赤峰解放营子L构造岩的特征及成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
L构造岩研究的比较少,是由于其形成环境比较特殊,发育的较少而很难见到。赤峰解放营子地区出露有大片的L构造岩,本人通过研究这种构造岩的变形特征,分析其形成原因和机制,从而反演本区的构造环境。由于研究区地处华北板块北缘,属于横贯亚洲巨型构造带内的温都尔庙褶皱带(陈炳蔚2007)。而该巨型构造带是一个仍然有争议,需要进一步研究的构造带,因为其间有几次微板块碰撞拼贴,而具体的位置和时间是需要更深入的研究来确定的。而本区的广泛分布于志留纪地层和侵入体中的L构造岩,则指示一种伸展构造环境。结合研究区的大地构造,推断本区在早古生代末期由于底部岩浆的持续上涌,使得先前沉积的志留纪地层遭受伸展变形,且在变形过程当中有岩浆侵入,使得侵入体中也发育了L构造岩。海西期由于西伯利亚板块和华北板块相向运动,研究区又遭受了挤压变形作用,使得部分L构造岩的倾伏角增大。
The cause of L tectonites is special due to the satisfaction ofσ1>σ2≈σ3 stress condition. The L tectonites can be formed only when the stress condition is been satisfied. The S and LS is founded more often outdoor, but there are lots of L tectonites in the Jiefangyingzi, Chifeng. Based on my tutor’s Nature Science Foundation, I find out the distribution of L tectonites and collect the specimens. I research the microscopic structure, grain size and the mineral pairs of the specimens, and get a conceptual model for L tectonites formation by combining the geotectonic of Jiefangyingzi, Chifeng.
     1. The geological summary of Jiefangyingzi, Chifeng
     Researchd area is located in the northern part of the North China Plate, parts of the The Trans-Asian Tectonic Mega-Belt (Chen Bingwei, 2007). The Trans-Asian Tectonic Mega-Belt (TATMB) is formed by collided microplate when the Siberia Plate is moving toward to the North China Plate. Meantime parts of the TATMB splited and formed new ocean basin, trench, island arc and back-arc basin, but the specific location and time of the rupture need to be determined by further studies. Jiefangyingzi belongs to Wenduermiao Fold Belt which is in extended environment during Late Neoproterozoic to the middle of Early Paleozoic, developed active continental margin sedimentary assemblage. It changed to compressive environment and the ocean basin closed. The L tectonites of Jiefangyingzi are formed under the Early Palaeozoic stretching deformation.
     2. The distribution and features of the L tectonites
     The L tectonites of Jiefangyingzi distribute within Silurian strata and intrusive bodies. The L tectonites which is formed by the Silurian clasolite and volcanic rocks formed by plastic deformation in stretching environment. But the L tectonites which is formed by intrusive bodies that freeze while crystallize during the stretching environment. The difference between them is that the lineations which are formed by extended quartz or crystallized Light and Dark mineral. They all have the micro structure characters of plastic deformation, difference is the degree. If we count the occurrence of L tectonites’lineation which are measured on field, we’ll find that the attitude of most lineation’s occurrence is northeast-southwest. Parts of the lineation’s dips are large. Conjecturing that because of the Hercynian compressive deformation, the strata of Jiefangyingzi fold and make parts lineations’dips increased. I conjecture that the stretching deformation of this area dip northeast-southwest because that most lineations’attitude are northeast-southwest.
     3. The environment and the model of the L tectonites
     I count the grain sizes and attitudes of the L tectonites specimens which are formed by diorite intrusive bodies, and analyze the stress of the L tectonites on this account. I found the micro grains also have preferred orientation, but i can’t get the macro preferred orientation without oriented specimens. I also analyze the oxide mass percent of the 05-02-11 specimen’s Muscovite-Chlorite mineral pair by electron probe, work out the forming temperature is 400 degrees. Based upon a serial of this analyses, combine the tectonic of Jiefangyingzi, i set up the model of L tectonites. When the magma rising up from deep, with the northern Siberia Plate and southern North China Plate beside,σ1 is vertical,σ2 is horizontal and attitude north-south which is roughly approximated the static stress of the country rock. The original Silurian rocks form L tectonites by monosymmetrical stretching deformation in above conditions.
引文
[1]许志琴.地壳变形与显微构造[M].北京:地质出版社, 1984
    [2]郑亚东,常志忠.岩石有限应变测量及韧性剪切带[M].北京:地质出版社, 1985
    [3]何永年,林传勇,史兰斌.构造岩石学基础[M].北京:地质出版社, 1988
    [4]许志琴,张建新等.中国主要大陆山链韧性剪切带及动力学[M].北京:地质出版社, 1997
    [5]许志琴.地壳变形与显微构造[M].北京:地质出版社, 1984
    [6]刘瑞.显微构造地质学[M].北京:北京大学出版社, 1988.
    [7]林传勇,何永年,史兰斌.岩石的韧性剪切和脆—韧性转换变形[C].见:肖庆辉主编:当代地质科学前沿[C].北京:地质出版社, 1992
    [8]刘正宏,徐仲元,杨振升等.变质构造岩类型及其特征[J].吉林大学学报地球科学版, 2007年01期
    [9]钟增球.构造岩的研究进展[J].地学前缘, 1994年01期
    [10]张忻,孙秀萍,杨爱青.动力构造岩的分类命名方案新见[J].华北地质矿产杂志, 1999年01期
    [11]张忠义,丁峰.坪上一带深层次构造岩的变形特征及温压条件分析[J].山东地质, 2001年04期
    [12]凌贤长.变质岩构造研究进展[J].国外前寒武纪地质, 1995年02期
    [13]索书田,钟增球,周汉文,游振东.大别苏鲁超高压变质带内变形分解作用对榴辉岩透镜体群发育的影响—以碧溪岭地区为例[J].地质科技情报, 2001年02期
    [14]索书田,钟增球,周汉文,游振东.大别—苏鲁超高压和高压变质带构造演化[J].地学前缘, 2004年03期
    [15]孔华,金振民,谢窦克.大陆下地壳的研究进展综述[J].地球物理学进展, 1998年04期
    [16]殷秀兰.大山口剪切带大理岩糜棱岩的变形机制分析[J].地质力学学报, 1996年04期
    [17]张家声.大同—怀安麻粒岩地体的伸展抬升[J].地质论评, 1997年05期
    [18]许志琴,李海兵等.东昆仑山南缘大型转换挤压带构造和斜向俯冲作用[J].地质学报, 2001年02期
    [19]刘斌,钱一雄.东天山三条高压变质带地质特征和流体作用[J].岩石学报, 2003年02期
    [20]张泽明,韦必则,韩郁菁,游振东.鄂北高压榴辉岩相变质带的变质、变形和流体演化[J].岩石学报, 1999年01期
    [21]陈柏林,舒斌,吴淦国等.甘肃北山地区变形岩石X光组构特征及其构造意义[J].吉林大学学报, 2003年04期
    [22]崔学军.赣东北地区“网结状”韧性变形带阵列构造的特征及其构造意义浅析[J].江西地质. 1998年03期
    [23]胡恭任,刘丛强,章邦桐,于瑞莲.中变质岩带的组成及构造变质变形特征[J].中国区域地质, 2000年04期
    [24]戚学祥,李海兵,张建新,蔡金郎.韧性变形带的变形变质与同构造熔融[J].地质论评, 2003年04期
    [25]王义强,吕古贤,杜子图.同韧性剪切断裂特征及其研究意义[J].地质力学学报, 1999年02期
    [26]杨晓勇.论韧性剪切带研究及其地质意义[J].地球科学进展, 2005年07期
    [27]孙岩,朱文斌,郭继春等.论糜棱岩研究[J].高校地质学报, 2001年07期
    [28]马宝林,刘若新,张兆忠.中国华北地区深层次构造岩的基本特征和层次划分[J].南京大学学报(地球科学), 1990年02期
    [29]郭敬辉,翟明国.徐武家麻粒岩相糜棱岩[J].地质科学, 1992年02期
    [30]杨主恩,吴宗絮,邓晋福等.太行五台山区的韧性剪切系统和构造岩石学特征及其意义[J].岩石学报, 1995年03期
    [31]Ramsay J G. Shear zone geometry: A review Structural Geology, [M] 1980
    [32]Twiss, R J, and Moores, E M. Structural geology, [M] 1992
    [33]Anand K. Pandey, H.K. Sachan, N.S. Virdi. Exhumation history of a shear zone constrained by microstructural and fluid inclusion techniques: an example from the Satluj valley, NW Himalaya, India [J]. Journal of Asian Earth Sciences, 2004
    [34]Martine G.C. Vernooij, Karsten Kunze, Bas den Brok.‘Brittle’shear zones in experimentally deformed quartz single crystals [J]. Journal of Structural Geology, 2006
    [35]M.P. Searle, C.J. Warren, D.J. Waters, R.R. Parrish. Structural evolution, metamorphism and restoration of the Arabian continental margin, Saih Hatat region, Oman Mountains [J] Journal of Structural Geology, 2004
    [36]Nibir Mandal, Susanta Kumar Samant, Chandan Chakraborty. Problem of folding in ductile shear zones: a theoretical and experimental investigation [J]. Journal of Structural Geology, 2004
    [37]Nicolas P. Waltea, Paul D. Bonsb, Cees W. Passchier. Deformation of melt-bearing systems—insight from in situ grain-scale analogue experiments [J] Journal of Structural Geology, 2005
    [38]Reston T J. Mantle shear zone and the evolution of the northern North Sea basin [J]. Geology, 1990
    [39]Sandra Piazolo and Cees W. Passchier. Controls on lineation development in low to medium grade shear zones: a study from the Cap de Creus peninsula, NE Spain [J]. Journal of Structural Geology, 2002
    [40]S. Bhattacharya. High-temperature crustal scale shear zone at the western marginof the Eastern Ghats granulite belt, India: implications for rapid exhumation [J], Journal of Asian Earth Sciences, 2004
    [41]Shaocheng Ji, Zhenting Jiang, Erik Rybacki, Richard Wirth, David Prior, Bin Xia. Strain softening and microstructural evolution of anorthite aggregates and quartz–anorthite layered composites deformed in torsion [J] Earth and Planetary Science Letters, 2004
    [42]Sibson R H. Fault rock and fault mechanisms [J] Journal of Geological Society, 1977
    [43]She Fa Chen, John W. Libby, Stephen Wyche, Angela Riganti. Kinematic nature and origin of regional-scale ductile shear zones in the central Yilgarn Craton, Western Australia [J]. Tectonophysics, 2004
    [44]Sullivan W.A. Structural significance of L tectonites in the eastern-central Laramie Mountains, Wyoming [J] Journal of Geology, 2006
    [45]Sullivan, W.A., Significance of transport-parallel strain variations in part of the Raft River shear zone, Raft River Mountains, Utah, USA: [J] Journal of Structural Geology, 2008
    [46]Sullivan, W.A., and Snoke, A.W., Comparative anatomy of core-complex development in the northeastern Great Basin, U.S.A.: Rocky Mountain [J] Geology, 2007
    [47]Sullivan, W.A., and Law, R.D., Strain path partitioning in the transpressional White Mountain shear zone, California and Nevada: [J] Journal of Structural Geology, 2007
    [48]Zhong Yan Zhao, Chun Jing Wei, Ai Min Fang. Plastic flow of coesite eclogite in a deep continent subduction regime: Microstructures, deformation mechanisms and rheologic implications [J]. Earth and Planetary Science Letters, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700