超声、微波助萃取及分子印迹技术在中草药活性成分分离分析中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作是在导师所承担的国家自然科学基金项目和湖南省自然科学基金项
    目资助下作者在攻读博士学位期间所做全部研究工作的总结和概括。本工作以湘
    西重要植物资源-杜仲为研究对象,以现代新兴样品预处理技术(超声助提技术
    和微波助提技术)为工具,从杜仲中提取和分离以绿原酸为代表的多酚化合物,
    研究了各种提取参量对提取效率的影响。另外,本文也研究了分子印迹聚合物的
    合成、表面键合位点性能测试及其固相萃取在中草药功效成分分离分析中的实际
    运用。具体而言,主要开展了以下几方面的研究工作:
    1. 根据超声波可促进植物细胞破碎,加速细胞内容物与溶剂间的传质过程,
    设计了用常规超声波清洗盆超声助萃取杜仲中绿原酸的研究,并对超声处
    理条件进行了考察。与不用超声波时相比,超声助萃取具有提取效率高,
    溶剂用量少等优点。低温萃取可保证植物材料中生物活性成分的稳定性。
    2. 研究了用聚焦微波助提技术从杜仲中提取绿原酸和京尼平苷酸。采用实
    验因子设计法对微波助提条件(辐照时间、溶剂用量、微波功率和溶剂组
    成)进行了优化。结果表明,微波助提法比常规提取技术大大缩短了提取
    时间,提高了提取效率。该法也具有较高的重现性。
    3. 扩大了聚焦微波助萃取技术的应用范围,将之应用于从杜仲中提取多酚
    酸类化合物。考察了微波辐照时间、微波功率,特别是溶剂的组成和用量
    对这类化合物微波助提效果的影响。研究了单一溶剂(水或直链一元醇)
    和混合溶剂下的提取效率。直链一元醇中C原子数较少的醇所获提取率较
    高。甲醇比水的提取效果更好。以甲醇-水-醋酸的混合溶剂进行提取,效
    果更佳。
    4. 研究了用原儿茶酸为模板,甲基丙烯酸为功能单体,乙烯基二甲基丙烯
    酸酯为交联剂,在四氢呋喃溶液中,通过非共价组装合成了原儿茶酸分子
    印迹聚合物,通过平衡吸附实验和高效液相色谱考察了分子印迹聚合物对
    模板分子和结构类似物的重键行为。用Scatchard法研究了聚合物中键合
    位点的类型、分布和能量。分子印迹聚合物对模板分子有很强的吸附能力,
    呈现出选择性的键合行为。洗脱剂组成对模板分子及其结构类似物在分子
    印迹聚合物固定相上的保留行为影响较大,流动相速率影响峰的分辨率。
    5. 以咖啡酸为模板分子,四氢呋喃-异辛烷(2:1,v/v)为致孔剂,用原位
    合成法制备了咖啡酸印迹聚合物整块固定相。用前沿分析技术测定了不同
    温度和不同流动相组成下,咖啡酸及其结构相似物在聚合物上的吸附等温
    
    超声、微波助萃取及分子印迹技术在中草药活性成分分离分析中的研究与应用
     线。分别用Langmuir方程、Bi一Langmuir方程和Freundlieh方程对所获
     实验吸附等温线进行拟合,结果表明用Bi一Langmuir方程和FreundliCh
     方程拟合效果较好。通过Bi--Langmuir方程拟合的最佳系数,可获得分子
     印迹聚合物表面键合位点的类型、能量分布、饱和吸附量和键合常数等。
    6.研究了用咖啡酸印迹聚合物整块固定相从杜仲叶提取物中在线分离和纯
     化绿原酸。考察了致孔剂组成和不同流动相对聚合物柱通透性能的影响,
     获得了最佳制备条件。研究了不同流动相组成下柱的洗脱效果和分析物在
     柱上的保留行为。测试了不同进样量下色谱分离效果和所获馏分中绿原酸
     的纯度。结果表明,用分子印迹聚合物处理过的杜仲叶提取物中绿原酸的
     纯度进一步提高。显示了分子印迹聚合物固相萃取分离和纯化植物提取物
     中功效成分的可行性。
    关键词:杜仲;绿原酸;超声助提;微波助提;分子印迹
Two novel types of sample pretreatment techniques (ultrasound - and microwave - assisted extraction approaches) have been used for the extraction of polyphenolic compounds, like chlorogenic acid, caffeic acid, and so on, from Eucommia ulmodies Oliv., a precious Traditional Chinese Medicine existed in the west of Hunan province, in this work. The influence of various extraction parameters in each technique on the extraction efficiencies of the tested compounds has been investigated. Additionally, synthesis and chromatographic behavior of the molecularly imprinted polymers have also been studied. Separation and purification of chlorogenic acid from Eucommia olmodies Oliv. leaves extracts by solid phase extraction of caffeic acid imprinted polymer stationary phase monolith prepared by an in-situ polymerization technique was investigated. This work was financially supported from China NSF, China MST and Hunan Provincial Department of Science & Technology.1. Based on the accelerated mass transfer of the endocyte to the extractionsolvent after the plant cells were crashed by ultrasonic wave, an ultrasonic method for the extraction of chlorogenic acid from Eucommia ulmodies Oliv. using simple cleaning bath was designed. The influence of four extraction variables on extraction efficiency of chlorogenic acid was investigated. Results showed that ultrasonically assisted extraction technique could produce a higher extraction efficiency and consumed less solvent compared with the extraction without ultrasound. A lower temperature in the ultrasonic system increased the stability of the extracted compounds. The application of sonication method was shown to be highly efficient in the extraction of chlorogenic acid from Eucommia ulmodies Oliv. compared with classical methods.2. A new focused microwave-assisted solvent extraction method using water assolvent has been developed for leaching geniposidic and chlorogenic acids from Eucommia ulmodies Oliv.. The extraction conditions were optimized using a two indexes orthogonal experimental design and graphical analysis, by varying irradiation time, solvent volume, solvent composition and microwave power. Microwave-assisted extraction approach greatly shortened the extraction time and increased the extraction efficiency of the compounds.
    
    The R.S.D. of the extraction process for both geniposidic and chlorogenic acid were satisfactory.3. An open microwave-assisted extraction system was used to extract polyphenolic compounds, like gallic acid, protocatechuic acid, chlorogenic acid and caffeic acid from Eucommia ulmodies Oliv.. The effect of extraction variables, especially, the solvent composition and volume on the recoveries of these polyphenolic compounds was investigated. Methanol, as extractant, produced a higher recovery than pure water. For straight chain alcohol solvents, the smaller the carbon number, the higher the recoveries of these polyphenolic acids. The optimal ratio of methanol: water: glacial acetic acid in the solvent mixture used in microwave-assisted extraction was 2:8:0.3 (v/v) and this solvent could be directly used as the mobile phase in HPLC separation without additional intermittent treatment as reported in literature. The repeatability of extraction method and chromatographic analysis was satisfactory for the analysis of these polyphenolic compounds.4. A non-covalent imprinting approach was applied to synthesize protocatechuicacid (3,4-dihydroxybenzoic acid) imprinted polymers (MIPs) in the polar tetrahydrofuran by using protocatechuic acid as the template, methacrylic acid (MAA) as functional monomer, ethylene glycol dimethacrylate (EDMA) as cross-linker. By equilibrium adsorption experiments and high performance liquid chromatography (HPLC), the rebinding properties of the MIPs to protocatechuic acid (template) and its analogues were evaluated. The Scatchard analysis method was used for the detection of the types and energy distribution of binding sites in the polymer. The MIP exhibited high adsorption capability
引文
[1] Ezzell J L, Richter B E, Felix W D, et al. Comparison of accelerated solvent extraction with conventional solvent extraction for organophosphorus pesti cides and herbicides. LC-GC, 1995, 13 (3) : 390-398.
    [2] Accubond M.固相萃取参考指南.J&W Scientific Report,1993,1-28.
    [3] 胡之德,范必威.分离科学与技术概论.成都:四川科学技术出版社,1996, 231-311.
    [4] Lopez-Avila V, Milanes J, Dodhiwala N S. Typical phthalate ester contamination incurred using EPA-method. J. Assoc. Off. Anal. Chem., 1990, 73 (5) : 709-720.
    [5] 王小如,孙大海.中药复杂体系重大科学问题探讨.厦门:厦门大学出版社, 1998,163-297。
    [6] Poole C F, Poole S K. Chromatogr. Today. Amsterdam: Elsevier Press, 1991, 804-861.
    [7] Donald F H, Craig G M, George A S, et al. Membrane approach to solid-phase extraction. Anal. Chim. Acta, 1990, 236 (1) : 157-164.
    [8] Mary L M, Colin F P, Michael P H. Sampling characteristics of octadecylsiloxane-bonded silica particle-embedded glass fiber discs for solid-phase extraction. J. Chromatogr. A, 1995, 695 (1-2) : 267-277.
    [9] Anna C A, Robert P M, Harold F H. Speciation and fate of arsenic in three lakes of the aberjona watershed. Environ. Sci. Technol., 1994, 28 (4) : 577-585.
    [10] Catherine L A, Janusz P. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem., 1990, 62 (10) : 2145-2148.
    [11] Frei R W, Zech K. Selective sample handling and detection in HPLC. Amsterdam: Elsevier Press, 1988, 471-539.
    [12] Shirey R, Nolan L, Mindrup R. Recent development in separation technolgies report. London, 1996, 1-2.
    [13] Woolley C, Mindrup R. Recent Development in Separation Technologies Report. London, 1996,5-7.
    [14] Shu L, Stephen W. Determination of Barbiturates by Solid-Phase Microextraction and Capillary Electrophoresis. Anal. Chem., 1997, 69 (11) : 1217-1222.
    [15] Audunsson G. Determination of low parts per billion levels of amines in urine by liquid membrane sample cleanup directly coupled to a gas-liquid chromatograph. Anal. Chem., 1988, 60 (11) : 1340-1347.
    [16] Jonsson J A, Mathiasson L. Supported liquid membrane techniques for sample preparation and enrichment in environmental and biological analysis . Trends Anal. Chem., 1992, 11 (1) : 106-114.
    
    [17] Yang M J, Harms S, Luo Y Z. Membrane extraction with a sorbent interface for capillary gas chromatography. Anal. Chem., 1994, 66 (11): 1339-1346.
    [18] Gomez-Ariza J L, Morales E, Beltran R, et al. Ultrasonic treatment of molluscan tissue for organotin speciation. Analyst., 1995, 120(12): 1171-1174.
    [19] Mierzwa J, Yuh-Chang S, Mo-Hsiung Y. Determination of Co and Ni in soils and river sediments by electrothermal atomic absorption spectrometry with slurry sampling. Anal. Chem. Acta, 1997, 355 (2): 277-282.
    [20] Florian D, Barnes R M, Knapp G. Comparison of microwave-assisted acid leaching technique for the determination of heavy metals in sediments, soils and sludges. Fresenius J. Anal. Chem., 1999, 362 (5): 558-565.
    [21] Vinodgopal K, Julie P, Oksana M, et al. Ultrasonic mineralization of a reactive textile azo dye Remazol Black B. Water Res., 1998, 32 (21): 3646-3650.
    [22] Pack B W, Ray S J, Potyrailo R A, et al. Evaluation of ultrasonic nebulization for the analysis of transient samples: Theoretical and Practical Considerations. Appl. Spectrosc, 1998, 52 (13): 1515-1521.
    [23] Pier L B, Anna M, Jawahar L S. LA-ICP-MS, IC and DPASV-DPCSV determination of metallic impurities in solar-grade silicon. Talanta, 1998, 47 (2): 203-212.
    [24] Fransson B, Ragnarsson U. Separation of enantiomers of α -hydroxy acids by reversed-phase liquid chromatography after derivatization with l-(9-fluorenyl)ethyl chloroformate. J. Chromatogr. A, 1998, 827 (1-2): 31-36.
    [25] US EPA, 40 CFR Part 50: Reference Method for the Determination of Lead in Suspended Particulate Matter Collected from Ambient Air (Appendix G). Federal Register 44, Washington: US Government Printing Office, DC, USA, 1979, 564-577.
    [26] Ashley K. Ultrasonic extraction and field portable anodic stripping voltammetry of lead from environmental samples. Electroanalysis, 1995, 7 (10): 1189-1192.
    [27] Wang J, Ashley K, Eugene R K Y, Charles N. Determination of hexavalent chromium in industrial hygiene samples using ultrasonic extraction and flow injection analysis. Analyst., 1997, 122(13): 1307-1312.
    [28] Mehmet A K, Elik Y A, Savasci S. Effect of ultrasonication on extraction rate and on recovery of strontium from river sediment using flame atomic absorption spectrometry. Analyst., 1989,114 (9): 1079 -1082.
    [29] Perez-Cid B, Lavilla I, Bendicho C. Comparison between conventional and ultrasound accelerated Tessier sequential extraction schemes for metal fractionation in sewage sludge. J. Environ. Anal. Chem., 1989, 35 (1): 89-100.
    [30] Valerie P, Marianne B, Marie-Claire H. New trends in environmental trace-analysis of organic pollutants: class-selective immunoextraction and clean-up in one step using immunosorbents. Anal. Chim. Acta., 1998, 376 (1): 21-35.
    
    [31] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., 1979, 51 (7): 844-851.
    [32] Perez-Cid B, Lavilla I, Bendicho C. Comparison between conventional and ultrasound accelerated Tessier sequential extraction schemes for metal fractionation in sewage sludge. Fresenius J. Anal. Chem., 1999, 363 (6): 667-672.
    [33] Wennrich L, Engewald W, Popp P. GC trace analysis of haloethers in water - comparison of different extraction techniques. Environ. Anal. Chem., 1999, 73 (1): 31-41.
    [34] Mierzwa J, Aeloju S B, Dhindsa H S. Ultrasound accelerated solid-liquid extraction for the determination of selenium in biological samples by electrothermal atomization atomic absorption spectrometry. Anal. Sci., 1997, 13 (2): 189-194.
    [35] Lavilla I, Capelo J L, Bendicho C. Determination of cadmium and lead in mussels by electrothermal atomic absorption spectrometry using an ultrasoun-assisted extraction method optimized by factorial design. Fresenius J. Aanl. Chem., 1999, 363 (20): 283-288.
    [36] Birkin P R, Connor R O, Rapple C. Electrochemical measurement of erosion from individual cavitation events generated from continuous ultrasound. J. Faraday Trans., 1998, 94 (16): 3365-3371.
    [37] Mierzwa J, Aeloju S B, Dhindsa H S. Ultrasound accelerated solid-liquid extraction for the determination of selenium in biological samples by electrothermal atomization atomic absorption spectrometry. Anal. Sci., 1997, 13 (3): 286-291.
    [38] Liu P, Keiichiro F M. Sensitivity enhancement by palladium addition in the electrothermal atomic absorption spectrometry of mercury. Anal. Chim. Acta., 1985, 171 (2): 279-284.
    [39] Sachse W, Pao Y H. On the determination of phase and group velocities of dispersive waves in solids. J. Appl. Phys., 1986, 6 (16): 1786-1793.
    [40] Gerhard S, Bernhard W, Palladium and magnesium nitrates: a more universal modifier for graphite furnace atomic absorption spectrometry. Spectrochim. Acta, 1986,41 (10): 1157-1165.
    [41] Gras L, Hernandez Y, Ma R. New ultrasound assisted chemical oxygen demand determination. Ultrason. Sonochem., 2002, 9 (1): 143-149.
    [42] Erik H L, Ekelund J. Determination of total selenium in nutritional supplements and selenised yeast by Zeeman-effect graphite furnace atomic absorption spectrometry. Analyst., 1989, 114 (8): 915-918.
    
    [43] Tang B, Yue T X, Zhang L L, et al. Flow injection spectrofluorimetric method for the determination of Cadmium. At. Absorption Newslett, 1975, 14 (1): 127-130.
    [44] Kaare J, Ringdal O, Karl-Erik S, et al. Optimization of the determination of selenium in marine samples by atomic absorption spectrometry: Comparison of a flameless graphite furnace atomic absorption system with a hydride generation atomic absorption system. Spectrochim. Acta, 1982, 37(B), 473-482.
    [45] Carnrick G R, Manning D C, Slavin W. Determination of selenium in biological materials with platform furnace atomic-absorption spectroscopy and Zeeman background correction. Analyst, 1983, 108 (11): 1297-1312.
    [46] Bauslaugh J, Radziuk B, Saeed K, et al. Reduction of effects of structured non-specific absorption in the determination of arsenic and selenium by electrothermal atomic absorption spectrometry. Anal. Chim. Acta, 1984, 165 (1): 149-157.
    [47] Olaf P H, Norbert T, Bernd W W. Comparison of ASE and SFE with soxhlet, sonication, and methanolic saponification extractions for the determination of organic micropollutants in marine particulate matter. Anal. Chem., 1997, 69 (13): 2171-2180.
    [48] Fusheng S, David L, Mark David G. Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection. Anal. Chim. Acta., 1998, 364 (1): 1-11.
    [49] Ofstad E B, Lunde G, Drangsholt H. Chlorinated organic compounds in the fatty surface film on water. Int. J. Environ. Anal. Chem., 1979, 6 (1): 119-131.
    [50] Kayali-Sayadi M N, Rubio-Barroso S, Diaz-Diaz C A. Rapid determination of PAHs in soil samples by HPLC with fluorimetric detection following sonication extraction. Fresenius J. Anal. Chem., 2000, 368 (5): 697-701.
    [51] Griest W H, Tomkins B A, Caffrey J R. Improved ultrasonic extraction recovery of benzo(a)pyrene from stack ash using high power/mass ratios. Anal. Chem., 1988, 60 (12): 2169-2171.
    [52] Claessens H A, Rhemrev M M, Wevers J P, et al. Comparison of extraction methods for the determination of polycyclic aromatic hydrocarbons in soot samples. Chromatographia, 1991, 31 (8): 569-574.
    [53] Revillon A. Alternatives to size-exclusion chromatography. J. Liq. Chromatogr., 1994,17(18): 2991-3023.
    [54] Beard A, Naikwadi K, Francis W K. Comparison of extraction methods for polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash using gas chromatography - mass spectrometry, J. Chromatogr., 1992, 589 (1): 265-270.
    [55] Fuoco R, Colombini M P, Ceccarini A. Analytical quality control for the
     determination of polychlorobiphenyls in environmental matrices. Mikrochim. Acta, 1996, 123 (1): 175-183.
    
    [56] Felfoldi K, Szori K, Torok B, et al. Sonochemical Hydrosilylation of 2-Substituted Cyclohexanones in the Presence of Wilkinson Complex. Ultrason. Sonochem., 2000, 7 (1): 15-18.
    [57] Povey M J W, McClements D J. Ultrasonics in Food Engineering Part I: Introduction and Experimental Methods. J. Food Eng., 1988, 56 (2): 216-245.
    [58] Sandra B, Mira P, Marija K. Ultrasonic solvent extraction of pesticides from soil. J. Chromatogr. A., 1998, 823 (1-2): 3-9.
    [59] Teske J, Efer J, Engewald W. Large-Volume PTV Injection: New Results on Direct Injection of Water Samples in GC Analysis. Chromatographia, 1997, 46 (7): 580-586.
    [60] Gomez-Ariza J L, Morales E, Beltran R, Giraldez I,et al. Ultrasonic treatment of molluscan tissue for organotin speciation. Analyst, 1995, 120(11): 1171-1174.
    [61] Entezari M H, Petrier C, Devidal P. Sonochemical degradation of phenol in water: a comparison of classical equipment with a new cylindrical reactor. Ultrason Sonochem., 2003, 10 (1): 103-108.
    [62] Leonhardt E, Stahl R. Decomposition of Acenaphthylene by Ultrasonic Irradiation. Anal. Chem., 1998, 70 (8): 1228-1230.
    [63] Destaillats H, Hung H M, Hoffmann M R. Degradation of Alkylphenol Ethoxylate Surfactants in Water with Ultrasonic Irradiation. Environ. Sci. Technol., 2000, 34 (3): 311-317.
    [64] Kevin R, Michael A. Analytical Chemistry of fruit bioflavonoids. Analyst., 1997, 122(1): 101-102.
    [65] Nadejzda H, Sigbritt K. A rapid ultrasonic extraction technique to identify and quantify additives in poly(ethylene). Analyst, 1999, 124 (6): 797-800.
    [66] 冯年平.中药提取技术研究进展.中国中医药信息杂志,2000,7(10):15-16.
    [67] Meyer E, Van Bocxlaer J F, Lambert W E, et al., Determination of chloral hydrate and metabolites in a fatal intoxication. J. Anal. Toxicol., 1995, 19 (1): 124 - 126.
    [68] Tena M T, Valcarcel M, Hidalgo P J, et al. S upercritical fluid extraction of natural antioxidants from rosemary: Comparison with liquid solvent sonication. Anal. Chem., 1997, 69 (4): 521-526.
    [69] Paniwnyk L, Beaufoy E, Lorimer J P,et al. The extraction of rutin from flower buds of Sophora japonica. Ultrason. Sonochem., 2001, 8 (2): 299-301.
    [70] HromadkovaZ, Ebringerova A. Ultrasonic extraction of plant materials investigation of hemicellulose release from buckwheat hulls. Ultrason. Sonochem., 2003, 10(1): 127-133.
    
    [71] Hromadkova Z, Ebringerova A, Valachovi P. Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.). Ultrason. Sonochem., 2002, 9 (1) : 37-44.
    [72] Albu S, Joyce E, Paniwnyk L,et al. Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrason. Sonochem., 2003, 10 (2) : 261-265.
    [73] Wu J, Lin L D, Chau F T. Ultrasound-assisted extraction of ginseng saponins from ginseng roots and cultured ginseng cells. Ultrason. Sonochem., 2001, 8 (3) : 347-352.
    [74] Palma M, Barroso C G. Ultrasound-assisted extraction and determination of tartaric and malic acids from grapes and winemaking by-products. Anal. Chim. Acta,2002, 458(1) : 119-130.
    [75] Hromadkova Z, Kvacikova J, Ebringerova A. Study of the classical and ultrasound-assisted extraction of the corncob xylan. Industrial Crops Prod., 1999, 9(1) : 101-109.
    [76] Pappas C, Tarantilis P A, Daliani Ⅰ, et al. Comparison of classical and ultrasound-assisted isolation procedures of cellulose from kenaf (Hibiscus cannabinus L.) and eucalyptus (Eucalyptus rodustrus Sm.). Ultrason. Sonochem., 2002,9(1) : 19-23. ,
    [77] 郭孝武.一种提取中草药中化学成分的方法-超声提取法.天然产物研究与 开发,1998,11(1) :37-40.
    [78] 尹莲.超声法提取茶多酚的实验研究.食品工业,1999,3(1) :10-11.
    [79] 谢国莲.超声法提高益母草总碱提出率的研究.青海畜牧兽医杂志,2003,33 (1) :5-6.
    [80] Abu-Samra A, Steven Morris J, Koirtyohann S R. Wet ashing of some biological samples in a microwave oven. Anal. Chem., 1975, 47 (11) : 1475-1477.
    [81] Jin Q H, Liang F, Zhang H Q,et al. Application of microwave techniques in analytical chemistry. Trends anal. Chem., 1999, 18 (3) : 479-484.
    [82] GanzlerAndras K, SalgoKlara V. Microwave extraction : a novel sample preparation method for chromatography. J. Chromatogr., 1986, 371 (1-2) : 299-306.
    [83] Kovacs A, Ganzler K, Simon-Sarkadi L. Microwave-assisted extraction of free amino acids from foods. Z. Lebensm Unters Forsch A, 1998, 207 (1) : 26-30.
    [84] Ganzler K, Szinai Ⅰ, Salgo A. Effective sample preparation method for extracting biologically active compounds from different matrices by a microwave technique. J. Chromatogr., 1990, 520 (2) : 257-262.
    [85] Pare J R, Jacqueline M R, Belanger S, et al. Microwave-assisted process (MAP?: a new tool for the analytical laboratory. Trends Anal, chem., 1994, 13 (1): 176-184.
    
    [86] Pare J R J. Microwave-assisted natural products extraction. US Patent. 5002784, 1991-03-26.
    [87] Neilson R C. Extraction and quantification of polyolefin additives. J. Liq. Chromatogr., 1991, 14 (4): 503-506.
    [88] Freitag W, John O. Fast separation of stabilizers from poly-olefins by microwave heating. Angew. Makromol. Chem., 1990, 175 (2): 181-186.
    [89] Onuska F I, Terry T A. Extraction of pesticides from sediments using a microwave technique. Chromatographia, 1993, 36 (2): 191-194.
    [90] Thomas R S. HPLC determination of atrazine and principal degradates in agricultural soils and associated surface and ground water. J. Agric. Food Chem., 1993,41 (4): 588-595.
    [91] Lopez-Avila V, Young R, Werner F B. Microwave-assisted extraction of organic compounds from standard reference soils and sediments. Anal. Chem., 1994, 66 (8): 1097-1106.
    [92] Chee K K, Keong W M, Lee H K. Optimization of microwave-assisted solvent extraction of polycyclic aromatic hydrocarbons in marine sediments using a microwave extraction system with high performance liquid chromatography fluorescence detection and gas chromatography-mass spectrometry. J.Chromatogr.A, 1996, 723 (1-2): 259-271.
    [93] Pineiro-Iglesias M, Lopez-Mahia P, Vazquez-Blanco E, et al. Microwave assisted extraction polycyclic aromatic hydrocarbons from atmosphere particulate sample. Anal. Bioanal. Chem., 2000, 367 (1): 29-33.
    [94] Baron L A, Ashwood T L, Sample B E, et al. Monitoring bioaccumulation of contaminants in the belted kingfisher. Environ. Monitor. Assess., 1997, 47 (1): 153-165.
    [95] Reichelt M, Hummert C, Luckas B. Hydrolysis of microcystins and nodularin by microwave radiation. Chromatographia, 1999, 49 (4): 671-677.
    [96] Hashimoto S, Shibata Y, Tanaka H, et al. PCDDs and PCDFs contamination in the Northern Pacific area reflected on squid liver tissues. Organohalogen Comp., 1999,41 (3): 413-416.
    [97] Font N, Hernandez F, Hogendoorn E A, et al. Microwave-assisted solvent extraction and reversed-phase liquid chromatography-UV detection for screening soils for sulfonylurea herbicides. J.Chromatogr.A, 1998, 798 (1-2): 179-186.
    [98] Hoogerbrugge R, Molins C, Robert A. Effects of parameters on microwave assisted extraction of triazines from soil: evaluation of an optimisation trajectory. Anal. Chim. Acta., 1997, 348 (2): 247-253.
    [99] Steven J, Adrian R, Darryl G. Microwave-assisted extraction coupled with gas
     chromatography/electron capture negative chemical ionization mass spectrometry for the simplified determination of imidazolinone herbicides in soil at the ppb Level. Anal. Chem., 1996, 68 (4): 653-658.
    
    [100] Harry M, Pylypiw, Terri L, et al. Suitability of microwave-assisted extraction for multiresidue pesticide analysis of product. J. Agric. Food Chem., 1997, 45 (16): 3522-3528.
    [101] Egizabal A, Zuloaga 0, Etxebarria N, et al. Comparison of microwave-assisted extraction and Soxhlet extraction for phenols in soil samples using experimental designs. Analyst., 1998, 123 (13): 1679-1684.
    [102] Maria P L, Rosa A L, R C, et al. Evaluation of supercritical fluid extraction, microwave-assisted extraction and sonication in the determination of some phenolic compounds from various soil matrices. J. Chromatogr.A, 1997, 774 (1-2): 243-251.
    [103] Lorenzo R A, Vazquez M J, Carro A M, et al. Methylmercury extraction from aquatic sediments: A comparison between manual, supercritical fluid and microwave-assisted techniques. Trends Anal. Chem., 1999, 18 (2): 410-416.
    [104] Vazquez M J, Carro A M, Lorenzo R A, et al. Optimization of methylmercury microwave-assisted extraction from aquatic sediments. Anal. Chem., 1997, 69 (2): 221-225.
    [105] Perez-Cid B, Lavilla I, BendichoC. Application of microwave extraction for partitioning of heavy metals in sewage sludge. Anal. Chim. Acta, 1999, 378 (2): 201-210.
    [106] ASTM D6010, Standard practice for closed vessel micriwave solvent extraction of organic compounds from solid matrices, American Society for Testing and Materials, Philadelphia, PA, 1996.
    [107] ASTM D5258, Standard test method for acid extraction of elemaits from aediments using closed vessel microwave heating ,American Society for Testing and Materials, Philadelphia, PA, 1996.
    [108] EPA method 3546,Microwave assisted extraction of VOC's and SVOC'S (Organophosphorus pesticides, Organochlorine pesticides, Chlorinated herbicides, phenoxy acid herbicides, PCBs, etc.). EPA SW-846 update III,US Environmental Protection Agency, 1999.
    [109] Eschenbach A, Kastner M, Bieri R, et al. Evaluation of a new effective method to extract polycyclic aromatic hydrocarbons from soil samples. Chemosphere, 1994, 28 (5): 683-692.
    [110] Beary E S. Comparison of microwave drying and conventional drying techniques for reference materials. Anal. Chem., 1988, 60 (5): 742-746.
    [111] Davis A, Michael V R, Bloom M, et al. Mineralogic constraints on the
     bioavailability of arsenic in smelter-impacted soils. Environ. Sci. Technol. 1996,30 (3): 392-399.
    
    [112] Lopez-Avila V, Benedicto J, Charan C,et al. Determination of PCBs in soils / sediments by microwave-assisted extraction and GC/ECD or ELISA. Environ. Sci. Technol., 1995, 29 (13): 2709-2712.
    [113] Lopez-Avila V, Young R, Benedicto J., et al. Extraction of organic pollutants from solid samples using microwave energy. Anal. Chem., 1995, 67 (9): 2096-2102.
    [114] Erickson M D, Analytical chemistry of PCBs. Boca Raton: CRC Press, 1997, 246-277.
    [115] Sun L, Lee H K, Microwave-assisted extraction behavior of non-polar and polar pollutants in soil with analysis by high performance liquid chromatography. J. Sep. Sci., 2002, 25 (1): 67-76.
    [116] Lopez-Avila V, Young R, Benedicto J., et al. Extraction of organic pollutants from solid samples using microwave energy. Anal. Chem., 1995, 67 (10): 2096-2102.
    [117] Lopez-Avila V, Trends in environmental analysis. J. AOAC Int., 1999, 82 (2): 217-222.
    [118] Burger J. Heavy Metals in the eggs and muscle of horseshoe crabs (Limulus Polyphemus) from delaware bay. Environ. Monitor. Assess., 1997, 46 (2): 279-287.
    [119] Hashimoto S, Shibata Y, Tanaka H, et al. PCDDs and PCDFs contamination in the Northern Pacific area reflected on squid liver tissues, Organohalogen Comp., 1999, 41 (2): 413-416.
    [120] Lopez-Avila V, Benedicto J, Charan C, et al. Determination of PCBs in soils/sediments by microwave-assisted extraction and GC/ECD or ELISA. Environ. Sci. Technol., 1995, 29 (18): 2709-2712.
    [121] Sandau C D, Norstrom R J. Determination of hydroxy-PCBs and preliminary results from polar bear blood plasma. Organohalogen Compounds, 1996, 30 (3): 412-417.
    [122] Hirata Y, Inomata K. Splitless injection method with mixing chamber in capillary supercritical fluid chromatography, J. Microcol. Sep., 1989, 1 (2): 242-248.
    [123] Thomsen C, Leknes H, Lundanes E,et al. A new method for determination of halogenated flame retardants in human milk using solid-phase extraction. J. Anal. Tox., 2002, 26 (1): 129-137.
    [124] Pastor A, Vazquez E, Ciscar R, et al. Efficiency of the microwave-assisted extraction of hydrocarbons and pesticides from sediments. Anal. Chim. Acta, 1997,344 (2): 241-249.
    
    [125] Chee K K, Wong M K, Lee H K. Determination of organochlorine pesticides in water by membranous solid-phase extraction, and in sediment by microwave-assisted solvent extraction with gas chromatography and electron-capture and mass spectrometric detection. J. Chromatogr. A, 1996, 736 (1-2): 211-218.
    [126] Quevauviller P, Rauret G, Griepink B. Single and sequential extraction in sediments and soils. Int. J. Environ. Anal. Chem., 1993, 51 (1): 231-235 .
    [127] Poplavko Y M, Meriakri V V. High-permittivity microwave dielectrics. Electromagnetic Waves and Electronic Systems (EMWES), 1997, 2 (1): 35-44.
    [128] Schindler R, Vonach R, Lendl B. A rapid automated method for wine analysis based upon sequential injection (SI)-FTIR spectrometry. Fresenius J. Anal. Chem., 1998, 362(1): 130-136.
    [129] Vazquez Blanco E, Lopez Mahia P, Muniategui Lorenzo S, et al. Optimization of microwave-assisted extraction of hydrocarbons in marine sediments: comparison with the Soxhlet extraction method. Fresenius J. Anal. Chem., 2000, 366 (2): 283-288.
    [130] Rappe C. PCDDs in naturally-formed lake sediment cores from Southern Mississippi, USA. Organohalogen Comp. 1999, 43 (1): 111-116.
    [131] Weichbrodt M, Vetter W, Scholz E, et al. Determination of organochlorine levels in Antarctic skua and penguin eggs by application of combined focused open-vessel microwave-assisted extraction, gel-permeation chromatography, adsorption chromatography, and GC/ECD. Int. J. Environ. Anal. Chem., 1999, 73 (1): 309-328.
    [132] Molins C, Hogendoorn E A, Heusinkveld H A G, et al. Microwave assisted solvent extraction(MASE) for the efficient determination of triazines in soil samples with aged residues. Chromatographia, 1996, 43 (4): 527-532.
    [133] Xiong G, Liang J, Zou S, et al. Microwave-assisted extraction of atrazine from soil followed by rapid detection using commercial ELISA kit. Anal. Chim. Acta, 1998, 371 (1): 97-103.
    [134] Xiong G, Tang B, He X, et al. Comparison of microwave-assisted extraction of triazines from soils using water and organic solvents as the extractants. Talanta, 1999, 48 (3): 333-339.
    [135] Camel V. Recent extraction techniques for solid matrices-supercritical fluid extraction, pressurized fluid extraction and microwave-assisted extraction: their potential and pitfalls. Analyst., 2001, 126 (7): 1182-1193.
    [136] Steven J S, Adrian R D, Gerald L P, et al. Microwave-assisted extraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the simplified determination of imidazolinone herbicides and their metabolites in plant tissue. J. Agric. Food Chem., 1996,44 (21): 3548-3553.
    
    [137] Molins C, Elbert A H, Dijkman E, et al. Determination of linuron and relatedcompounds in soil by microwave-assisted solvent extraction and reversed-phaseliquid chromatography with UV detection. J. Chromatogr. A, 2000, 869 (3):487-496.
    [138] Frost S P, Dean J R, Evans K P, et al. Extraction of hexaconazole from weatheredsoils: a comparison between soxhlet extraction, microwave-assisted extraction,supercritical fluid extraction and accelerated solvent extraction. Analyst.,1997,122 (5): 895-899.
    [139] Singh S B, Foster G D, Khan SU. Microwave-assisted extraction for thesimultaneous determination of thiamethoxam, imidacloprid, and carbendazimresidues in fresh and cooked vegetable samples. J Agric Food Chem., 2004, 52(1): 105-109.
    [140] Maria P L, Rosa A L, Rafael C, et al. Optimization of a microwave-assistedextraction method for phenol and methylphenol isomers in soil samples using acentral composite design. Analyst., 1997,122 (1): 133-139.
    [141] Llompart M P, Lorenzo R A, Cela R, et al. Phenol and methylphenol isomersdetermination in soils by in-situ microwave-assisted extraction andderivatisation. J. Chromatogr. A, 1997, 757 (1-2): 153-164.
    [142] Denkhaus E, Golloch A. Determination of gaseous nitrogen in gas mixtures usinglow pressure microwave induced plasma mission spectrometry. Fresenius J.Anal. Chem., 1995, 353 (1): 156 - 61.
    [143] Robards K, Antolovich M. Analytical chemistry of fruit bioflavonoids. Analyst.,1997,122(1): 101-103.
    [144] Harold J V, Anthony A C, Keith D B,et al. Comparison of pressurised fluidextraction and microwave assisted extraction with atmospheric pressuremethods for extraction of additives from polypropylene. Analyst., 1999, 124 (3):397-401.
    [145] Marcato B, Vianello M. Microwave-assisted extraction by fast samplepreparation for the systematic analysis of additives in polyolefins byhigh-performance liquid chromatography. J. Chromatogr. A, 2000, 869 (2):285-300.
    [146] Campos E, Barahona E, Lachica M, et al. A study of the analytical parametersimportant for the sequential extraction procedure using microwave heating forPb, Zn and Cu in calcareous soils. Anal. Chim. Acta, 2000, 369 (2): 235-243.
    [147] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for thespeciation of particulate trace metals. Anal. Chem., 1979, 51 (6): 844-851.
    [148] Sparr Eskilsson C, Brklund E, Mathiasson L, et al. Microwave-assisted extaction of felodipine tablets. J. Chromatogr. A, 1999, 840 (1-2): 59-70.
    
    [149] Neilson R C. Extraction and quantification of polyolefin additives. J. Liq. Chromatogr., 1991,14 (4): 503-506.
    [150] Knowles D, Determination of chlordane in soil by LC/GC/ECD and GC/EC NIMS with comparison of ASE, SFE, and soxhlet extraction. J. Liq. Chromatogr., 1998,21 (7): 1199-1216.
    [151] Sparr Eskilsson C, Bjorklund E, Mathiasson L, et al. Microwave-assisted extraction of felodipine tablets. J. Chromatogr. A, 1999, 840 (1-2): 59-70.
    [152] Young J C. Microwave-assisted extraction of the fungal metabolite ergosteroland total fatty acids. J.Agric. Food Chem., 1995, 43 (17): 2904-2910.
    [153] Caruso J, Olson L K. Determination of halogenated compounds withsupercritical fluid chromatography-microwave induced plasma massspectrometry. J. Anal. At. Spectrom., 1992, 7 (8): 993-998.
    [154] Mattina M J I, Iannucci Berger W A I, Denson C L. Microwave-assistedextraction of taxanes from taxus biomass. J. Agric. Food Chem., 1997, 45 (23):4691-4696.
    [155] Carro N, Garcia C M, Cela R. Microwave-assisted extraction of monoterpenolsin must samples. Analyst., 1997,122 (2): 325-331.
    [156] Pauling L. A theory of the structure and process of formation of antibodies. J.Am. Chem. Soc, 1940, 62 (16): 2643 - 2657.
    [157] Dickey F H. The preparation of specific adsorbents.Proc. Natl. Acak. Sci. USA.,1949, 35 (3): 227-229.
    [158] Wulff G, Sarhan A, Zabrocki K. Enzyme-analogue built polymers and their usefor the resolution of racemates. Tetrahedron. Lett., 1973, 14 (21): 4329-4332.
    [159] Wulff G, Sarhan A. Uber die anwendung von enzyme-analogous gebautenpolymeren zur recemattrennung. Angew. Chem., 1972, 84 (3): 364-367.
    [160] Wulff G, Sarhan A. The use of polymers with enzyme-analogous structures forthe resolution of racemates. Angew. Chem. Int. Ed. Engl., 1972, 11 (3):341-345.
    [161] Wulff G S A. The construction of chiral cavities as specific receptor sites. PureAppl. Chem., 1984, 54 (11): 2093-2102.
    [162] Wulff G S A. Synthesis of 5-vinylsalicylaldehyde and a simplified synthesis ofsome divinyl derivatives. Makromol. Chem., 1979, 179 (13): 2647-2651.
    [163] Vlatakis G, Andersson L I, Muller R. Drug assay using antibody mimics made bymolecular imprinting. Nature, 1993, 361 (4): 645-655.
    [164] Wulff G, Vesper W. On the synthesis of polymers containing chiral cavities andtheir use for the resolution of racemates. Makromol. Chem., 1977, 178 (13):2799-2816.
    
    [165] 王进防,刘学良,王俊德.同时烙印手性分子固定相.分析化学,2000,28 (11) :1531-1537.
    [166] Sabourin L, Richard J A, Mosbach K, et al.Molecularly imprinted polymer combinatorial libraries for multiple simultaneous chiral separations. Anal. Commun., 1998, 35 (3) : 285-288.
    [167] Wang J F,Zhou L M,Liu X L.Simultaneous chiral separation using a combinatorial molecular imprinting phase. Chin. Chem. Lett., 2000,11 (1) : 65-68.
    [168] Karsten H. Molecularly imprinted polymers in analytical chemistry. Analyst., 2001, 126(5) : 747-756
    [169] 周杰,何锡文.分子模板化合物在分析化学中的应用.分析测试学报,1998, 17(1) :87-89.
    [170] 赖家平,何锡文,郭洪声.分子印迹技术的回顾与展望.分析化学,2001, 29(7) :836-840.
    [171] 苏立强,刘学良,王俊德.分子烙印聚合物固定相分离咖啡因和茶碱的研究. 高等学校化学学报,2001,22(7) :1122-1128。
    [172] 孟子晖,王进防,周良模.球形分子烙印聚合物分离立体异够体.色谱,1999, 17(4) :323-326。
    [173] 周杰,王善伟,郭洪声.原位分子印迹法制备的连续棒状模板聚合物的手性识 别.分析化学,2000,28(3) :296-240。
    [174] Wayne M M, Edward P C L. Determination of theophylline in serum by molecularly imprinted solid-phase extraction with pulsed elution. Anal. Chem., 1998, 70 (19) : 3636-3641.
    [175] Ramstrom O, Ian A N, Mosbach K. Synthetic peptide receptor mimics: highly stereoselective recognition in non-covalent molecularly imprinted polymers. Tetrahedron: Asymmetry, 1994, 5 (6) : 649-656.
    [176] Mayes A G, Andersson L I, Mosbach K. Sugar binding polymers showing high anomeric and epimeric discrimination obtained by noncovalent molecular imprinting. Anal. Biochem., 1994, 222 (4) : 483-487.
    [177] Sellergren B, Kenneth J. Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases. J. Chromatogr. A, 1995, 690 (1) : 29-39.
    [178] Kempe M. Antibody-mimicking polymers as chiral stationary phases in HPLC. Anal. Chem., 1996, 68 (14) : 1948-1953.
    [179] Scott M, Yokobayashi Y, Hwan Cheong S. Enhancing the selectivity of molecularly imprinted polymers. Chem. Lett., 1997, 12 (10) : 1297-1298.
    [180] Andrew G M, Mosbach K. Molecularly imprinted polymer beads Suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem., 1996, 68 (21): 3769-3774.
    
    [181] Hosoya K, Yoshizako K, Shirasu Y, et al. Molecularly imprinted uniform-sizepolymer-based stationary phase for high-performance liquid chromatographystructural contribution of cross-linked polymer network on specific molecularrecognition. J. Chromatogr. A, 1996, 728 (1-2): 139.
    [182] Zhong M, Susan M L. Tubular-wire dual electrode for detection of thiols anddisulfides by capillary electrophoresis/electrochemistry. Anal. Chem., 1999, 71(2): 248-255.
    [183] Schweitz L, Andersson L I, Nilsson S. Molecular imprint-based stationary phasesfor capillary electrochromatography. J. Chromatogr. A, 1998, 817 (1-2): 5-13.
    [184] Lin J M, Nakagama T, Katsumi U, et al. Molecularly imprinted polymer as chiralselector for enantioseparation of amino acids by capillary gel electrophoresis.Chromatographia, 1996, 43 (5): 585-591.
    [185] Nilsson K, Lindell J, Norrlow O, et al. Imprinted polymers as antibody mimeticsand new affinity gels for selective separations in capillary electrophoresis. J.Chromatogr. A, 1994, 680 (1): 57-61.
    [186] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography withpredetermined selectivity obtained through molecular imprinting. Anal. Chem.,1997,69(7): 1179-1183.
    [187] Schweitz L, Andersson L I, Nilsson S. Capillary electrochromatography withmolecular imprint-based selectivity for enantiomer separation of localanaesthetics. J. Chromatogr. A, 1997, 792 (2): 401-409.
    [188] Bruggemann O, Freitag R, Michael J W, et al. Comparison of polymer coatingsof capillaries for capillary electrophoresis with respect to their applicability tomolecular imprinting and electrochromatography. J. Chromatogr. A, 1997,781 (1-2): 43-53.
    [189] Theode B R M, Rokus A D Z, et al. Spherical molecularly imprinted polymerparticles: A promising tool for molecular recognition in capillary electrokineticseparations. Electrophoresis, 1998, 19 (11): 2055-2060.
    [190] Michaela W, Edelmiro G, Howarth J, et al. Separation of the enantiomers ofpropranolol by incorporation of molecularly imprinted polymer particles aschiral selectors in capillary electrophoresis. Anal. Commun., 1997, 34 (1):119-122.
    [191] Zander A, Findlay P, Thomas R, et al. Analysis of nicotine and its oxidationproducts in nicotine chewing gum by a molecularly imprinted solid-phaseextraction. Anal. Chem., 1998, 70 (16): 3304-3314.
    [192] Wayne M M, Edward P C L, Sellergren B. Determination of nicotine in tobaccoby molecularly imprinted solid phase extraction with differential pulsed elution . Anal. Commun., 1999, 36 (2): 217-220.
    
    [193] Pichon V, Bouzige M, Miege C. Immunosorbents :natural molecular recognitionmaterials for sample preparation of complex environmental matrices. TrendsAnal. Chem., 1999,18 (2): 219-235.
    [194] Wayne M M, Edward P C L. Determination of theophylline in serum bymolecularly imprinted solid-phase extraction with pulsed elution. Anal. Chem.,1998, 70 (21): 3636-3641.
    [195] Berggren C, Bayoudh S, Sherrington D. Use of molecularly imprintedsolid-phase extraction for the selective clean-up of clenbuterol from calfurine. J. Chromatogr. A, 2000, 889 (1-2): 105-110.
    [196] Martin P, Ian D W, David E M. Evaluation of a molecular-imprinted polymer foruse in the solid phase extraction of propranolol from biological fluids. Anal.Commun., 1997, 34 (1): 45-48.
    [197] Mark T M, Larry S. Molecularly imprinted solid phase extraction of atrazinefrom beef liver extracts. Anal. Chem., 1997, 69 (4): 803-808.
    [198] Ferrer I, Lanza F, Antal T, et al. Selective trace enrichment of chlorotriazinepesticides from natural waters and sediment samples using terbuthylazinemolecularly imprinted polymers. Anal. Chem., 2000, 72 (19): 3934-3941.
    [199] Cormack P A G, Mosbach K. Molecular imprinting: recent development and theroad ahead. React Funct.Polym.,. 1999, 41(1-3): 115-124.
    [200] Andersson L I, Paprica A, Arvidsson T. A highly selective solid phase extractionsorbent for preconcentration of sameridine by molecular imprinting.Chromatographia, 1997, 46 (1): 57-62
    [201] Hosoya K, Shirasu Y, Kimata K. Molecularly imprinted chiral stationary phaseprepared with racemic template. Anal. Chem., 1998, 70 (4): 943-945.
    [202] Kempe M, Glad M, Mosbach K. An approach towards surface imprinting usingthe enzyme ribonuclease A. J. Mol. Recognit., 1995, 8 (1): 35-39.
    [203] Stevenson D. Molecular imprinted polymers for solid-phase extraction. TrendsAnal. Chem., 1999, 18 (2): 154-158.
    [204] Haupt K, Dzgoev A, Mosbach K. Assay system for the herbicide2,4-dichlorophenoxy- acetic acid using a molecularly imprinted polymer as anartificial recognition element. Anal. Chem., 1998, 70 (4): 628-631.
    [205] Sreenivasan K. On the feasibility of using molecularly imprinted poly (Hema) asa sensor component. Talanta, 1997, 44 (8): 1137-1140.
    [206] Piletsky S A, Andersson H S. The rational use of hydrophobic effect basedrecognition in molecularly imprinted polymers. J. Mol. Recognit., 1998, 11 (1):94-97.
    [207] Piletsky S A, Piletskaya E V, Elgersma A V. Atrazine sensing by molecularly imprinted membranes. Biosens. Bioelectron., 1995, 10 (6): 959-964.
    
    [208] Kriz D, Mosbach K. Competitive amperometric morphine sensor based on anagarose immobilised molecularly imprinted polymer. Anal. Chim. Acta., 1995,300(1): 71-75.
    [209] Cheong S H, Rachkov A, Kpark J. Synthesis and binding properties of anoncovalent molecularly imprinted testosterone-specific polymer. J. Polym. Sci.A Polym Chem., 1998,36(13): 1725-1732.
    [210] Tatiana L P, Vladimir M M, Sergey A P. Electropolymerized molecularlyimprinted polymers as receptor layers in capacitive chemical sensors. Anal.Chem., 1999, 71 (23): 4609-4613.
    [211] Dario K, Ramstroem O, Svensson A, et al. A biomimetic sensor based on amolecularly imprinted polymer as a recognition element combined withfiber-optic tetection. Anal. Chem., 1995, 67 (11): 2142-2144.
    [212] Reeves S G, Durst R A. Novel optical measurement approach for thequantitation of liposome immunomigration assays. Anal. Lett., 1996, 32 (2):157-162.
    [213] Raphael L, McNiven S, Sergey A, et al. Optical detection of chloramphenicolusing molecularly imprinted polymers. Anal. Chem., 1997, 69 (11): 2017-2021.
    [214] Amanda L J, Manuel O, George M M. Polymer-based lanthanide luminescentsensor for detection of the hydrolysis product of the nerve agent soman in water.Anal. Chem., 1999, 71 (2): 373-378.
    [215] Amanda L J, Manuel O, George M M. Polymer-based lanthanide luminescentsensor for detection of the hydrolysis product of the nerve agent soman in water.Anal. Chem., 1999, 71 (2): 373-378.
    [216] Amanda L J, Yin R, Janet L J. Molecularly imprinted polymer sensors forpesticide and insecticide detection in water. Analyst., 2001, 126 (7): 798-802.
    [217] Wang W H, Wei W, Macht M H, et al. Structural studies of metallic glassZrTiCuNiBe alloy by electron diffraction intensity analysis. Appl. Phys. Lett.,2000, 80 (7): 793-798.
    [218] Tan Y G, Nie L H, Yao S Z. A piezoelectric biomimetic sensor for aminopyrinewith a molecularly imprinted polymer coating. Analyst., 2001, 126 (6):664-670.
    [219] Tan Y G, Yin F, Liang C D,et al. A study of a new TSM bio-mimetic sensor usinga molecularly imprinted polymer coating and its application for thedetermination of nicotine in human serum and urine. Bioelectrochem, 2001,53(1): 141-148.
    [220] Tan Y G, Zhou Z L, Wang P,et al. A study of a bio-mimetic recognition materialfor the BAW sensor by molecular imprinting and its application for the determination of paracetamol in the human serum and urine. Talanta, 2001, 55 (3) : 337-347.
    [2
    
    [221] Franz L D, Hayden O, Konstantinos P H. Synthetic receptors as sensor coatings for molecules and living cells. Analyst., 2001, 126 (7) : 766-771.
    [222] Hong-Seok J, McNiven S, Ikebukuro K, et al. Selective piezoelectric odor sensors using molecularly imprinted polymers. Anal. Chim. Acta., 1999, 390 (1) : 93-100.
    [223] Kobayashi T, Yasuhiro Murawaki Y, Puchalapalli S R, et al. Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance. Anal. Chim. Acta, 2001, 435 (1) : 141-149.
    [224] Dickert F L, Forth P, Lieberzeit P, et al. Molecularly imprinted polymer-coated quartz crystal microbalance. Fresenius J. Anal. Chem., 1998, 360 (7) : 759-764.
    [225] Edward P C L, Fafara A, Victoria A V, et al. Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine. Can. J. Chem./Rev. Can. Chim., 1998, 76 (3) : 265-273.
    [226] Raymer M L. Agouron Pharmaceuticals, pfizer global research and development. Nature, 1993, 361 (4) : 645-652.
    [227] Andersson L I. Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol.Anal. Chem., 1996, 68 (1) : 111-117.
    [228] Karsten H K, Dzgoev A, Mosbach K.Assay system for the herbicide 2,4-dichlorophen-oxyacetic acid using a molecularly imprinted polymer as an artificial recognition element. Anal. Chem., 1998, 70 (6) : 628-631.
    [229] Ramstrom O, Lei Y, Mosbach K. Artificial antibodies to corticosteroids prepared by molecular imprinting. Chem. Biol., 1996, 3 (4) : 471-477.
    [230] Andersson L I, Nicholls I A, Mosbach K. Antibody mimics obtained by noncovalent molecular imprinting. Proc. Natl. Acad. Sci. USA, 1995, 92 (22) : 4788-4791.
    [231] Takeshita M, Shinkai S. Recent topics on functionalization and recognition ability of calixarenes: The third host molecule. Bull Chem. Soc. Japn., 1995, 68 (9) : 1088-1097.
    [232] Marianne S, Jeppsson-Wistrand U, Mats O M, et al. Induced stereo-and substrate selectivity of bioimprinted .alpha.-chymotrypsin in anhydrous organic media. J. Am. Chem. Soc., 1991,113 (24) : 9366-9368.
    [233] 张康健.中国杜仲研究.陕西:陕西科学技术出版社,1992,19-23.
    [234] 熊飞.杜仲可作空间保健药.科技日报,1991-09-20.
    [235] 广荃.杜仲可抑制癌细胞突变.中国科学报,1995-04-05.
    [236] Ishiguro K, Yamaki M, Takagi S. Studies on the iridoid related compounds Ⅰ .On the antimicrobial activity of aucubigenin and certain iridoid aglycones. Yakugaku Zasshi., 1982, 102 (6) : 755-759.
    [2
    
    [237] Tanimoto S, Ikuma K, Takahashi S. Improvemention raw meattexture of cultured eel by feeding oftochu leaf poweder. Biosci. Biotech. Biochem., 1993, 57 (2) : 205-208.
    [238] 彭密军.杜仲饲料分析研究.饲料与畜牧,2000,(1) :27-28.
    [239] 崔克明,罗立新,李正理.杜仲休眠枝条中多糖颗粒变化的超微结构研究.植 物学报,2000,42(8) :788-793.
    [240] 刘小烛,胡忠,李英等.杜仲皮中抗真菌蛋白的分离和特性研究.云南植物研 究,1994,16(4) :385-391.
    [241] Deyama T, Ikawa T, Kitagawa W, et al. Isolation of dihydroxydehydrodiconiferyl alchol isomers and phenolic compounds. Chem. Pharm. Bull., 1987, 35(15) : 1785-1789.
    [242] Deyama T. The constituents of Eucommia ulmodies Oliv. Ⅰ .Isolation of (+)-medioresi-nol di-O-β-D-glucopyranoside. Chem. Pharm. Bull., 1983, 31 (9) : 2993-2997.
    [243] Deyama T, Ikawa T, Kitagawa W, et al. The constituents of Eucommia ulmodies Oliv.Ⅲ. Isolation and structure of a new lignan glycoside. Chem. Pharm. Bull., 1986, 34 (2) : 523-527.
    [244] Deyama T, Ikawa T, Nishibe S. The constituents of Eucommia ulmodies Oliv. Ⅱ. Isolation and structures of three new lignan glycosides. Chem. Pharm. Bull., 1985, 33(9) : 3651-3657.
    [245] Deyama T, Ikawa T, Kitagawa W, et al. The constituents of Eucommia ulmodies Oliv. Ⅳ. Isolation and structure of a new sesquilignan glycoside. Chem. Pharm. Bull., 1986, 34 (12) : 4933-4938.
    [246] Deyama T, Nishibe S, Nakazawa Y. Constituents and pharmacological effects of Eucommia and Siberian ginseng. Acta Pharmacologica Sinica, 2001, 22 (12) : 1057-1070.
    [247] Kobayashi M, Hirase T. Structures of new dihydrofurano-cembranoids isolated from a Sarcophyton sp. soft coral of Okinawa, Chem. Pharm. Bull., 1990, 38 (9) : 2442-2445.
    [248] Bianco A, Bonini C, lavarone C, et al. Ulmoside (aucubigenin-1-b-isomaltoside), a new iridoid from Eucommia ulmoides. Gazz. Chim. Ital., 1978, 108(1) : 17-19.
    [249] Geweli M B, Hattori M, Namba T. Constituents of the stems of Eucommia ulmoides Oliv. Shoyakugaku Zasshi, 1988, 42 (2) : 247-251.
    [250] Bianco A, Bonini C C, lavarone C, et al. Structure elucidation of eucommioside (2"-O-β-D-glucopyranosyl eucommiol) from Eucommia ulmoides. 1982,21 (2) : 201-203.
    
    [251] Bernini R, lavarone C, Trogolo C. 1-O-β-D-glucopyranosyleucommiol, an iridoid glucoside from Aucuba japonica. Phytochemistry, 1984, 23 (12) : 1431-1437.
    [252] Xi X, Liu G. Influence of drug compatibility on extractive retes of chlorogenic acid and isochlorogenic acid in simiaoyonglan tang decoction. Zhongguo Zhong Yao Za Zhi, 1999, 24 (11) : 694-704.
    [253] Horii Z, Ozaki Y, Nagao K, et al. Ulmoprenol, a new type C30-polyprenoid from eucommia ulmoides oliv. Tetrahedron Lett., 1978, 19 (12) : 5015-5016.
    [254] 朱丽青,张黎明,贡瑞生.杜仲叶和杜仲皮的药理研究.中草药,1986,17(12) : 15-17.
    [255] 李东,王翰龙,陈家明.杜仲的化学成分.植物学报,1986,28(5) :528-532.
    [256] 续俊文,李东,赵平.杜仲的化学成分.植物学报,1989,31(2) :132-136.
    [257] 汪纪武,肖庆祥.植物药有效成分手册.北京:人民卫生出版社,1986,97,597, 876.
    [258] 臧友维.杜仲化学成分研究进展.中草药,1989,20(4) :42-44.
    [259] 汤学军,管竟环.42味中草药中微量元素含量的测定.微量元素与健康研究, 1995,12(3) :34-38.
    [260] Goodwen T W,Moseil E I.植物生物化学导论[M].西北农业大学译.陕西:天 则出版社,1988,88-89,233,531,560.
    [261] 娄红祥,郎伟君,吕木坚.金银花中水溶性化合物的分离与结构鉴定[J].中草药, 1996,27(2) :195-199.
    [262] 柯铭清.中草药有效成分理化与药理特性[M].长沙:湖南科学技术出版社, 1982,225-286.
    [263] Kimura Y, Okuda H, Okuda T. Studies on the activities of tannis and related compounds. V. Inhibitory effects on lipid peroxidation in mitochondria and microsomes of liver[J]. Planta Med., 1984, 50(5) : 473-477.
    [264] Wood A W, Hung M T, Chang H L. Inhibition of the mutagenicity of bay-region diol epoxides of polycyclicaromatic hydrocarbonsby naturally occurring plant phenols; Exceptional activity of ellagic acid [J]. Proc. Natl. Acad. Sci., 1982, 79 (23) : 5513-5517.
    [265] Abraham S K, Sarma L, Kesavan P C, Protective effects of chlorogenic acid, curcumin and P-carotene against Y-radiation-induced in vivo chromosome damage[J]. Mutation Res., 1993, 303 (1) : 109-112.
    [266] Ohnishi M, Morishita H, Iwahashi H, et al. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis [J]. Phytochemistry, 1994, 36 (2) : 579-583.
    [267] Hemmerle H, Burger H J, Below P, et al. Chlorogenic acid and synthetic chlorogenic acid derivatives:Novel inhibitors of hepatic glucose-6-phosphate translocase[J].J.Med.Chem.,1997,40(2) :137-145.
    [2
    
    [268] 王亚琴.杜仲叶次生代谢物地理学研究(学位论文),陕西杨陵:西北林学院, 1998,25-51.
    [269] 李稳宏,吴红,李多伟等.两种醇沉方式对杜仲水提液中绿原酸含量的影响.陕 西师范大学学报,1997,25(1) :64-66.
    [270] 汪洪武,汤敏燕,孙凌峰.杜仲叶中绿原酸类物质的提取研究.江西师范大学学 报,1997,21(3) :339-341.
    [271] 林缎嫦,宋劲诗,吴应熊.金银花中绿原酸提取工艺探讨.中成药,1994,16(1) : 2-3.
    [272] 戚向阳,张声华,陆彩玲.杜仲叶中绿原酸的提取分离研究.中草药,1998,29(7) : 741-742.
    [273] 马希汉,张康健,尉芹.从杜仲叶中提取绿原酸纯品的研究.西北林学院学报, 1995,11(1) :58-60.
    [274] Barnes H M, Feldman J R, White W V. Isochlorogenic acid isolation from coffee and structure studies. J. Amer. Chem. Soc., 1950, 72 (19) : 4178-4179.
    [275] Sondheimer E, Szymanski C D, Corse J W. Isolation of chlorogenic acid and its isomers from coffee. J. Agric. Food Chem., 1961, 9 (1) : 146-149.
    [276] 张文政.金银花绿原酸提取工艺的改进.中草药,1982,13(1) :14-16.
    [277] 上海医药工业研究院中药分析室,上海中药制药厂.金银花有效成分的初步 研究.医药工业,1975,7(1) :24-27.
    [278] Ma X H, Wei Q, Zhang K J, et al. Identification of the structure of chlorogenic acid from the leaves of Eucommia ulmodies, Preceding of the first International Symposium on Eucommia ulmodies,北京:北京林业出版社. 1997, 42-47.
    [279] Adzet T, Puigmacia M. High performance liquid chromatography of caffeoylquinic acid derivatives of Cynarascolymus L. leaves. J. chromatogr. A, 1985,348(2) : 451-457.
    [280] San R H C, Chan R I M, Inhibitory effect of phenolic compounds on aflatoxin B1 metabolism and induced mutagenesis[J]. Mutation Res., 1987, 177 (2) : 229-239.
    [281] 张丹,李章万,刘三康.中药复方抗感退热灵袋泡剂中绿原酸的HPLC法测定 [J].中草药,1996,27(1) :101-102.
    [282] Lyon G D, Barker H, The measurement of chlorogenic acid in potato leaf extracts by HPLC [J]. Potato Research, 1984, 27 (3) : 291-231.
    [283] 邬晓鸥,鲁静.HPLC法测定桅子中绿原酸的含量[J].中国中药杂志,1996,21 (5) :620-621。
    [284] 张丹,李章万,姜焱.HPLC测定金银花、茵陈及其10种中成药中绿原酸的含量 [J].药物分析杂志,1996,16(2) :183-185.
    [285] 荣志芬,张慰青,胡文洁等.复方止咳冲剂中甘草酸和绿原酸的HPLC测定[J]. 中草药,1995,26(2) :181-182.
    [2
    
    [286] 刘健,刘晨江,赵志鸿.HPLC法测定清肝利胆冲剂中绿原酸的含量[J].药物分 析杂志,1996,16(1) :124-125.
    [287] 何心,石春伟,芦松萍等.HPLC法测定双黄连粉针中绿原酸和咖啡酸的含量 [J].药物分析杂志,1997,17(3) :410-411.
    [288] Suslick K S.The Year Book of Science and Future. Chicage: Encyclopedia Britannica Press, 1994,138-186.
    [289] Carvalho L R F, Souza S R, Martinis B S,et al. Monitoring of the ultrasonic irradiation effect on the extraction of airborne particulate matter by ion chromatography. Aanl. Chim. Acta, 1995, 317 (2) : 171-179.
    [290] Wakeford C A, Blackburn R, Lickiss PD. Effect of ionic strength on the acoustic generation of nitrite, nitrate and hydrogen peroxide. Ultrason. Sonochem., 1999, 6(1) : 141-148.
    [291] Maricela T, Vinatoru M, Paniwnyk L, et al. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem., 2001,8(1) : 137-142. ,
    [292] Vinatorn M, Toma M, Mason T J. Ultrasonically assisted extraction of bioactive principles from plants and its constituents. Adv. Sonochem., 1999, 5 (2) : 209-249.
    [293] Sanchez C, Ericsson M, Carlsson H, et al. Poste presentation, Extech. Spain: Barcelona Press, 2001, 519-543.
    [294] Puque-Garca J L, Quque de Castro M D. Continuous ultrasound-assisted extraction of hexavalent chromium from soil with or without on-line preconcentration prior to photometric monitoring. Analyst., 2002, 127 (9) : 1115-1120.
    [295] Sakuma H, Matsushima S, Munakata S, et al. Pyrolysis of chlorogenlc acid and turin. Agric. Biol. Chem., 1982,46(10) : 1311-1318.
    [296] Paganga G, Miller N, Rice-Evans C A. The polyphenolic content of fruit and vegetables and their antioxidant activities. Free Radic. Res., 1999, 30 (1) : 153-162.
    [297] Yan X, Suzuki M,Ohnishi-Kameyama M, et al. Extraction and identification of antioxidants in the roots of Yacon (Smallanthus sonchifolius). J. Agric. Food Chem., 1999, 47 (22) : 4711-4713.
    [298] Yu J, Vasanthan T, Temelli F. Analysis of phenolic acids in barley by high-performance liquid chromatography. J. Agric. Food Chem., 2001, 49 (21) : 4352-4358.
    [299] Romdhane M, Gourdon C. Investigation in solid-liquid extraction: influence of ultrasound. Chem. Eng. J., 2002, 87 (1) : 11-19.
    
    [300] Samir M, Matthew C, Joseph K, et al. Transdermal extraction of analytes using low-frequency ultrasound. Pharmaceut. Res., 2000, 17 (4) : 466-470.
    [301] Amal R, Raper J A, Waite T D. Removal of water impurities by hydrous oxides. Trans. Inst. Chem. Eng., 1992,70(8) : 22-26.
    [302] 孙波,彭密军,杨晓燕.超声波提取杜仲叶的工艺研究.林产化学与工业,1999, 19(3) :67-70.
    [303] Seagina N V, Sul man M G, Sul'man E M, et al. Enhancing effect of ultrasound on the transdermal absorption of indomethacin from an ointment in rats. Pharm. Chem. J. (English. Transl.), 2000, 34 (1) : 69-72.
    [304] Lowri S de Jager, Anthony R, Andrews J. Development of a screening method for cocaine and cocaine metabolites in urine using solvent microextraction in conjunction with gas chromatography. J. Chromatogr. A., 2001, 914(1) : 97-105.
    [305] Filgueiras A V, Capelo J L,Lavilla I, et al. Comparison of ultrasound-assisted extraction and microwave-assisted digestion for determination of magnesium, manganese and zinc in plant samples by flame atomic absorption spectrometry. Talanta, 2000, 53 (2) : 433-441.
    [306] Hardcastle J L, Paterson C J, Compton R G. Biphasic sonoelectroanalysis: Simultaneous extraction from, and determination of vanillin in food flavoring. Electroanal., 2001, 13 (5) : 899-905.
    [307] Leadley C, Williams A, New food drying technologies-use of ultrasound food science and technology. New Food., 2001, 4 (1) : 23-26.
    [308] Vinatoru M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem., 2001, 8 (3) : 303-313.
    [309] Valachovic P, Pechova A, Mason T J. Towards the industrial production of medicinal tincture by ultrasound assisted extraction. Ultrason. Sonochem., 2001,8(2) : 111-117.
    [310] 中国卫生部药典委员会.中国药典(一部).北京:人民卫生出版社,1977,189.
    [311] Zhao Y C. Detection of chlorogenic acid in leaves of Eucommia ulmodies Oliv. by HPLC. Chin. Chromatogr., 2000,18 (3) : 263-264.
    [312] Jassie L, Revesz R, Kierstead T, et al. Microwave-enhanced chemistry. Washington: American Chemical Society Press, 1997, 569-626.
    [313] Dean J R, Fitzpatrick L, Heslop C, et al. Extraction methods in organic analysis. Sheffield: Sheffield Academic Press, 1999, 166-189.
    [314] 金钦汉,微波化学.北京:科学出版社,2001,43-128.
    [315] Hawthorne S B, Galy A B, Schmitt V O, et al. Effect of SFE flow rate on extraction rates: classifying sample extraction behavior. Anal. Chem.,1995, 67 (11): 2723-2732.
    
    [316] Nelida E G A simple method to extract essential oils from tissue samples by using microwave radiation. J. Chem. Ecology., 2001, 27 (13): 2351-2359.
    [317] Veronica P, Juan H, Ayala A,et al. Determination of polycyclic aromatic hydrocarbons in marine sediments by high-performance liquid chromatography after microwave-assisted extraction with micellar media. J. Chromatogr. A, 2000, 869 (3): 515-522.
    [318] Mozafar A. Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization roots and metal uptake by leek. Environ. Monito. Assess., 2002, 79 (1): 177-191.
    [319] Barnabas I J, Dean J R, Fowlis I A,et al. Extraction of polycyclic aromatic hydrocarbons from highly contaminated soils using microwave energy. Analyst, 1995, 120(14): 1897-1902.
    [320] Kaufmann B, Christen P, Jean-Luc V. Parameters affecting microwave-assisted extraction of withanolides. Phytochem. Anal., 2001, 12 (3): 327-331.
    [321] Letellier M, Budzinski H. Microwave-assisted extraction of organic compounds. Analusis., 1999, 27 (3): 259-270.
    [322] Chee K K, Keong Wong M, Lee H K. Optimization of microwave-assisted solvent extraction of polycyclic aromatic hydrocarbons in marine sediments using a microwave extraction system with high-performance liquid chromatography-fluorescence detection and gas chromatography-mass spectrometry. J.Chromatogr.A, 1996, 723 (1-2): 259-271.
    [323] Kovacs A, Ganzler K, Simon-Sarkadi L. Microwave-assisted extraction of free amino acid from foods. Z Lebensm Unters Forsch A, 1998,207 (1): 26-30.
    [324] Llompart M P, Lorenzo R A, Cela R, et al. Phenol and methylphenol isomers determination in soils by in-situ microwave-assisted extraction and derivatisation. J. Chromatogr. A, 1997, 757 (1-2): 153-164.
    [325] Daghbouche Y, Garrigues S, Guardia dela M. Liquid chromatography-Fourier transform infrared spectrometric determination of cholesterol in animal greases. Anal. Chim. Acta, 1997, 354 (1): 97-106.
    [326] Vryzas Z, Papadakis E N, Papadopoulou-Mourkidou E. Microwave-assisted extraction (MAE) acid hydrolysis of dithiocarbamates for trace analysis in tobacco and peaches. J. Agric. Food Chem., 2002 , 50 (11): 2220-2226.
    [327] Pensado L, Casais C, Mejuto C, et al. Optimization of the extraction of polycyclic aromatic hydrocarbons from wood samples by the use of microwave energy. J. Chromatogr. A, 2000, 869 (3): 505-513.
    [328] Alexandrou N, Pawliszyn J.Supercritical fluid extraction for the rapid determination of polychlorinated dibenzo-p-dioxins and dibenzofurans in
     municipal incinerator fly ash. Anal. Chem., 1989, 61 (15): 2770-2776.
    
    [329] Steven H P, Hao Y, Milton L L, et al. Rapid method for the determination ofphase behavior of fluid mixtures employed in supercritical fluid experiments.Anal. Chem., 1993, 65 (10): 1493-1495.
    [330] John J L, Steven B H, David J M,et al. K inetic study of supercritical fluidextraction of organic contaminants from heterogeneous environmental sampleswith carbon dioxide and elevated temperatures. Anal. Chem., 1995, 67 (12):,1727-1736.
    [331] Bjorklund E, Mathiasson L, Steven B H. Determining PCB sorption/desorptionbehavior on sediments using selective supercritical fluid extraction. 1.Desorption from historically contaminated samples. Environ. Sci. Technol.,1999, 33 (14): 2193-2203.
    [332] Gan J, Papiernik S K, Koskinen W C,et al. Evaluation of accelerated solventextraction (ASE) for analysis of pesticide residues in soil. Environ. Sci.Technol., 1999, 33 (21): 3249-3253.
    [333] Galotto M J, Guarda A. Comparison between thermal and microwave treatmenton the overall migration of plastic materials intended to be in contact withfoods. Packaging Technol. Sci., 1999, 12 (2): 277-281.
    [334] Daghbouche Y, Garrigues S, Morales-Rubio A, et al. Evaluation of extractionalternatives for Fourier transform infrared spectrometric determination of oiland greases in water. Anal. Chim. Acta, 1997,345 (2): 161-171.
    [335] Conte E D, Shen C Y, Perschbacher P W, et al. Determination of geosmin andmethylisoborneol in catfish tissue (Ictalurus punctatus) by microwave-assisteddistillation-solid phase adsorbent trapping. J. Agric Food Chem., 1996, 44 (3):829-835.
    [336] Ho W H, Hsieh S J. Solid phase microextraction associated withmicrowave-assisted extraction of organochlorine pesticides in medicinal plants.Anal. Chim. Acta., 2001, 428 (l):lll-120.
    [337] Eskilsson C S, Bjorklund E. Analytical-scale microwave-assisted extraction. J.Chromatogr. A, 2000, 902 (1): 227-250.
    [338] Guo Z K, Jin Q H, Fan G Q, et al. Micorwave-assisted extraction of effectiveconstituents from a Chinese herbal medicine Radix puerariae. Anal. Chim. Acta,2001, 436(1): 41-47.
    [339] Akhtar M H, Wong M, Crooks S R H, et al. Extraction of incurredsulphamethazine in swine tissue by microwave assisted extraction andquantification without clean up by high performance liquid chromatographyfollowing derivatization with dimethylaminobenzal dehyde. Food Addit.Contain. 1998, 15 (3): 542-547.
    
    [340] Pan X J, Niu G G, Liu H Z. Comparison of microwave-assisted extraction and conventional extraction techniques for the extraction of tanshinones from Salvia miltiorrhiza bunge. J. Biochem. Eng., 2002, 12 (1): 71-77.
    [341] Pan X J, Niu H Z, Jia G H, et al. Microwave-assisted extraction of glycyrrhizic acid from licorice root. J. Biochem. Eng., 2000, 5 (3):173-177.
    [342] Garcia-Ayuso L E, Sanchez M, Fernandez de Alba A, et al. Focused microwave-assisted soxhlet: an advantageous tool for sample extraction. Anal. Chem., 1998, 70 (11): 2426-2431.
    [343] Garcia-Ayuso L E, Luque-Garcia J L, Luque de Castro M D. Approach for independent-matrix removal of polycyclic aromatic hydrocarbons from solid samples based on microwave-assisted soxhlet extraction with on-line fluorescence monitoring. Anal. Chem., 2000, 72 (15): 3627-3634.
    [344] Falque-Cao C, Wang Z, Urruty L, et al. Focused microwave assistance for extracting some pesticide residues from strawberries into water before their determination by SPME/HPLC/DAD. J. Agric. Food Chem., 2001, 49 (11): 5092-5097.
    [345] Luque-Garcia J L, Luque de Castro M D. Water soxhlet extraction assisted by focused microwaves: a clean approach. Anal. Chem., 2001, 73 (24): 5903-5908.
    [346] Ishida H, Uesugi I, Hirai K, et al. Preventive effects of the plant isoflavones, daidzein and genistem, on bone loss in ovariectomized rats fed with a calcium-deficient diet. Biol Pharm Bull., 1998, 21 (1): 62-66.
    [347] Kim D H, Lee S W, Han M J. Biotransformation of glycyrrhizin to 18-glycycrrehtinic acid acid glucuronide by Streptococcus LJ-22, a human intestinal bacterium., Biol. Pharm. Bull., 1999, 22 (2): 320-322.
    [348] Mcarthy P J, Sweetman S F, Mckenna P G, et al. Evaluation of manual and image analysis qunatification of DNA damage in the alkaline comet assay. Mutation Res., 1997, 338 (1): 115-128.
    [349] Fraga C G, Motchnik P A, Wyrobec A J, et al. Smoking and low antioxidant levels increase oxidative damage to sperm DNA. Mutation Res., 1996, 351 (2): 199-203.
    [350] Honda T, Kato M, Inoue M, et al. Synthesis and antitumor activity of quaternary ellipticine glycosides, a series of novel and highly active antitumor agents. J. Med. Chem., 1988, 31 (11): 1295-1305.
    [351] Ceballos A B, Vetter W. Use of focused open vessel microwave-assisted extraction as prelude for the determination of the fatty acid profile of fish - a comparison with results obtained after liquid-liquid extraction according to Bligh and Dyer. Lebens-Mittel Chemie., 1999, 53 (1): 132-138.
    [352] Costley C T, Dean J R, Newton I. Extraction of oligomers from poly(ethylene
     terephthalate) by microwave-assisted extraction. J. Carroll. Anal. Commun.,
    1997, 34(1): 89-91.
    
    [353] Silgoner I, Krska R, Lombas E, et al. Microwave assisted extraction oforganochlorine pesticides from sediments and its application to contaminatedsediment samples. Fresenius J. Anal. Chem., 1998, 362 (1): 120-127.
    [354] Pan X, Niu G, Lin H. Microwave-assisted extraction of tanshinones from Salviamiltiorrhiza bunge with analysis by high-performance liquidchromatography. J. Chromatogr. A, 2001, 922 (1-2): 371-375.
    [355] Li H B, Chen F. Preparative isolation and purification of salidroside from theChinese medicinal plant Rhodiola sachalinensis by high-speed counter-currentchromatography. J. Chromatogr. A, 2001, 932 (1-2): 91-95.
    [356] Bjorklund E, Nilssen T. Pressurised liquid extraction of persistent organicpollutants in environmental analysis. Trends Anal. Chem., 2000, 19 (3):434-447.
    [357] Gaikar V G, Dandekar D V. Microwave-assisted extraction of curcuminoids fromcurcuma longa. Separ. Sci. Technol., 2002, 37 (15): 2669-2690.
    [358] Yao J Y, Han W, Huang S D, Xue B Y, Deng X. Microwave-assisted extraction ofartemisinin from Artemisia annual. Sep. Purif. Technol., 2002, 28 (1): 191-196.
    [359] Garcia-Ayuso L E, Velasco J, Dobarganes M C, Lueque de Castro M D.Accelerated extraction of the fat content in cheese using a focusedmicrowave-assisted Soxhlet device. J. Agric. Food Chem., 1999, 47 (11):2308-2315.
    [360] Budzinski H, Letellier M, Garrigues P, Lemenach K. Optimisation of themicrowave-assisted extraction in open cell of polycyclic aromatic hydrocarbonsfrom soils and sediments: study of moisture effect. J Chromatogr A, 1999, 837(1-2): 187-200.
    [361] Hsieh C L, Yen G C. Antioxidant actions of du-zhong (Eucommia ulmodies Oliv.)toward oxidative damage in biomolecules. Life Sci. 2000, 15 (9): 1387-1400.
    [362] Kingston H M, Jassie L B. Introduction to microwave sample preparation.Washington: American Chemical Society Press, 1988, 1106-1241.
    [363] Wulff G. Dendrimers and Hyperbranched Polymers. Synthesis and properties ofdendrimers and hyperbranched polymers. Angew. Chem. Int. Ed. Engl., 1995,34(15): 1812-1832.
    [364] Jens U K, Michael J W, Francis M, et al. Template - mediated synthesis of apolymeric receptor specific to amino acid sequences. Angew. Chem. Int. Ed.Engl., 1999, 38 (17): 2057-2060.
    [365] Dai S, Shin Y S, Barnes C E, et al. Enhancement of uranyl adsorption capacityand selectivity on silica sol-gel glasses via molecular imprinting. Chem. Mater., 1997, 9 (23): 2521-2525.
    
    [366] Kato M, Nishide H, Tsuchida E, et al. Complexation of metal ion withpoly(l-vinylimidazole) resin prepared by radiation-induced polymerization withtemplate metal ion. J. Polym. Sci. Polym. Chem. Ed., 1981, 19 (15): 1803-1809.
    [367] Chen H, Marilyn M O, Robert L A, et al. Metal-ion-templated polymers:synthesis and structure of N-(4-vinylbenzyl)- 1,4,7- triazacyclononanezinc(II)complexes, their copolymerization with divinylbenzene, and metal-ionselectivity studies of the demetalated resins - evidence for a sandwich complexin the polymer matrix. Angew. Chem., Int. Ed. Engl., 1997, 36 (5): 642-645.
    [368] Blandine Q, Charles-Henry A, Crico U, et al. Unexpected isolation, andstructural characterization, of a β -hydrogen-containing σ -alkylpalladiumhalide complex in the course of an intramolecular Heck reaction. Synthesis ofpolycyclic isoquinoline derivatives. Chem. Commun., 2003, 2 (4): 272 -273.
    [369] Purnamawaty E, Amimoto T, Imura H,et al. Extraction equilibrium ofmolybdenum(VI) with several alkylated 8-quinolinol derivatives. Anal. Sci.,1992, 8 (6): 749-754.
    [370] Souza D, Alexander C, Carr S W, et al. Directed nucleation of calcite at acrystal-imprinted polymer surface. Nature, 1999, 398 (2): 312-317.
    [371] Aherne A, Alexander C, Payne M J, et al. B acteria-mediated lithography ofpolymer surfaces. J. Am. Chem. Soc, 1996, 118 (24): 8771-8772.
    [372] Steinke J, Sherrington D C, Dunkin I R, Imprinting of synthetic polymers usingmolecular templates. Adv. Polym. Sci., 1995, 123 (1): 80-125.
    [373] Matsui J, Takeuchi T. A molecularly imprinted polymer rod as nicotine selectiveaffinity media prepared with 2-(Trifluoromethyl)acrylic Acid. Anal. Commun.,1997, 34(3): 199-200.
    [374] Matsui J, Doblhoff-Dier O, Takeuchi T. 2-(Trifluoromethyl)acrylic acid: a novelfunctional monomer in non-covalent molecular imprinting. Anal.Chim.Acta.,1997,343(1): 1-4.
    [375] Yano K, Nakagiri T, Takeuchi T,et al. Stereoselective recognition of dipeptidederivatives in molecularly imprinted polymers which incorporate an L-valinederivative as a novel functional monomer. Anal. Chim. Acta, 1997, 357 (1):91-98.
    [376] Stephen T H, Tim C H Goran P, et al. A tandem radical approach to theABCE-rings of the Aspidosperma and Strychnos alkaloids. J. Chem. Soc. Chem.Commun., 1995, 20 (2): 171-192.
    [377] Sundaresan V, Michael R, Frances H A. Molecularly imprinted ligand - exchangeadsorbents for the chiral separation of underivatized amino acids. J. Chromatogr. A, 1997, 775 (1-2): 51-63.
    
    [378] Asanuma H, Kakazu M. Molecularly imprinted polymer of p-cyclodextrin for theefficient recognition ofcholesterol. Chem. Commun., 1997, 20 (1): 1971-1972.
    [379] Meng Z, Wang J, Zhou L, et al. High perfomance cocktail functional monomerfor making molecular imprinting polymer. Anal. Sci., 1999, 15 (2): 141-144.
    [380] Kanekiyo Y, Ono Y, Inoue K, et al. Molecular imprinting in polyion complexeswhich creates the 'memory' for the AMP template. J. Chem. Soc. Perkin Trans.,1999, 2 (4): 557-561.
    [381] Kenneth J S, David A S, Sellergren B. Polymer complements to nucleotide bases.Selective binding of adenine derivatives to imprinted polymers. J. Am. Chem.Soc, 1993, 115 (8): 3368-3369.
    [382] Kempe M, Mosbach K. Receptor binding mimetics: A novel molecularlyimprinted polymer. Tetrahedron Lett., 1995, 36 (17): 3563-3566.
    [383] Sellergren B, Lepistoe M, Mosbach K. Highly enantioselective andsubstrate-selective polymers obtained by molecular imprinting utilizingnoncovalent interactions. NMR and chromatographic studies on the nature ofrecognition. J. Am. Chem. Soc, 1988, 110 (21): 5853 - 5860.
    [384] Yoshizako K, Hosoya K, Iwakoshi Y, et al. Porogen imprinting effects. Anal.Chem., 1998, 70 (2): 386-389.
    [385] Sellergren B, Kenneth J S, Influence of polymer morphology on the ability ofimprinted network polymers to resolve enantiomers. J.Chromatogr. A, 1993,635 (1-2): 31-49.
    [386] Wu J T, Huang P Q, Michael X, et al. Open-tubular capillaryelectrochromatography with an on-line ion trap storage/reflectron time-of-flightmass detector for ultrafast peptide mixture analysis. Anal. Chem., 1997, 16 (2):320-326.
    [387] James V B, Kenneth J S. Designed catalysts: a synthetic network polymer thatcatalyzes the dehydrofluorination of 4-fluoro-4-(p-nitrophenyl)butan-2-one. J.Am. Chem. Soc, 1994, 116 (2): 379-380
    [388] Burow M, Minoura N. Molecular imprinting: synthesis of polymer particles withantibody-like binding characteristics for glucose oxidase. Biochem. Biophys.Res. Commun., 1996, 227 (3): 419-422.
    [389] Dario K, Christine Berggren K, Andersson L I, et al. Thin-layer chromatographybased on the molecular imprinting technique. Anal. Chem., 1994, 66 (12):2636-2639.
    [390] Gabriela C, Vincent T R. Silicate entrapped columns-new columns designed forcapillary, electrochromatography. Electrophoresis, 1999, 20 (1): 50-56.
    [391] Glad M, Reinholdsson P, Mosbach K. Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations. Reat. Polym., 1995, 25 (1): 47-54.
    
    [392] Sundaresan V, Michael R, Frances H A. Molecularly imprinted ligand - exchange adsorbents for the chiral separation of underivatized amino acids. 'J. Chromatogr. A, 1997, 775 (1-2): 51-63.
    [393] Michael J W, Rodriguez M E, Pablo V,et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc, 1995, 117 (23): 7105-7111.
    [394] Sean D P, Frances H A. Molecularly imprinted polymers on silica: selective supports for high-performance ligand-exchange chromatography. J. Chromatogr. A, 1995, 708 (1): 19-29.
    [395] Haginaka J, Takehira H, Hosoya K, et al. Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen. Chem. Lett., 1997, 6 (8): 555-558.
    [396] Hosoya K, Yoshizako K, Shirasu Y, et al. Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography structural contribution of cross-linked polymer network on specific molecular recognition. J. Chromatogr. A, 1996, 728 (1-2): 139-147.
    [397] Richard J A, Mosbach K. Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent. J. Chromatogr. A, 1997, 787 (1-2): 55-66.
    [398] Matsui J, Miyoshi Y, Doblhoff-Dier O, A molecularly imprinted synthetic polymer receptor selective for atrazine. Anal. Chem., 1995, 67 (19): 4404-4408.
    [399] Matsui J, Miyoshi Y, Matsui R, et al., Rod-type affinity media for liquid chromatography prepared by in-situ molecular imprinting. Anal. Sci., 1995, 11 (9): 1017-1020.
    [400] Matsui J, Miyoshi Y, Takeuchi T. Fluoro-functionalized molecularly imprinted polymers selective for herbicides. Chem. Lett., 1995, 11 (8): 1007-1008
    [401] Sellergren B. Imprinted dispersion polymers: A new class of easily accessible affinity stationary phases. J. Chromatogr. A, 1994, 673 (1): 133-141.
    [402] Zhang M, Xie J, Zhou Q, et al., On-line solid-phase extraction of ceramides from yeast with ceramide III imprinted monolith. J. Chromatogr. A, 2003, 984 (1-2): 173-183.
    [403] Ye L, Weiss R, , Mosbach K. Synthesis and characterization of molecularly imprinted microspheres. Macromolecules, 2000, 33 (22): 8239-8245.
    [404] Ye L, Peter A G, Mosbach K. Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal. Commun., 1999, 36 (1): 35-38.
    
    [405] Chen Y, Kele M, Sajonz P, et al. Influence of thermal annealing on the thermodynamic and mass-transfer kinetic properties of D- AND L-phenylalanine anilide on imprinted polymeric stationary phases. Anal. Chem., 1999, 71 (6): 928-938.
    [406] Wulff G, Kirstein G. Calorimetric investigation of chiral recognition processes in a molecularly imprinted polymer. Angew. Chem., 1990, 102 (5): 706-711.
    [407] Sarhan A, Wulff G. On the introduction of amino- and boronic acid groups into chiral polymer cavities. Makromol. Chem., 1982, 183 (1): 85-92.
    [408] Sellergren B, Lepistoe M, Mosbach K. Highly enantioselective and substrate-selective polymers obtained by molecular imprinting utilizing noncovalent interactions. NMR and chromatographic studies on the nature of recognition. J. Am. Chem. Soc, 1988, 110 (23): 5853-5860.
    [409] Sellergren B, Ekberg B, Mosbach K. Molecular imprinting of amino acid derivatives in macroporous polymers : Demonstration of substrate- and enantio-selectivity by chromatographic resolution of racemic mixtures of amino acid derivatives. J. Chromatogr. A, 1985, 347 (1): 1-10.
    [410] Kenneth J S, David A S, Sellergren B. Polymer complements to nucleotide bases. Selective binding of adenine derivatives to imprinted polymers. J, Am. Chem. Soc, 1993, 115 (16): 3368-3369.
    [411] Dalgliesh C E. The optical resolution of aromatic amino-acids on paper chromatograms. J. Chem. Soc, 1952, 137 (21): 3940-3942
    [412] Mosbach K. Selection of phage display combinatorial Libraty peptides with affinity for a yohimbine imprinted methactylate polymer. Anal. Commun.,1998, 35 (1): 3-7.
    [413] Sarhan A. Stereospezifische haftungen uber amidbindung oder elektrostatische wechselwirkung. Makromol. Chem., 1982,183 (13): 1603-1614.
    [414] Wulff G, Sarchan A. In chemical approaches to understanding enzyme catalysis: Biomimetic chemistry and tronsition-state analysis. Amsterdam: Elsevier Press, 1982, 106-131.
    [415] Wulff G. In molecular interactions in bioseparations. New York: Plenum Press, 1993,363-401.
    [416] Wulff G, Minarik M. In chromatographic chiral separations. New York: Dekker Press, 1998, 15-38.
    [417] Wulff G, Poll H G, Minarik M. Enzyme-analogue built polymers. XIX Racemic resolution on polymers containing chiral cavities. J. Liq. Chromatogr., 1986, 9 (3): 385-405.
    [418] Wulff G, Grobe Einsler R, Vesper W, et al. Enzyme Analogue Built Polymer. Macromol. Chem, 1977, 178 (16): 2817-2825.
    
    [419] Mosbach K, Ramstrom O. The emerging technique of molecular imprinting and its future impact on biotechnology. Bio/Technology, 1996, 14 (1): 163-170.
    [420] Ching C C, Wang C H, Wen W C, et al. Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods. J. Chromatogr. A, 2002, 962 (1-2): 69-78.
    [421] Quaglia M, Chenon K, Hall A J, et al. Target analogue imprinted polymers with affinity for folic acid and related compounds. J. Am. Chem. Soc, 2001, 123 (10): 2146-2154.
    [422] Olsen J, Martin P, Wilson I D, et al. Methodology for assessing the properties of molecular imprinted polymers for solid phase extraction. Analyst., 1999, 124 (4): 467-473.
    [423] Khroustova N V, Daulas K, Grosberg A Y. Topological properties of the sequence space and their role in macromolecular evolution. Biofizika, 1995, 40 (1): 5-18.
    [424] Ramstrom O, Ansell R J. Molecular imprinting technology: challenges and prospects for the future. Chirality, 1998,10 (3): 195-209.
    [425] Steinke J, Sherrington D C, Dunkin I R. Imprinting of synthetic polymers using molecular templates. Advances in Polymer Science, 1995, 123 (1): 81-86.
    [426] Sucdce R, Srichana T, Saclim J, et al. Chiral determination of various adrenergic drugs by thin-layer chromatography using molecularly imprinted chiral stationary phases prepared with α-agonists. Analyst, 1999, 124(7): 1003-1011.
    [427] Turkewitsch P, Wandelt B, Darling C D, et al. Fluorescent functional recognition sites through molecular imprinting: a polymer-based fluorescent chemosensor. Anal. Chem., 1998, 70 (10): 2025-2030.
    [428] Idziak I, Benrebouh A, A molecularly imprinted polymer for 17α-ethynylestradiol evaluated by immunoassay. Analyst., 2000, 125 (8): 1415-1419.
    [429] Ye L, Ramstrom O, Mosbach K. Molecularly imprinted polymeric adsorbents for byproduct removal. Anal. Chem., 1998, 70 (14): 2789-2795.
    [430] Zhao G H, Lei X Q, Wang Z L, et al. In-situ preparation of integrated polymeric porau plot columns and their applications in gas chromatography. Chromatographia., 2002, 58(7-8): 465-469.
    [431] Lei Y, Peter A G, Cormack K M. Molecularly imprinted monodisperse microspheres for competitive radioassay. Anal. Commun., 1999, 36 (2): 35-39.
    [432] Crescenzi C, Bayouth S, Cormack P A G, et al. Determination of clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-Phase extraction followed by liquid chromatography/electrospray ion trap multiple-stage mass spectrometry. Anal. Chem., 2001, 73 (10): 2171-2177.
    
    [433] Koster E H M, Crescenzi C, Ensing K, et al. Fibers coated with molecularly imprinted polymers for solid-phase microextraction. Anal. Chem., 2001, 73 (13) : 3140-3145.
    [434] Xie J C, Chen L R, Li C X, et al. Selective extraction of functional components derived from herb in plasma by using a molecularly imprinted polymer based on 2,2-bis(hydroxymethyl)butanol trimethacrylate . J. Chromatogr. B, 2003, 788 (2) : 233-242.
    [435] Xie J C, Zhu L L, Luo H P, et al. Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin. J. Chromatogr. A, 2001, 934 (1-2) : 1-11.
    [436] Martin P, Wilson I D, Jones G R. Optimisation of procedures for the extraction of structural analogues of propranolol with molecular imprinted polymers for sample preparation. J. Chromatogr. A, 2000, 889 (1-2) : 143-147.
    [437] Baggiani C, Giovannoli C, Anfossi L, et al. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples. J. Chromatogr. A, 2001, 938 (1-2) : 35-44.
    [438] Zgorka G, Glzshtslsowniak K. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family. J. Pharm. Biomedical Anal., 2001, 26 (1) : 79-87.
    [439] 常雅萍,毕无邪,杨贵贞.甘草多糖抗病毒作用研究.中国中药杂志.1989,14 (4) :236-238.
    [440] 王雪松,车庆明,李艳梅等.山楂核化学成分研究.中国中药杂志,1999,24 (12) :739-740.
    [441] Caldwell R G, Ihrig J L. The reactivity of phenols toward peroxy radicals.Ⅰ. Inhibition of the oxidation and polymerization of methyl methacrylate by phenols in the presence of air. J. Am. Chem. Soc., 1962, 84 (15) : 2878-2886.
    [442] Yamamura H I, Kuhar M J. Neurotransmitter receptor binding, New York: Raven Press, 1985, 135-152.
    [443] Kriz D, Ramstrom O, Mosbach K. Molecular imprinting: new possibilities for sensor technology. Anal. Chem., 1997, 69 (2) : 345-351.
    [444] Anderson L I, Shannessy D J, Mosbach K. Molecular recognition in synthetic polymers: preparation of chiral stationary phases by molecular imprinting of amino acid amides. J. Chromatogr. A, 1990, 513 (1) : 167-179.
    [445] 董襄朝,孙慧,吕宪禹等.邻羟基苯甲酸分子印迹聚合物对于异构体的识别 及色谱行为研究.化学学报,2002,60(11) :2035-2043.
    [446] Sellergren B. Imprinted chiral stationary phases in high-performance liquid chromatography. J. Chromatogr. A, 2001, 906 (1-2) : 227-252.
    [447] Owens P K, Karlsson L. Molecular imprinting for bio-and pharmaceutical analysis. Trends Anal Chem., 1999, 18 (3): 146-154.
    
    [448] Takeuchi T, Haginaka J. Separation and sensing based on molecular recognition using molecularly imprinted polymers. J. Chromatogr. B, 1999, 728 (1): 1-20.
    [449] Baggiani C, Giraudi G, Giovannoli C, et al. Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2,4,5-trichlorophenoxyacetic acid. J Chromatogr A, 2000, 883 (1-2): 119-126.
    [450] Petcu M, Cooney J, Cook C, et al. Molecular imprinting of a small substituted phenol of biological importance. Anal. Chim. Acta, 2001, 435 (1): 49-55.
    [451] Svec F, Frechet J M J. Continuous rods of macroporous polymer as high-performance liquid chromatography separation media. Anal. Chem., 1992, 64 (7): 820-822.
    [452] Matsui J, Kato T, Takeuchi T, et al. Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Anal. Chem., 1993, 65 (17): 2223-2224.
    [453] Weiss R, Molinelli A, Jakusch M., et al. Molecular imprinting and solid phase extraction of flavonoid compounds. Bioseparation, 2001, 10 (6): 379-387.
    [454] Matsui J, Nicholls I A, Takeuchi T. Molecular recognition in cinchona alkaloid molecular imprinted polymer rods. Anal. Chim. Acta, 1998, 365 (1-3): 89-93.
    [455] Schweiz L, Andersson L I, Nilsson S. Rapid electrochromatographic enantiomer separations on short molecularly imprinted polymer monoliths. Anal. Chim. Acta, 2001, 435(1): 43-47.
    [456] Takeuchi T, Matsui J. Miniaturized molecularly imprinted continuous polymer rods. J High Resolut Chromatogr., 2000, 23 (1): 44-46.
    [457] Lanza F, Sellergren B. Method for synthesis and screening of large groups of molecularly imprinted polymers. Anal Chem., 1999, 71 (11): 2092-2096.
    [458] Huang X D, Zou H F, Chen X M, et al. Molecularly imprinted monolithic stationary phases for liquid chromatographic separation of enantiomers and diastereomers. J. Chromatogr. A, 2003, 984 (2): 273-282.
    [459] Yamamura H L, Enna S J, Kuhar M J. Neurotransmitter receptor binding. New York: Raven press, 1985, 416-423.
    [460] Sellergren B. Noncovalent molecular imprinting: antibody-like molecular recognition in polymeric network materials. Trends Anal. Chem. 1997, 16 (6): 310-320.
    [461] Sajonz P, Guan-Sajonz H, Zhong G, et al. Application of the shock layer theory to the determination of the mass transfer tate coefficient and its concentration dependence for proteins on anion exchange columns. Biotechnol. Progr., 1997, 13 (2): 170-178.
    [462] Mayes A G, Mosbach K. Molecularly imprinted polymers: useful materials for
     analytical chemistry. Trends Anal. Chem., 1997, 16 (6): 321-332.
    
    [463] Szabelski P, Kaczmarski K, Cavazzini A, et al. Energetic heterogeneity of the surface of a molecularly imprinted polymer studied by high-performance liquid chromatography. J. Chromatogr. A, 2002, 964 (1-2): 99-111.
    [464] Guan-Sajonz H, Sajonz P, Zhong G, et al. Study of the mass transfer kinetics of BSA on a TSK-GEL DEAE-5PW anion exchanger in a wide concentration range. Biotechnol Progr., 1996, 12 (3): 380-386.
    [465] Huang J X, Horvath C.Adsorption isotherms on high-performance liquid chromatographic sorbents: I. Peptides and nucleic acid constituents on octadecyl-silica. J. Chromatogr., 1987, 406 (6): 275-284.
    [466] Guiochon G, Golshan-Shirazi S, Katti A, Foundamentals of preparative and nonlinear chromatography. New Work: Academic Press, 1994, 215-268.
    [467] Aris R, Amundson N R. Mathematical method in chemical engineering. New York: Englewood Cliffs Press, 1973, 66-96.
    [468] Jaroniec M, Madey R. Physical adsorption on heterogeneous solids. Amsterdam: Elsevier Press, 1988, 133-151.
    [469] Rudzinske W, Everett D H. Adsorption of gases on the heterogeneous surface. New York: Academic Press, 1992, 51-83.
    [470] Sajonz P, Kele M, Zhong G, et al. Study of the thermodynamics and mass transfer kinetics of two enantiomers on a polymeric imprinted stationary phase. J. Chromatogr. A, 1998, 810 (1-2): 1-17.
    [471] Sajonz P, Zhong G, Guiochon G. Influence of the concentration dependence of the mass transfer properties on chromatographic band profiles II. Accuracy of the determination of isotherm data by frontal analysis. J. Chromatogr. A, 1996, 731 (1-2): 1-25.
    [472] Zhong T L, Liu F, Chen W, et al. Influence of intramolecular hydrogen bond of templates on molecular recognition of molecularly imprinted polymers. Anal. Chim. Acta, 2001, 450 (1-2): 53-61.
    [473] Mena M L, Martinez-Ruiz P, Reviejo A J, et al. Molecularly imprinted polymers for on-line preconcentration by solid phase extraction of pirimicarb in water samples. Anal. Chim. Acta, 2002, 451 (2): 297-304.
    [474] Henion J, Brewer E, Rule G. Sample preparation for LC/MS/MS. Anal. Chem. News & Features, 1998, 650-656.
    [475] 周杰,药物甲氧芐氨嘧啶分子模板聚合物结合作用及选择性研究.高等学校化学学报,1999,20(2):204-208.
    [476] Ramstrom O, Ye L, Krook M, et al. Screening of a combinatorial steroid library using molecularly imprinted polymers. Anal. Commun., 1998, 35 (1): 9-13.
    [477] Andersson L I. Efficient sample preconcentration of bupivacaine from human plasma by solid-phase extraction on molecularly imprinted polymers. Analyst., 2000,125(9) : 1515-1519.
    [4
    
    [478] Owens P K, Karlsson L. Molecular imprinting for bio-and pharmaceutical analysis. Trends Anal. Chem., 1999, 18 (3) : 146-154.
    [479] Spegel P, Schweitz L, Nilsson S. Molecularly imprinted polymers in capillary electrochromatography: recent developments and future trends. Electrophoresis, 2003, 24 (19) : 3892-3899.
    [480] Nakamura T, Nakazawa Y, Onizuka S. Antimutagenicity of Tochu tea (an aqueous extract of Eucommia ulmoides leaves): 1. The clastogen-supressing effects of Tochu tea in CHO cells and mice. Mutation Res., 1997, 388 (1) : 7-20.
    [481] Yen G C, Hsieh C L. Antioxidant activity of extracts from Du-zhong (Eucommia ulmoides) toward various lipid peroxidation models in vitro. J. Agric. Food Chem.,1998, 46 (10) : 3952-3957.
    [482] 张风云,毛富春,张康健.毛细管电泳法筛选提取杜仲叶中绿原酸的方法.西北 药学杂志,1996,11(2) :66-69。
    [483] 马希汉,张康健等.从杜仲叶中提取绿原酸纯品的研究.西北林学院学报, 1996,11(2) :58-60.
    [484] Gonzalez-Perez S, Merck K B, Vereijken J M, et al. Isolation and characterization of undenatured chlorogenic acid free sunflower (Helianthus annuus) proteins. J. Agric. Food Chem., 2002, 50 (6) : 1713-1719.
    [485] Kweon M H, Huang H J, Sung H C. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). J. Agric. Food Chem., 2001,49 (10) : 4646-4655.
    [486] Particles C S, Carter S R, Rimmer S. Surface molecularly imprinted polymer. Advanced Functional Materials, 2004,14 (6) : 553-561.
    [487] Shahrzad S, Bitsch I. Determination of some pharmacologically active phenolic acids in juices by high-performance liquid chromatography. J. Chromatogr. A, 1996, 741(2) : 223-231.
    [488] Swatsitang P, Tucker G, Robards K, et al. Isolation and identification of phenolic compounds in citrus sinensis. Anal. Chim. Acta, 2000, 417 (2) : 231-240.
    [489] Takayuki Y, Takeshi T, Masazumi Ⅰ, et al. Asymmetric synthesis of β-hydroxy acid via stereoselective dirhodium(Ⅱ)-catalyzed C-H insertion of α-alkoxydiazoketone. Chem. Pharm. Bull., 2003, 51 (4) : 471-473.
    [490] Ma X H, Wei Q, Zhang K J. Proceeding of the First International Symposium on Eucommia ulmodies (Chinese). Beijing: China Forestry Publishing House. 1997, 42-48.
    [491] 戚向阳,陈维军,张声华.反相高效液相色谱法测定杜仲叶中京尼平苷酸、京 尼平苷及绿原酸的含量.药物分析杂志,2000,20(1) :22-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700