics of Cr(Ⅲ) ionic imprinting polyamine on silica gel surface [J]. Desalination, doi:10.1016/j.desal.2009.04.004.
    [6]Arzu E, Ridvan S, Adil D. Ni(Ⅱ) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns [J]. Analytica Chimica Acta,2004,502:91-97.
    [7]DEAN J A. Lange's Handbook of Chemistry.13th Edition. Beijing:Science press,1991, 6-31,32.
    [1]An F Q, Gao B J. Adsorption of phenol on a novel adsorption material PEI/SiO2 [J]. Journal of Hazardous Materials,2008,152:1186-1191.
    [2]Akbal F. Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant [J]. Journal of Environmental Management,2005,74:239-244.
    [3]Lin S H, Cheng M J. Adsorption of phenol and m-chlorophenol on organobentonites and repeated thermal regeneration [J]. Waste Management,2002,22:595-603.
    [4]Shen Y H. Removal of phenol from water by adsorption-flocculation using organobentonite. Water Research,2002,36:1107-1114.
    [5]王庆文,杨玉恒,高鸿宾.有机化学中的氢键问题[M],天津:天津大学出版社,1993,5.
    [6]Amara M, Kerdjoudj H. Modification of the cation exchange resin properties by impregnation in polyethyleneimine solutions:Application to the separation of metallic ions [J]. Talanta,2003,60:991-1001.
    [7]Jain V K, Sait S S, Shrivastav P, et al. Application of chelate forming resin Amberlite XAD-2-o-vanillinthiosemicarbazone to the separation and preconcentration of copper(Ⅱ), zinc(Ⅱ) and lead(Ⅱ) [J]. Talanta,1997,45:397-404.
    [1]An F Q, Gao B J, Feng X Q. Adsorption and recognizing ability of molecular imprinted polymer MIP-PEI/SiO2 towards phenol [J]. Journal of Hazardous Materials,2008, 157:286-292.
    [2]An F Q, Gao B J, Feng X Q. Binding and Recognition Ability of Molecularly Imprinted Polymer towards p-Nitrophenol [J]. Journal of Applied Polymer Science, Accepted.
    [1]An F Q, Gao B J, Feng X Q. Adsorption mechanism and property of novel composite material PMAA/SiO2 towards phenol [J]. Chemical Engineering Journal,2009,153: 108-113.
    [2]Lin S H, Cheng M J. Adsorption of phenol and m-chlorophenol on organobentonites and repeated thermal regeneration [J]. Waste Management,2002,22:595-603.
    [3]Akbal F. Sorption of phenol and 4-chlorophenol onto pumice treated with cationic surfactant [J]. Journal of Environmental Management,2005,74:239-244.
    [4]Shen Y H. Removal of phenol from water by adsorption-flocculation using organobentonite [J]. Water Research,2002,36:1107-1114.
    [5]王庆文,杨玉恒,高鸿宾.有机化学中的氢键问题[M],天津:天津大学出版社,1993,5.
    [6]Steiner T, Schreurs A M M, Kanters J A, et al. Water molecules hydrogen bonding to aromatic acceptors of amino acids. The structure of Tyr-Tyr-Phe dihydrate and a crystallographic database study on peptides [J]. Acta Crystallographica D,1998,54: 25-31.
    [7]Steiner T. Hydrogen bonds from water molecules to aromatic acceptors in very high-resolution protein crystal structures [J]. Biophysical Chemistry,2002,95: 195-201.
    [8]Steiner T, Koellner G. Hydrogen bonds with π-acceptors in proteins:Frequencies and role in stabilizing local 3D structures [J]. Journal of Molecular Biology,2001,305: 535-557.
    [9]Derewenda Z S, Lee L, Derewenda U. The occurrence of C-H…O hydrogen bonds in proteins [J]. Journal of Molecular Biology,1995,252:248-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700