复合相变储能材料的研制与潜热储能中热物理现象的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜热储能是利用物质在相变过程中,吸收或放出相变潜热来进行能量储存与释放的技术。潜热储能的储能密度高,而且,在储/放能过程中,材料在发生相变时,吸收/放出大量的热,但温度近似恒定。相变储能技术已经经历了几十年的发展,实践证明它是传统显热储能的潜在替代者之一。然而相变储能的规模应用仍面临一些问题:几乎所有的相变材料(PCM)都存在热导率低、相变过程中的传热性能差的问题;相变传热理论缺乏透彻的分析,现有的分析方法和技术在相变问题的研究上还存在较大的难度;相变储能装置的数值研究方法还不完善,求解精度和耗费计算资源间很难兼顾;相变储能系统运行的实验数据缺乏。基于此,本文开展了以下研究工作:
     (1)以PCM为基体材料,在其中分别添加具有高热导率的纳米粒子和具有多孔结构的膨胀石墨(EG)来强化PCM的导热性能。首先,制备以石蜡为基体材料、纳米碳粉和碳纳米管作为分散相的纳米复合PCM。添加5%碳纳米管的复合PCM的导热系数增加了26.26%。通过测试得知添加分散粒子的方法对PCM热导率改善的效果并不理想。因此决定选用具有多孔结构的膨胀石墨(EG)去改善石蜡的换热情况。在制备的EG/石蜡复合PCM中EG的质量配比由1wt%连续的变化到10wt%。随着EG添加量的增加,致密的EG网络逐渐在复合物中形成。正是致密的EG网络为PCM内部的热传导提供了路径。与纯石蜡相比,当复合物中添加10wt%的EG时,热导率提高了近10倍以上。EG的出现引起了复合物中石蜡相变温度的迁移。复合物中石蜡的熔点和凝固点与纯石蜡相比最大偏差为1.2℃,而峰值相变温度的最大偏差为5.6℃。随着EG配比的增加,复合PCM的相变潜热是先增大后减小的。在储能单元的充放热测试中,EG(7)/石蜡(93)和EG(10)/石蜡(90)复合PCM储热周期比纯石蜡的分别减少42.8%和48.9%,放热周期分别减少64.1%和66.5%。为满足较高温度的储能需求,选用乙酰胺(AC)作为蓄热材料,这里同样采用EG来提升AC的热导率。10wt% EG的添加可以使EG/AC复合PCM的热导率达到AC的6倍以上。EG/AC复合物的熔点和凝固点分别由纯AC的65.91℃和42.46℃变化到66.95℃和65.52℃,EG的添加可明显的改善AC中的过冷。EG的添加使复合物的潜热降低到163.71 kJ/kg,比纯AC的194.92 kJ/kg降低了近30 kJ/kg。在充放热测试中,EG/AC复合PCM为储能材料时,充/放热周期分别比采用AC时减少45%和76%。
     (2)求解VOF(Volume of Fluid)与焓–多孔介质耦合模型,模拟出具有自由表面的一类相变过程,该模型可以较完整的反映出材料相变过程中的各方面特征,并利用可视化实验对模型的准确性进行了验证。结果表明:石蜡内部的自然对流在石蜡的融化过程中起到非常重要的作用,在自然对流的旺盛期,石蜡的最大融化速率为每秒0.002005%,而到融化快结束时,自然对流减弱,融化速率为每秒0.000395%;融化过程对自然对流也有影响,石蜡中的温差及相界面位置决定了自然对流的发展,在液体石蜡内部的最大流速先增大后减小,液体石蜡中的流速在融化进行150 s左右达到最大值6.08×10-3 m/s。石蜡在整个融化过程中体积膨胀了近10%。另外,利用该模型研究了描述材料糊状区形态的系数C对相变过程的影响。C值越大的材料融化得越慢;而且融化过程中糊状区的范围越小;固体下沉引起的接触融化在C值较小的材料中作用较明显。
     (3)建立一个可以详细研究潜热储能床内部的流动与换热的数学模型,并利用文献中的实验结果对模型的精确度进行了验证。该有效储能床模型具有优于其它模型的诸多特点:模型具有很强的通用性,适于各种储能床的研究;该模型可以反映出储能床内部详细的流动信息和相变单元内部详细的温度梯度。另外,还利用有效储能床模型进行一些参数的研究,这些参数研究很难用其它模型实现。数值结果显示:1.对于采用随机排列的潜热储能床,其热释放率要高于规则排列时的情况;2. PCM的封装会对系统的换热产生不同程度的影响。在放热过程中,采用不锈钢封装的相变单元的放热时间要比采用聚乙烯的减少近15%。聚乙烯封装材料的厚度对整个潜热储能床的换热性能具有较明显的影响,而不锈钢封装的厚度对系统的换热性能却没有明显的影响。实践证明有效储能床模型能够成为一种潜热储能床设计与操作条件优化的重要工具。
     (4)构建了壳管式潜热储能实验系统,并分别选用石蜡和EG(7)/石蜡(93)复合材料作为该储能系统中的蓄热材料。相变储能水箱的容积为166 L,储能材料填充的体积百分比为55.3%。在热释放过程中,填充了复合PCM的水箱出口温度保持在50℃以上的时间较填充石蜡的水箱长了近1000 s,并且换热流体的出口温度在此期间最高可较填充石蜡的高出8℃。间歇式取热模式下工作,纯石蜡内部的温度变化和复合材料内部的温度变化有着非常明显的差别。但在这种取热模式下工作,两者的换热流体出口温度却相差不大。
     本论文研制了具有高热导率的复合PCM,并对PCM的相变换热进行了深入分析,解决了现有储能系统充放热效率低的问题,这对太阳能等低品位热能潜热储存的广泛应用起到了积极的作用。
Latent thermal energy storage (LTES) using phase change material (PCM) completes the energy storage and retrieval in the phase change of PCM. LTES is one of the most preferred forms of energy storage since it can provide high energy storage density, and nearly isothermal heat storage/retrieval processes. For such energy storage system, solid-liquid transition is most preferred because of the small variation in volume, unlike liquid-gas or solid-gas transitions. The LTES technique has been developed and researched for many years, which has been an outstanding candidate for the sensible thermal energy storage. However, the LTES was not used extensively for the following reasons: almost all the PCMs meet with a drawback of lower thermal conductivity which leads to the lower rate of heat storage and retrieval; it is difficult to accurately study and clearly analyze the theory of heat transfer in the process of phase change by using the previous theoretical method; the previous packed bed models all fail in accurately accounting for the details of the LTES system and the accuracy and time-consuming could not be properly compromised, which limited their extensive utilization; moreover, the experimental data of LTES system was still insufficient. The main objective of this thesis is to improve the thermal properties of the natural PCM, deeply analyze the mechanism of heat transfer in phase change, probe an effective numerical method to research the performance of the LTES system, and investigate experimentally the storage and retrieval of a real LTES system. The main contents involved in this thesis are:
     (1) The thermal conduction in PCM is enhanced by the addition of nano-particles and expanded graphite (EG). Firstly, the carbon nano-tube and carbon nano-particle were dispersed into paraffin to prepare phase change composites with high thermal conductivity, respectively. The addition of 5wt% carbon nano-tube can result in a 26.26% increase in the thermal conductivity. The test result indicated: the effect of thermal-conductivity enhancement was not as good as requirement by spreading the particles into PCM. EG/paraffin composites, with mass fraction of EG varying from 0 to 10 wt%, were prepared and characterized. Polarizing optical microscope investigation showed that compact EG networks formed gradually with increase in the mass fraction of EG. These networks provided thermal conduction paths which enhanced the thermal conductivity of the composite PCMs, e.g., an addition of 10 wt% EG resulting in a more than 10 fold increase in the thermal conductivity compared to that of pure paraffin. Thermal characterization of the composite PCMs with a differential scanning calorimeter (DSC) revealed the effect of the porous EG on the phase change behavior of paraffin. The shifts in the phase change temperatures were observed. The maximum deviation of the melting/freezing points of the composite PCMs from that of pure paraffin was 1.3℃whereas that of the peak melting/freezing temperature was 5.6℃. The DSC investigation also showed an anomaly in the latent heat of the paraffin in the composite PCMs in that it first increased and then decreased with increase in the EG fraction. Heat storage/retrieval tests of the composite PCMs in a LTES system showed that the heat storage/retrieval durations for EG(10)/paraffin(90) composite were reduced by 48.9% and 66.5%, respectively, compared to pure paraffin, which indicated a great improvement in the heat storage/retrieval rates of the system. Moreover, for the requirement of heat storage with a higher temperature, acetamide (AC) can be a potential candidate PCM. Its utilization is however hampered by its poor thermal conductivity. EG/AC composite with 10wt% EG was prepared. Transient hot-wire tests showed that the addition of 10wt% EG led to about five-fold increase in thermal conductivity. The melting/freezing points shifted from 66.95/42.46℃for pure AC to 65.91/65.52℃for EG/AC composite, and the latent heat decreased from 194.92 to 163.71 kJ/kg. In addition, heat storage/retrieval tests in a LTES unit showed that the heat storage/retrieval durations were reduced by 45% and 76%, respectively. Further numerical investigations demonstrated that the less improvement in heat transfer rate during the storage could be attributed to the weakened natural convection in liquid(melted) AC because of the presence of EG.
     (2) The thermo-physical phenomena in the melting process of paraffin, which included volume expansion, thermal conduction in solid paraffin, thermal convection and conduction in the melted paraffin and variation of phase-change interface, were numerically investigated. The VOF (Volume of Fluid) and enthalpy-porosity coupled model were adopted to simulate the ascent of paraffin/air interface which was caused by volume expansion and the variation of paraffin phase-change interface. The model was verified by the visualization experiment. The numerical results indicated: on the one hand, the natural convection has played an important role during the melting of the paraffin and the maximum melting velocity of the paraffin reaches 0.002005% per second in the intensive period of the natural convection; on the other hand, the extent of melting also has an influence on the intensity of the natural convection and the maximum flow velocity of the paraffin occurs at 150 s with its value climbing to 6.08×10-3 m/s. In the whole melting process, the volume expansion of 10% has been observed. By using this model, the effect of the mushy zone constant, C, on the phase change process was investigated. With increase of C, the velocity of melting has become lower, and the region of mushy zone has become narrower. In addition, the contact melting was enhanced with increase of C.
     (3) An effective packed bed model was developed, which could investigate the flow field as the fluid flows through the voids of the PCM units, and at the same time could account for the thermal gradients inside the PCM spheres. The proposed packed bed model was validated experimentally and found to accurately describe the thermo-fluidic phenomena during heat storage and retrieval. The effective packed bed model is superior to other models in that it is versatile for various packed bed LTES systems and it is capable of showing in detail the flow field in the packed bed and the thermal gradients inside the PCM spheres. The proposed model was then used to do a parametric study on the influence of the arrangement of the PCM spheres and encapsulation of PCM on the heat transfer performance of LTES bed, which was difficult to perform with the previous packed bed models. The results indicated: that random packing is more favorable for heat storage and retrieval as compared to special packing; the encapsulation of the PCM has a significant influence on the heat transfer of the LTES system. The freezing duration of the PCM spheres with stainless steel encapsulation was nearly 15% shorter than that with polyolefin encapsulation. The thickness of the polyolefin encapsulation has significant influence on the heat transfer performance of the LTES system, whereas it is not evident as for the stainless steel encapsulation. The effective packed bed model would be one of the most preferred tools to optimize the design and operation of the packed bed LTES systems.
     (4) The EG(7)/paraffin(93) composite PCM and the paraffin were used in a shell and tube LTES system and the performance of the LTES system was experimentally investigated. The volume of the LTES tank was 166 L with 55.3% volume filled with PCM. It is indicated the stored thermal energy can be rapidly and intensively released in the system filled with EG/paraffin composite, which was significant for the utilization of the LTES system. In the LTES system filled with EG/paraffin composite, the outlet temperature of water could maintain a high level in a longer duration than that with paraffin, such as the outlet temperature of water of the LTES system filled with paraffin/EG composite could be maintained above 50℃for another more 1000 s than that with paraffin, and the temperature difference of water between these two systems in the outlet can arise to 8℃. There was a large difference between the temperature evolutions of the pure paraffin and paraffin/EG composite PCM in the step-by-step heat retrieval mode, whereas the temperature evolutions of water in the outlet of the two LTES systems were almost the same with each other.
     It is expected that the studied work here can be used widely in future to store the low grade thermal energy, such as solar thermal or waste heat, as the technology can well address the problems to ensure both large energy storage density and good heat transfer performance.
引文
[1]李元哲.被动式太阳房热工设计手册.北京:建筑工业出版社, 1993:78-93.
    [2]翟小强.生态建筑太阳能复合能量系统研究(博士学位论文).上海交通大学, 2005.
    [3]王志强,曹明礼,龚安华,苏青青.相变储能材料的种类、应用及展望.安徽化工, 2005, 2:8-10.
    [4]程立媛.多孔石墨基相变储能材料的制备及热性能研究(硕士学位论文).山东轻工业学院, 2009.
    [5]张寅平,胡汉平,孔祥冬,苏跃红.相变贮能-理论和应用.合肥:中国科技大学出版社, 1996.
    [6] Kayugz K. Experimental and theoretical investigation of latent heat storage for water based solar heating systems. Energy Conversion and Management, 1995, 36(5):315-323.
    [7] Chaurasia PBL. Phase change material in solar water heater storage system. In: Proceedings of the 8th international conference on thermal energy storage, 2000.
    [8] Enibe SO. Performance of a natural circulation solar air heating system with phase change material energy storage. Renewable Energy 2002, 27:69-86.
    [9] Boulard T, Razafinjohany E, Baille A, Jaffrin A, Fabre B. Performance of greenhouse heating system with a phase change material. Agricultural and Forest Meteorology, 1990, 52(3):303-318.
    [10] ?ztürk HH. Experimental evaluation of energy and exergy efficiency of a seasonal latent heat storage system for greenhouse heating. Energy Conversion and Management, 2005, 46(9):1523-1542.
    [11]肖伟,王馨,张群力,狄洪发,张寅平.结合太阳能空气集热器的定形相变储能地板采暖系统实验研究.太阳能学报, 2008, 29 (11):1319-1323.
    [12] Sharma SD, Buddhi D, Sawhney RL, Sharma A. Design, development and performance evaluation of a latent heat unit for evening cooking in a solar cooker. Energy Conversion and Management, 1997, 38(5):493-498.
    [13] Sharma SD, Iwata T, Kitano H, Sagara K. Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit. Solar Energy, 2005, 78(3):416-426.
    [14]孙华琦,鲁郑全,瞿种,万卫炎.相变技术及材料在绿色建筑中的应用.河南建材, 2009, 5:111-112.
    [15] Khudhair AM, Farid MM. A review on energy conservation in building applicationswith thermal storage by latent heat using phase change materials. Energy Conversion and Management, 2004, 45(2):263-275.
    [16]张东,周剑敏,吴科如.相变储能建筑材料的分析与研究.新型建筑材料, 2003, 9:42-44.
    [17] Bourdeau LE. Study of two passive solar systems containing phase change materials for thermal storage. In: Hayes J, Snyder R, editors. Proceedings of fifth national passive solar conference, October 19-26, Amherst. Newark, Delaware: Aerican Solar Energy Society, 1980:297-301.
    [18] Mehling H. strategic project‘‘Innovative PCM-Technology’’results and future perspectives. 8th expert meeting and work shop, Kizkalesi, Turkey, April 18-20, 2004.
    [19]叶水泉,韩云海.冰蓄冷空调技术在区域供冷系统中的应用.制冷空调与电力机械, 2004, 6:1-5.
    [20]林坤平,张寅平,扬睿.定形相变材料蓄热地板电采暖系统热性能.清华大学学报:自然科学版, 2004, 44(12):1618-1621.
    [21] Zhang YP, Lin KP, Yang R, Di HF, Jiang Y. Preparation, thermal performance and application of shape-stabilized PCM in energy efficient buildings. Energy and Building, 2006, 38(10): 1262-1269.
    [22] Farid MM, Chen XD. Domestic electrical space heating with heat storage. Proceedings of the Institution of Mechanical Engineers, 1999, 213:83-92.
    [23]张仁元,柯秀芳,秦红.相变储能技术在电力调峰中的工程应用.中国电力, 2002, 35(5):21-24.
    [24]茅靳丰,张华,窦文平,韩旭.相变材料技术在国防工程内部电站余热利用中的应用.解放军理工大学学报(自然科学版), 2004, 5(4):57-60.
    [25]尚燕,张雄.相变储能材料的应用及研究现状.材料导报, 2005, 19(11): 265-268.
    [26]陈其针.被动式太阳能建筑结合相变墙体在沈阳地区的应用研究(博士学位论文).重庆大学, 2005.
    [27] Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 2009, 13(2):318-345.
    [28]黄险峰.相变材料在建筑节能中应用.广西大学学报(自然科学版), 2008, 33 (B06):1-3.
    [29] Dincer I, Dost S, Li X. A review of phase change materials research for thermal energy storage in heating and cooling application at the University of Dayton from 1982 to 1996. International Journal of Global Energy Issues, 1997, 9(4-6): 351-364.
    [30]张建玲,张建军,刘晓地,武克忠,冯海燕.脂肪酸二元体系相变贮热性能的研究.新能源, 1999, 21(11): 5-7.
    [31] Sari A, Kaygusuz K. Thermal Performance of A Eutectic Mixture of Lauric and Stearic Acids as PCM Encapsulated In the Annulus of Two Concentric Pipes. Solar Energy, 2002, 72(6):493-504.
    [32]陈伟珂,郭新川,赵力,张天瑾.混合有机材料相变特性实验研究.太阳能学报, 1999, 20(4):426-431.
    [33] Hadjieva M, Stoykov R, FiliPova Tz. Composite salt-hydrate concrete system for building energy storage. Renewable Energy, 2000, 19(1): 111-115.
    [34]张正国,邵刚,方晓明.石蜡/膨胀石墨复合相变储能材料的研究.太阳能学报, 2005, 26(5): 698-702.
    [35] Huang MJ, Eames PC, Norton B. Thermal regulation building-integrated photovoltaics using phase change materials. International Journal of Heat and Mass Transfer, 2004, 47(12):2715-2733.
    [36] Kang YB, Zhang YP, Jiang Y, Xin ZY. A General Model for Analyzing the Thermal Characteristics of a Class of Latent Heat Thermal Energy Storage Systems. Journal of Solar Energy Engineering, 1999, 121:185-193.
    [37] Agyenim F, Eames P, Smyth M. Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renewable Energy, 2010, 35(1):198-207.
    [38] Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Solar Energy, 2009, 83(9):1509-1520.
    [39] Ghoneim AA. Comparison of theoretical models of phase change and sensible heat storage for air and water solar heating systems. Solar Energy, 1989, 42(3):209-230.
    [40] Regin AF, Solanki SC, Saini JS. Heat transfer characteristics of thermal energy storage system using PCM capsules: A review. Renewable and Sustainable Energy Reviews, 2008, 12 (9): 2438-2458.
    [41]兰孝征,杨常光,谭志诚,孙立贤,徐芬.界面聚合法制备正二十烷微胶囊化相变储能材料.物理化学学报, 2007, 23 (4):581-584.
    [42] Xia D, Shen XF. Research on microcapsules of phase change materials. Rare Metals, 2006, 25(6):393-399.
    [43] Carslaw HS, Jager JC. Conduction of heat in solids, 2nd ed., London: Oxford University Press, 1973.
    [44] Lauardini VJ. Heat transfer in cold climates. New York: Pub. Van Nostrand, 1981.
    [45] Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. International Journal of Heat and Mass Transfer, 2007, 50 (9):1790-1804.
    [46] Tan FL, Hosseinizadeh SF, Khodadadi JM, Fan L. Experimental and computational study of constrained melting of phase change materials (PCM) inside a sphericalcapsule. International Journal of Heat and Mass Transfer, 2009, 52(15): 3464-3472.
    [47] Goodman TR. The heat balance integral and its application in problems involving a change. Trans ASME, 1958, 80:335-342.
    [48] Crank J, Gupta R. Isothermal migration in two dimensions. International Journal of Heat and Mass Transfer, 1975, 18:1101-1117.
    [49] Keung CS. The use of sources and sinks in solving two dimension conduction problem with change of phase in arbitrary domains (Ph.D. dissertation). Columbia University, New York, 1980.
    [50] Buddhi, D, Bansal NK, Sawhney RL, Sodha MS. Solar thermal storage systems using phase change materials. International Journal of Energy Research, 1988, 12(3):547-555.
    [51] Lazaridis A. A numerical solution of the multidimensional solidification (or melting) problem. International Journal of Heat and Mass Transfer, 1970, 13:1459-1477.
    [52] Yoo J, Rubinsky B. Numerical computation using finite elements for the moving interface in heat transfer problems with phase change transformation. Numerical Heat Transfer, 1983, 6(2):209-222.
    [53] Bonnerot R, Jamet P. Numerical computation of free boundary for the two dimensional Stefan problems by space–time finite elements. Journal of Computational Physics 1977, 25:163-181.
    [54] Nicholas D, Bayazitoglu Y. Heat transfer and melting front within a horizontal cylinder. Journal of Solar Energy Engineering. 1980, 102:229-233.
    [55] Moore FE, Bayazitoglu Y, Melting within a spherical enclosure. Journal of Heat Transfer, 1982, 104(1):19-23.
    [56] Roy SK, Sengupta S. The melting process within spherical enclosures. Journal of Heat Transfer, 1987, 109(2):460-462.
    [57] Roy SK, Sengupta S. Gravity-assisted melting in a spherical enclosure: effects of natural convection. International Journal of Heat and Mass Transfer, 1990, 33(6):1135 -1147.
    [58] Wilchinsky AV, Fomin SA, Hashida T. Contact melting inside an elastic capsule. International Journal of Heat and Mass Transfer, 2002, 45(20):4097-4106.
    [59] Assis E, Ziskind G, Letan R. Numerical and Experimental Study of Solidification in a Spherical Shell. Journal of Heat Transfer, 2009, 131(2): 024502, 1-5.
    [60]谢望平,汪南,朱冬生,王先菊.相变材料强化传热研究进展.化工进展, 2008, 27(2):190-195.
    [61] Lamberg P, Lehtiniemi R, Henell AM. Numerical and experimental investigation of melting and freezing processes in phase change material storage. International Journal of Thermal Science, 2004, 43(3):277-287.
    [62] Seeniraj RV, Velraj R, Narasimhan NL. Thermal analysis of a finned-tube LHTSmodule for a solar dynamic power system. Heat and Mass Transfer, 2002, 38(4):409-417.
    [63] Bugaje IM. Enhancing the thermal response of latent heat storage systems. International Journal of Energy Research, 1997, 21(9):759-766.
    [64] Lacroix M, Benmadda M. Numerical simulation of natural convection-dominated melting and solidification from a finned vertical wall. Numerical Heat Transfer Part A, 1997, 31:71-86.
    [65] Gharebaghi M, Sezai I. Enhancement of heat transfer in latent heat storage modules with internal fins. Numerical Heat Transfer Part A, 2008, 53(1):749-765.
    [66]王永川,陈光明,洪峰,张海峰.组合相变储热材料应用于太阳能供暖系统.热力发电, 2004, 33(2):7-9.
    [67] Velraj R, Seeniraj RV, Hafner B, Faber C, Schwarzer K. Heat transfer enhancement in a latent heat storage system. Solar Energy, 1999, 65:171-180.
    [68] Wang J, Ouyang Y, Chen G. Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials. International Journal of Energy Research, 2001, 25:439-447.
    [69]王剑峰.组合相变材料储能的理论与实验研究(博士研究生学位论文).浙江大学, 2000.
    [70] Zhao CY, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 2010, 84:1402-1412.
    [71] Son CH.Morehouse JH.Thermal conductivity enhancement of solid-solid phase change materials of thermal storage. Thermophysics and Heat Transfer, 1991, 5:122-124.
    [72] Mesalhy O, Lafdi K, Elgafy A. Carbon foam matrices saturated with PCM for thermal protection purposes. Carbon, 2006, 44:2080-2088.
    [73] Zhong YJ, Guo QG, Li SZ, Shi JL,Liu L. Heat transfer enhancement of paraffin wax using graphite foam for thermal energy storage. Solar Energy Materials & Solar Cells, 2010, 94:1011-1014.
    [74] Zhang YP, Ding JH, Wang X. Influence of additives on thermal conductivity of shape-stabilized phase change material. Solar Energy Materials & Solar Cells, 2006, 90:1692-1702.
    [75] Zhang ZG, Fang XM. Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Conversion and Management, 2006, 47:303-310.
    [76] Mills A, Farid M, Selman JR, Al-Hallaj S. Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied Thermal Engineering, 2006, 26:1652-1661.
    [77] Tong XL, Khan JA, Amin MR. Enhancement of heat transfer by inserting a metalmatrix into a phase change material, Numerical Heat Transfer Part A, 1996, 30(2) 125-141.
    [78] Fukai J, Kanou M, Kodama Y, Miyatake O. Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Conversion and Management, 2000, 41:1543-1556.
    [79] Fukai J, Hamada Y, Morozumi Y, Miyatake O. Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. International Journal of Heat and Mass Transfer, 2002, 45:4781-4792.
    [80] Fukai J, Hamada Y, Morozumi Y. Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes:experiments and modeling. International Journal of Heat and Mass Transfer, 2003, 46:4513-4525.
    [81] Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE. Carbon nanotube composites for thermal management. Applied Physisc Letters, 2002, 80(15):2267-2269.
    [82]王继芬,谢华清,辛忠,黎阳.辛醇接枝碳纳米管复合相变材料的导热性能研究.上海第二工业大学学报, 2010, 27(3):203-206.
    [83] Wang JF, Xie HQ, Xin Z, Li Y. Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes. Carbon, 2010, 48:3979-3986.
    [84]陈斌娇,王馨,曾若浪,张寅平,狄洪发.相变微胶囊悬浮液层流强迫对流换热实验研究.太阳能学报, 2009, 30(8):1018-1022.
    [85]杜雁霞,程宝义,贾代勇,茅靳丰,袁艳平.相变材料蓄冷堆积床的优化设计.暖通空调, 2006, 36(11):74-76.
    [86] Nallusamy N, Sampath S, Velraj R. Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renewable Energy, 2007, 32:1206-1227.
    [87] Akgün M, Aydln O, Kaygusuz K. Thermal energy storage performance of paraffin in a novel tube-in-shell system. Applied Thermal Engineering, 2008, 28(5):405-413.
    [88] Cabeza LF, Ibá?ez M, SoléC, Roca J, Nogués M. Experimentation with a water tank including a PCM module. Solar Energy Materials & Solar Cells, 2006, 90: 1273-1282.
    [89] Ismail KAR, Stuginsky R. A parametric study on possible fixed bed models for PCM and sensible heat storage. Applied Thermal Engineering, 1999, 19:757-788.
    [90] Erek A, Dincer I. Numerical heat transfer analysis of encapsulated ice thermal energy storage system with variable heat transfer coefficient in downstream. International Journal of Heat and Mass Transfer, 2009, 52:851-859.
    [91] Arkar C, Medved S. Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres. Thermochimica Acta, 2005, 438:192-201.
    [92] Arkar C, Vidrih B, Medved S. Efficiency of free cooling using latent heat storage integrated into the ventilation system of a low energy building. International Journal of Refrigeration, 2007, 30:134-143.
    [93] Benmansour A, Hamdan MA, Bengeuddach A. Experimental and numerical investigation of solid particles thermal energy storage unit. Applied Thermal Engineering, 2006, 26:513-518.
    [94] Seeniraj RV, Narasimhan NL. The thermal response of a cold LHTS unit with heat leak through side walls. International Communications in Heat and Mass Transfer, 2005, 32:1375-1386.
    [95] Mawire A, McPherson M, van den Heetkamp RRJ, Taole SH. Experimental volumetric heat transfer characteristics between oil and glass pebbles in a small glass tube storage. Energy, 2010, 35(3):1256-1263.
    [96] Medved S, Arkar C. Correlation between the local climate and the free-cooling potential of latent heat storage. Energy and Buildings, 2008, 40:429-437.
    [97] Regin AF, Solanki SC, Saini JS. An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: numerical investigation. Renewable Energy, 2009, 34:1765-1773.
    [98] Alawadhi EM. Numerical analysis of a cool-thermal storage system with a thermal conductivity enhancer operating under a freezing condition. Energy, 2008, 33:796-803.
    [99] Instruction Manual, Hot Disk Thermal Constants Analyzer: Windows 95/98 Version 5.0, Hot Disk.
    [100] Rady M. Study of phase changing characteristics of granular composites using differential scanning calorimetry. Energy Conversion and Management, 2009, 50:1210-1217.
    [101]候万国,孙德军,张春光.应用胶体化学.北京:科学出版社, 1998.
    [102] Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. I&EC Fundamentals, 1962 (1):182-191.
    [103]李强,宣益民.纳米流体强化导热系数机理初步分析.热能动力工程, 2002, 6:568-571.
    [104] Zhang P, Wang C, Wang RZ. Composite reactive block for heat transformer system and improvement of system performance. Journal of Chemical Engineering of Japan, 2007, 40:1275-1280.
    [105] Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Composites Science and Technology, 2007, 67:2528-2534.
    [106] Inagaki M, Nagata T, Suwa T, Toyoda M. Sorption kinetics of various oils ontoexfoliated graphite. New Carbon Material, 2006, 21:98-102.
    [107] Sar(?) A, Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Applied Thermal Engineering, 2007, 27:1271-1277.
    [108] Lafdi K, Almajali M, Huzayyin O. Thermal properties of copper-coated carbon foams. Carbon, 2009, 47: 2620-2626.
    [109] Wang JF, Carson JK, North MF, Cleland DJ. A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer, 2006, 49: 3075-3083.
    [110] Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials. Journal of Applied Physics, 1962, 33:3125-3131.
    [111] Zhang D, Zhou JM, Wu KR, Li ZJ. Granular phase changing composites for thermal energy storage. Solar Energy, 2005, 78: 471-480.
    [112] W.A.Denne,R.W.H.Small,Arefinementofthestructureofrhombohedral acetamide, Acta Crystallographica, 1971, B27:1094-1098.
    [113] Dunna JG, Smitha HG, Willixa RL. The supercooling of acetamide, Thermochimica Acta, 1984, 80:343-353.
    [114] Medina MA, King JB, Zhang M. On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs). Energy, 2008, 33:667-678.
    [115] Chiu CP, Chen WR. Transient natural convection heat transfer between concentric and vertically eccentric spheres. International Journal of Heat and Mass Transfer, 1996, 39:1439-1452.
    [116] Adine HA, Qarnia HE. Numerical analysis of the thermal behaviour of a shell-and-tube heat storage unit using phase change materials. Applied Mathematical Modeling, 2009, 33:2132-2144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700