黄土高原主要树种根际微生物群落多样性及AMF对刺槐的接种效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对黄土高原不同生态区主要树种采用末端片段长度多态性(Terminal restriction fragment length polymorphisms, T-RFLP)分析方法分析了根际细菌与丛枝菌根真菌(Arbuscular mycorrhizal fungi, AMF)群落,揭示了主要树种和根际环境对根际微生物群落结构的影响及根际微生物之间的相互作用。研究了AMF对刺槐根际土壤微生物群落结构、土壤酶活性、土壤养分和土壤水稳性团聚体的影响。同时采用盆栽试验和同位素示踪技术研究了不同施肥水平和不同种类AMF对刺槐生长及养分吸收的影响,初步揭示了AMF在植物吸收传递养分的作用机制。得出以下主要结论:
     1.对黄土高原神木县六道沟流域、安塞县纸坊沟流域和杨陵区西北农林科技大学苗圃三个不同生态区的植物根际AMF和细菌群落多样性的研究表明:不同植物间根际细菌多样性指数存在较大差异,杨陵区紫穗槐(Amorpha fruticosa)根际细菌的丰富度和Shannon指数最高,分别达到139和4.40;纸坊沟流域紫穗槐和榆树(Ulmus pumila)根际细菌丰富度和Shannon指数最低,与其他植物均呈显著性差异(p<0.05)。植物根际细菌的群落结构与宿主植物没有严格的专一性。不同植物根际AMF多样性指数存在差异,且AMF的多样性指数低于细菌,其中纸坊沟流域垂柳(Salix babylonica)根际AMF的丰富度和Shannon指数最高,分别达到87和3.05,六道沟流域沙棘(Hippophae rhamnoides)根际AMF的丰富度和Shannon指数最低,与其他植物均呈显著性差异(p<0.05)。植物根际AMF群落多样性与宿主植物的专一性较高,但个别植物间根际AMF群落多样性也存在一定相似度。植物根际细菌和AMF多样性指数呈极显著正相关(p<0.01)。在三个区域内,刺槐(Robinia pseudoacacia)根际细菌和AMF的多样性指数显著高于其他植物(p<0.05)。冗余分析(Redundancy Analysis, RDA)表明,根际土壤有机质和pH对细菌群落多样性影响较大,速效磷对AMF群落多样性影响较大。
     2.不同施肥水平和不同种类AMF对刺槐生长及养分吸收影响的研究表明:不同施肥水平下单接种摩西球囊霉(Glomus mosseae,简称Gm)、缩球囊霉(G. constrictum,简称Gc)和混合接种(Gm+Gc)均能提高刺槐生物量。不同施肥量对接种AMF的刺槐菌根侵染率影响不同,适量施氮可增加菌根侵染率,当施氮量为0.2~0.3g·kg-1时菌根侵染率最高,达74.5%,过量施氮则抑制菌根侵染率;施磷增加了菌根侵染率而施钾对菌根侵染率的影响较小。不同施肥水平下接种AMF均可提高刺槐对氮、磷、钾的吸收,且对磷的作用较大,在施磷量为0.3g·kg-1时,接种AMF使刺槐对磷的吸收量提高了73.0%;不同种类AMF在不同养分条件下作用存在差异。适量施Ca能促进刺槐对氮和磷的吸收,施Ca量为0.1-0.2g.L-1时,AMF和Ca共同作用使刺槐全氮和全磷含量达到峰值,分别为7.85g.kg-1和6.62g.kg-1,但施Ca抑制了刺槐对钾的吸收。结合四室隔网装置和稳定性同位素方法研究发现AMF菌丝之间能形成菌丝桥,两种AMF的菌丝传递率都超过25%,说明养分可通过菌丝桥进行吸收传递且AMF吸收传递的氮素对植株氮营养可产生积极作用。刺槐对硫酸铵-15N的吸收能力要高于尿素-15N,接种Gc后刺槐根、茎、叶中硫酸铵-15N丰度比尿素-15N丰度分别提高了98.36%、111.11%和54.76%。
     3.对AMF影响刺槐根际土壤微生物群落、土壤酶活性变化及土壤养分的研究表明:单接种GM、Gc和混合接种均显著增加刺槐根际细菌、真菌和放线菌数量(p<0.05);接种AMF对刺槐根际细菌数量影响较大,单接种Gc比CK提高了360%;其次为放线菌,单接种Gc比CK提高了148%;对真菌数量影响较小。接种AMF均能显著提高刺槐根际土壤碱性磷酸酶、蔗糖酶和过氧化氢酶活性(p<0.05),且单接种作用高于混合接种,其中单接种Gm作用最大,分别比CK提高了291%、204%和51.28%;混合接种显著提高了脲酶活性(p<0.05),比CK提高了15.45%。接种AMF降低了根际土壤pH,其中单接种Gc使根际土壤pH显著低于CK(p<0.05);接种AMF对土壤养分含量影响较小,与CK相比均差异不显著。植物根际各种因子之间的相关性检验结果表明菌根侵染率与植物干重呈显著正相关(p<0.05),可见接种AMF可显著影响植物生长。
     4.采用三室隔网装置对AMF影响根际土壤水稳性团聚体的研究表明:接种AMF显著提高了刺槐根际土壤多糖类物质和球囊霉素相关蛋白的含量(p<0.05),且接种Gm作用优于Gc,接种Gm的多糖类物质和球囊霉素相关蛋白的含量比CK分别提高了47.3%和223%。接种AMF提高了>0.25mm粒级的水稳性团聚体含量,对<0.25mm粒级的微团聚体含量影响较小。菌丝室土壤中,接种Gm和Gc的菌丝密度分别达到9.5m.cm3和7.2m.cm3;随着距根系距离增加,>0.5mm粒级的水稳性大团聚体含量逐渐升高,而<0.5mm粒级的微团聚体含量则变化不大。对可能影响土壤水稳性团聚体变化的各因子进行相关性检验,结果表明:AMF对于>0.5mm粒级的土壤团聚体影响显著,团聚体含量与菌丝密度呈显著正相关(p<0.05),与侵染率和球囊霉素呈极显著正相关(p<0.01)。此外,根干重和根含磷量也与>0.5mm粒级的大团聚体显著正相关(p<0.05),表明土壤团聚体的形成和发展与植物根部生长密切相关。粒级在0.25mm-0.5mm之间的团聚体含量与各因子均有一定相关性,但相关性不显著。
This study employed Terminal Restriction Fragment Length Polymorphisms (T-RFLP) to analyze community diversity of rhizosphere bacteria and arbuscular mycorrhizal fungi (AMF) of representative plants on Loess Plateau. Results showed impacts of plant species and rhizosphere environment on the microbial community structure, as well as interactions between rhizosphere microorganisms. Experiment was then conducted to study impacts of AMF on soil microbial communities, enzyme activity, nutrient levels and water-stable aggregates in the rhizosphere of Robinia pseudoacacia. In addition, pot experiment and stable isotope technique were used to study impacts of fertilization levels and AMF species on R. pseudoacacia growth and nutrient uptake. These demonstrated the functional mechanism of AMF on plant nutrient transmission. The major conclusions are as following:
     1. The community diversity analysis of rhizosphere bacteria and AMF in Liudaogou watershed in Shenmu County, Zhifanggou watershed in Ansai County and nursery in Yangling indicated that there was a great difference between rhizosphere bacteria according to plants species. The abundance and Shannon diversity index of bacteria were highest in the rhizosphere of Amorpha fruticosa in Yangling nursery (139and4.40, respectively), and lowest in the rhizosphere of A. fruticosa and Ulmus pumila in Zhifanggou watershed, significantly different from other plants (p<0.05). Rhizosphere bacterial community diversity and host plant species were not strictly specificity. The AMF community diversity varied in three regions and occurred at lower levels than bacteria. The abundance and Shannon diversity index of AMF were highest in the rhizosphere of Salix babylonica in Zhifanggou watershed (87and3.05, respectively), and lowest in the rhizosphere of Hippophae rhamnoides in Liudaogou watershed, significantly different from other plants (p<0.05). Despite high specificity of AMF community diversity of the same type of plants, there was high similarity amongst individual plants. Rhizosphere bacteria and AMF community diversity index were positively correlated (p<0.05). Bacterial and AMF community diversity in the rhizosphere of R. pseudoacacia was significantly higher than other plants in three regions (p<0.01). Redundancy analysis showed that rhizosphere soil organic matter and pH had great impact on bacterial community diversity and that available phosphorus had great impact on AMF community diversity.
     2. The study of impacts of fertilization levels and AMF species on the biomass and nutrition uptake of R. pseudoacacia indicated that single inoculation of Glomus mosseae (Gm) and G. constrictum (Gc) and mixed inoculation of (Gm+Gc) increased biomass of R. pseudoacacia. Different fertilization levels for R. pseudoacacia affected the mycorrhiza infection rate, and defined amount of nitrogen (N) fertilizer could increase mycorrhiza infection rate. The mycorrhiza infection rate was highest (74.5%)0.2~0.3g·kg-1N fertilizer was applied. Excessive N fertilizer appeared to decrease the mycorrhiza rate. By comparison, phosphorus (P) and potassium (K) had less affect on the mycorrhiza infection rate. AMF inoculation under different nutrient levels promoted the uptake of N, P and K by R. pseudoacacia. Among these, the uptake of P was most seriously affected. Inoculation of R. pseudoacacia increased the amount of absorbed P by73.0%when0.3g·kg-1P fertilizer was applied. There were differences between different type of AMF. Defined amount of calcium (Ca) fertilizer promoted the uptake of N and P by R. pseudoacacia. When0.1~0.2g·L-1Ca fertilizer was applied, AMF elevated total N and total P adsorbed by R. pseudoacacia to the peak,(7.85g·kg-1and6.62g·kg-1, respectively). However, applicatoin of Ca fertilizer restrained the uptake of K. Combined four compartment box and stable isotope technique, hyphal links were discovered between AMF. The hypha transfer rate of two kinds of AMF was exceeded25%. This indicated that nutrition could be absorbed and transmitted to the host plant by AMF hyphal links, which exerted positive effects on plant N nutrition. The uptake rate of ammonium sulphate-15N by R. pseudoacacia was higher than that of urea-15N. Compared to urea-15N, the ammonium sulphate-15N abundance in root, stem and leaves of R. pseudoacacia in single inoculation of Gc treatment was improved by98.36%,111.11%and54.76%, respectively.
     3. The study of AMF impact on soil microbial communities, enzyme activity and soil nutrients in R. pseudoacacia indicated that single inoculation of Gc and Gm, as well as mixed inoculation Gc and Gm all increased the abundance of bacteria, fungi and actinomycetes in the rhizosphere of R. pseudoacacia(p<0.05). Inoculation of AMF had greatest influence on the abundance of bacteria, and single inoculation of Gc lead to a3.6times increase in bacterial abundance compare to CK. In addition, single inoculation of Gc lead to a1.5times increase in the abundance of actinomycetes, whereas the influence of AMF inoculation on the abundance of fungi was minimum. Inoculation of AMF significantly improved the activity of soil alkaline phosphatase, sucrase and catalase(p<0.05), with impacts of single AMF inoculation was greater than mixed inoculation, Compare to CK, single inoculation of Gm increased enzyme activity by2.9,2.0and0.5times, respectively. In addition, mixed inoculation of Gc and Gm significantly improved urease activity (p<0.05), which increased by15.45%compare to CK. Inoculation of AMF decreased rhizosphere soil pH, and the effect of single inoculation of Gc was statistically significant (p<0.05). Inoculation of AMF had little influence on soil nutrient. Correlation coefficient test of various factors in the rhizosphere of plant showed mycorrhizal colonization rate and plant dry weight were positively related(p<0.05), indicating inoculation of AMF strongly influenced plant growth.
     4. The study of AMF impact on rhizospheric soil water-stable aggregate using three compartment box indicated that inoculation of AMF significantly increased rhizosphere soil polysaccharides and glomalin-related protein content(p<0.05), and the effect of single inoculation of Gm which increased by0.5and2.2times compare to CK, was superior to single inoculation of Gc. Inoculation of AMF substantially increased water-stable macro-aggregate content of particle size>0.25mm but had little influence on that of particle size<0.25mm. In soil of hypha room, hyphal density of single inoculation of Gm and Gc were9.5and7.2m·cm-3, respectively. Water-stable macro-aggregate content of particle size>0.5mm increased with the distance from plant roots, but micro-aggregate content of particle size<0.5mm did not change significantly. Results of correlation test showed that AMF had significant effects on water-stable macro-aggregate content of particle size>0.5mm, and aggregate content and hypha density were significantly correlated (p<0.05), with infection rates and glomalin content were significant positively correlated (p<0.01). In addition, water-stable macro-aggregate content of particle size>0.5mm and root dry weight and root phosphorus were significantly correlated (p<0.05). This showed the formation and development of soil aggregates were bound up with plant root growth. Water-stable aggregate content of particle size in0.25-0.5mm were to some extent correlated with various environmental factors, but the correlation was not significant.
引文
艾为党,张俊伶,李隆,李晓林,冯固.1999.三叶草体内磷通过菌丝桥向黑麦草的传递研究.应用生态学报,10(5):615~618.
    安韶山,张扬,郑粉莉.2008.黄土丘陵区土壤团聚体分形特征及其对植被恢复的响应.中国水土保持科学,6(2):66~70.
    白春明,贺学礼,山宝琴,赵丽莉.2009.漠境沙打旺根围AM真菌与土壤酶活性的关系.西北农林科技大学学报(自然科学版),37(1):84~90.
    保长虎,张文辉,何景峰.2010.黄土高原丘陵沟壑区30年柠条人工种群动态研究.西北植物学报,30(8):1681~1688.
    鲍士旦.2000.土壤农化分析.北京:中国农业出版社.
    毕华兴,刘立斌,刘斌.2010.黄土高塬沟壑区水土流失综合治理范式.中国水土保持科学,8(4):27~33.
    毕银丽,任婧.2007.接种菌根对根际微生物群落和磷营养的影响.能源环境保护,21(3):25~28.
    卜洪震,王丽宏,尤金成,肖小平,杨光立,胡跃高,曾昭海.2010.长期施肥管理对红壤稻田土壤微生物量碳和微生物多样性的影响.中国农业科学,43(16):3340~3347.
    蔡宣梅,张秋芳,郑伟文.2004. VA菌根菌与重氮营养醋杆菌双接种对超甜玉米生长的影响.福建农业学报,19(3):125~159.
    陈恩凤,周礼恺,武冠云.1994.微团聚体的保肥供肥性能及其组成比例在评判土壤肥力水平中的意义.土壤学报,31(1):18~25.
    陈梅梅,陈保冬,许毓,田慧颖,邓皓.2009.菌根真菌对石油污染土壤修复作用的研究进展.生态学杂志,28(6):1171~1177.
    陈志超,石兆勇,田长彦,冯固.2010.古尔班通古特沙漠南缘短命植物根际AM真菌群落特征研究.菌物学报,27(5):663~672.
    程丽娟.2000.微生物学实验指导.西安:世界图书出版公司.
    戴高兴,彭克勤,皮灿辉.2003.钙对植物耐盐性的影响.中国农学通报,19(3):97~101.
    邓胤,罗文倩,朱金山,宫春明,高润霞.2008.不同氮磷水平条件下接种AMF对玉米生长的影响.中国农学通报,24(12):301~303.
    邓胤,申鸿,郭涛.2009a.丛枝菌根利用氮素研究进展.生态学报,29(10):5627~5635.
    邓胤,申鸿,罗文倩,郭涛.2009b.不同氮素形态比例条件下接种AMF对玉米氮同化关键酶的影响.植物营养与肥料学报,15(6):1380~1385.
    杜小刚,唐明,陈辉,张海涵,张永安.2008.黄土高原不同树龄刺槐丛枝菌根与根际微生物的群落多样性.林业科学,44(4):78~82.
    樊丽.2011.丛枝菌根真菌对草莓耐盐性及果实品质的影响[博士学位论文].北京:中国农业科学院.
    方昉,吴承祯,洪伟,范海兰,宋萍.2007.植物根际、非根际土壤酶与微生物相关性研究进展.亚热带农业研究,3(3):209~215.
    冯福应,刘发来,孙丽鹏,孟建宇,秦玉英.2011.沙漠中褐沙蒿根际细菌群落结构特征分析.中国农学通报,27(11):271~275.
    冯固,张玉凤,李晓林.2001.丛枝菌根真菌的外生菌丝对土壤水稳性团聚体形成的影响.水土保持学报,15(4):99~102.
    付淑清,屈庆秋,唐明,杨艳,李翠.2011.施氮和接种AM真菌对刺槐生长及营养代谢的影响.林业科学,47(1):95~100.
    葛磊.2008.菌根对番茄和水稻糖运转蛋白基因表达的调控[硕士学位论文].南京:南京农业大学.
    关松荫.1986.土壤酶及其研究方法.北京:农业出版社.
    郭泺,夏北成,倪国祥.2005.不同森林类型的土壤持水能力及其环境效应研究.中山大学学报(自然科学版),44(6):327~330.
    郭涛,申鸿,彭思利,黄建国.2009.氮、磷供给水平对丛枝菌根真菌生长发育的影响.植物营养与肥料学报,15(3):690~695.
    何绪生,张树清,佘雕,耿增超,高海英.2011.生物碳对土壤肥料的作用及未来研究.中国农学通报,27(15):16~25.
    贺伟,贾黎明,郝宝刚,文学军,翟明普.2003.混栽杨树—刺槐间磷素养分转移途径的研究.应用生态学报,14(4):481~486
    贺学礼,陈程,何博.2011a.北方两省农牧交错带沙棘根围AM真菌与球囊霉素空间分布.生态学报,31(6):1653~1661.
    贺学礼,高露,赵丽莉.2011c.水分胁迫下丛枝菌根AM真菌对民勤绢蒿生长与抗旱性的影响.生态学报,31(4):1029~1037.
    贺学礼,杨静,赵丽莉.2011b.荒漠沙柳根围AM真菌的空间分布.生态学报,31(8):2159~2168.
    贺学礼.刘媞,赵丽莉.2009.接种丛枝菌根对不同施氮水平下黄芪生理特性和营养成分的影响.应用生态学报,20(9):2118~2122.
    黄京华,谭钜发,揭红科,曾任森.2011.丛枝菌根真菌对黄花蒿生长及药效成分的影响.应用生态学报,22(6):1443~1449.
    黄艳辉.2007.内蒙古盐碱土中AM真菌多样性及提高宿主植物耐盐能力的研究[硕士学位论文].杨陵:西北农林科技大学.
    蒋廷惠,占新华,徐阳春,周立祥,宗良纲.2005.钙对植物抗逆能力的影响及其生态学意义.应用生态学报,16(5):971~976.
    金海如,张萍华,蒋冬花.2011.同位素示踪研究丛枝菌根真菌吸收不同氮素并向寄主植物输运的机理.土壤学报,48(4):888~892.
    金海如.2008.丛枝菌根菌丝精氨酸双向运转并分解为鸟氨酸.中国科学C辑,38(11):1048~1055.
    李登武,贺学礼,余仲东.2002.施钾量与AM真菌接种效应的关系.西北植物学报,22(4):889~893.
    李登武,王冬梅,贺学礼.2003.丛枝菌根真菌对烟草钾素吸收的研究.应用生态学报,14(10):1719~1722.
    李军,王学春,邵明安,赵玉娟,李小芳.2010.黄土高原半干旱和半湿润地区刺槐林地生物量与土壤干燥化效应的模拟.植物生态学报,34(3):330~339.
    李淑敏,李隆.2011.蚕豆/玉米间作接种AM真菌和根瘤菌对外源有机磷利用的影响.农业现代化研究,32(2):243~247.
    李熙英,刘继生,黄世臣.2010.不同施肥条件下丛枝菌根对1年生杨树扦插苗生长的影响.林业科技,35(1):22~25.
    李侠,张俊伶.2007.丛枝菌根根外菌丝对不同形态氮素的吸收能力.核农学报,21(2):195~200.
    李侠,张俊伶.2009.丛枝菌根根外菌丝对铵态氮和硝态氮吸收能力的比较.植物营养与肥料学报,15(3):683~689.
    李晓林.2001.丛枝菌根生态生理.北京:华文出版社.
    李玉山.1997.黄土高原治理开发与黄河断流的关系.水土保持通报,17(6):41~45.
    刘发来.2010.内蒙古荒漠主要植物根际细菌菌群组成结构特征分析[硕士学位论文].呼和浩特:内蒙古农业大学.
    刘进法,王鹏,罗园,谢亚超,万渊,夏仁学.2010.低磷胁迫下AM真菌对枳实生苗吸磷效应及根系分泌有机酸的影响.亚热带植物科学,39(1):9~13
    刘进法,夏仁学,王明元,冉青青,王鹏,罗园.2008.丛枝菌根真菌对枳利用难溶性磷酸盐及其生长的影响.华中农业大学学报,27(3):382~386.
    刘润进.2001.菌根真菌生物肥料研究开发前景.中国农学通报,17(1):40~45.
    刘润进,陈应龙.2007.菌根学,北京:科技出版社.
    刘润进,焦惠,李岩,李敏,朱新产.2009.丛枝菌根真菌物种多样性研究进展.应用生态学报,20(9):2301~2307.
    刘润进,李敏,王维华.2001.丛枝菌根真菌对植物根尖分生区和根冠细胞的侵染.菌物系统,20(1):116~121.
    刘永俊,郑红,何雷,安黎哲,冯虎元.2009.柠条根系中丛枝菌根真菌的季节性变化及影响因素.应用生态学报,20(5):1085~1091.
    刘志红,郭伟玲,杨勤科,郭艳芬,朱小祥,李锐.2011.近20年黄土高原不同地貌类型区植被覆盖变化及原因分析.中国水土保持科学,9(1):16~23.
    卢彦琦,王东雪,路向丽,李丽敏,李焱,贺学礼.2011.丛枝菌根真菌对白术生理特性和植株成分的影响.西北植物学报,31(2):351~356.
    陆景陵.2003.植物营养学.北京:中国农业大学出版社:25~31.
    罗佳捷,李丽立,张彬.2009. T-RFLP技术及其在微生物群落结构研究中的应用.中国畜牧兽医,36(7):75~78.
    罗树伟,郭春会,张国庆.2009.神木与杨凌地区长柄扁桃光合与生物学特性比较.干旱地区农业研究,27(5):196~202.
    马琼,黄建国.2003.菌根及其在植物吸收矿质元素营养中的作用.吉林农业科学,28(2):41~43.
    马玉玺,杨文治,韩仕峰,杨新民.1990.黄土高原刺槐生长动态研究.水土保持学报,4(2):26~32.
    毛爱军,王永健,冯兰香,耿三省,许勇.2004.水杨酸等4种诱导剂诱导辣椒抗疫病作用的研究.中国农业科学,37(10):1481~1486.
    潘超美,郭庆荣,邱桥姐,黄湘兰.2000. VA菌根真菌对玉米生长及根际土壤微生态环境的影响.土壤与环境,2000,9(4):304~306.
    彭思利,申鸿,袁俊吉,郭涛.2010.分根装置中接种AMF对1~2mm土壤水稳性团聚体的影响.植物营养与肥料学报,16(6):1546~1550.
    秦芳玲,王敬国,李晓林,冯固.2000. VA菌根真菌和解磷细菌对红三叶草生长和氮磷营养的影响.草业学报,9(1):9~14.
    茹桃勤,李吉跃,张克勇,范增伟.2005.国外刺槐(Robinia pseudoacacia)研究.西北林学院学报,20(3):102~107.
    石蕾,贺学礼.2007.不同施P水平下AM真菌对黄芪生长和生理学特性的影响.西北农业学报,6(1):46~50.
    石伟琦,丁效东,张士荣.2011.丛枝菌根真菌对羊草生物量和氮磷吸收及土壤碳的影响.西北植物学报,31(2):357~362.
    石伟琦.2010.丛枝菌根真菌对内蒙古草原大针茅群落的影响.生态环境学报,9(2):344~349.
    宋福强,孟剑侠,周宏,赵晓娟,冯乐.2009.丛枝菌根真菌对紫穗槐固氮能力的影响.林业科技,34(5):25~28.
    宋福强,杨国亭,孟繁荣,田兴军,董爱荣.2004b.丛枝菌根化大青杨苗木根际微域环境的研究.生态环境,13(2):211~216.
    宋福强,杨国亭,孟繁荣,田兴军.2004a.丛枝菌根对大青杨苗木生长的影响.林业科学研究,17(6):770~776.
    宋勇春,张俊伶,李晓林,冯固,杨志福.1999.根间菌丝桥对三叶草生长及磷营养状况的影响.中国农业大学学报,4(1):26~32.
    苏友波,林春,王三根.2003. AM菌根磷酸酶对玉米菌根际土壤磷的影响及其细胞化学定位.西南农业大学学报(自然科学版),25(2):115~119.
    苏友波,王贺.1998.丛枝菌根对三叶草根际磷酸酶活性的影响.植物营养与肥料学报,4(3):264~270.
    唐振尧,赖毅,何首林.1989. VA菌根真菌对柑橘吸收钙素效应的研究初报.真菌学报,8(2):133~139.
    滕应,黄昌勇,骆永明,龙健,姚槐应.2004b.铅锌银尾矿区土壤微生物活性及其群落功能多样性研究.土壤学报,41(1):113~119.
    滕应,骆永明,赵祥伟,李振高,宋静,吴龙华.2004a.重金属复合污染农田土壤DNA的快速提取及其PCR-DGGE分析.土壤学报,41(3):343~347.
    仝瑞建,杨晓红,刘雪芹,于桂宝.2006. AMF在三峡库区生态环境建设中的应用.中国农学通报,22(1):283~286.
    王倡宪,秦岭,冯固,李晓林.2003.三种丛枝菌根真菌对黄瓜幼苗生长的影响.农业环境科学学报,22(3):301~303.
    王琚钢,白淑兰,盖京苹,慈忠玲,方亮.2011.蒙古扁桃AMF多样性及其AMF接种效应研究.中国农学通报,27(6):155~160.
    王林闯,贺超兴,张志斌.2011.接种丛枝菌根真菌和有机土栽培对甜椒根际微生物分子多态性的影响.生物技术通报,5:114~120.
    王明元,夏仁学,王幼珊,周开兵,王鹏,倪海枝.2008.缺铁和过量重碳酸盐胁迫下丛枝菌根真菌对枳生长的影响.园艺学报,35(4):469~474.
    王清奎,汪思龙.2005.土壤团聚体形成与稳定机制及影响因素.土壤通报,36(3):415~421.
    王盛萍,张志强,张化永,孙阁.2010.黄土高原防护林建设的恢复生态学与生态水文学基础.生态学报,30(9):2475~2483.
    王树和,王晓娟,王茜,金樑.2007.丛枝菌根及其宿主植物对根际微生物作用的响应.草业学报,16(3):108~113.
    王晓英,王冬梅,陈保冬,黄益宗,王幼珊.2010.丛枝菌根真菌群落对白三叶草生长的影响.生态学报,30(6):1456~1462.
    王云强,张兴昌,李顺姬,张景利.2007.小流域土壤矿质氮与地形因子的关系及其空间变异性研究.环境科学,28(7):1567~1572.
    王珍珍,刘晓艳,张新颖,王君,田翔,蔡倩,赵月,陈艳,曹正楠.2011.长江口油污湿地植物根际微生态环境特征.环境科学学报,31(5):1026~1032.
    魏源,王世杰,刘秀明,黄天志.2011.不同喀斯特小生境中土壤丛枝菌根真菌的遗传多样性.植物生态学报,35(10):1083~1090.
    吴金平,顾玉成.2009.丛枝菌根真菌(AMF)在土壤修复中的生态应用.中国农学通报,25(07):243~245.
    吴强盛,邹英宁.2009.丛枝菌根真菌对水分胁迫下红橘实生苗根系矿质营养元素的影响.信阳师范学院学报(自然科学版),22(4):526~530.
    肖敏,高彦征,凌婉婷,程兆霞,曾跃春.2009.菲、芘污染土壤中丛枝菌根真菌对土壤酶活性的影响.中国环境科学,29(6):668~672.
    邢睿,黄建国,晋艳,杨宇虹.2010.交联聚丙烯酰胺和丛枝菌根真菌对烟苗生长、养分吸收和生理指标的影响.水土保持学报,24(4):234~237.
    徐冰,冯固,潘家荣,秦岭,李晓林.2003.外生菌根菌丝桥在板栗幼苗间传递磷的效应.生态学报,23(4):765~770.
    徐辉,唐明,高瑞霞.2008.土壤因子对府谷清水川流域砒砂岩区刺槐和沙棘AMF的影响.西北植物学报,28(12):2500~2505.
    徐辉.2009.砒砂岩区主要树种AMF接种效应和AMF与土壤的相互影响[硕士学位论文].杨陵:西北农林科技大学.
    薛萐,刘国彬,潘彦平,戴全厚,张超,余娜.2009.黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数演变.中国农业科学,42(4):1458~1464.
    杨玉海,陈亚宁,李卫红.2008.荒漠河岸林植物丛枝菌根真菌侵染及环境影响因子—以塔里木河下游为例.自然科学进展,18(4):397~405.
    杨中宝,王淼焱,刘润进.2005.外源养分和激素对AM真菌侵染和产孢的影响.菌物学报,24(2):277~282.
    姚青,赵紫娟,冯固,李晓林,陈保东.2000. VA菌根真菌外生菌丝对难溶性无机磷酸盐的活化及利用.Ⅰ.32P间接标记法.核农学报,14(3):145~150.
    杨晓红,孙中海,邵菊芳,仝瑞建.2004.丛枝菌根真菌培养方法研究进展.菌物学报,23(3):444~456.
    叶贤锋,吴强盛,孙润生,赵伦杰.2011.丛枝菌根真菌提高植物耐盐性的机理研究进展.湖北农业科学,50(1):9~11.
    易时来,温明霞,李学平,石孝均.2004. VA菌根改善植物磷素营养的研究进展.土壤肥料科学,20(5):164~166.
    余素林,吴晓磊,钱易.2006.环境微生物群落分析的T-RFLP技术及其优化措施.应用与环境生物学报,12(6):861~868.
    袁丽环,闫桂琴.2010.丛枝菌根化翅果油树幼苗根际土壤微环境.植物生态学报,34(6):678~686.
    张超波,陈丽华,刘秀萍.2009.黄土高原刺槐根系固土的力学增强效应评价.水土保持学报,23(2):57~60.
    杨国安,徐勇,郭腾云.2010.基于脆弱性和可持续生计视角的黄土高原生态环境治理研究.水土保持研究,17(2):64~69.唐克丽.1996.黄土高原水蚀风蚀交错带小流域治理模式探讨.水土保持研究,3(4):46~55.
    张海涵,唐明,陈辉,杜小刚.2008.黄土高原5种造林树种菌根根际土壤微生物群落多样性研究.北京林业大学学报,30(3):86~90.
    张海涵,唐明,陈辉.2009.黄土高原典型林木根际土壤微生物群落结构与功能特征及其环境指示意义.环境科学,30(8):2432~2437.
    张好强,唐明,张海涵.2009.土壤因子对柠条和沙棘根际AM真菌多样性及侵染状况的影响.土壤学报,46(4):721~724.
    张金屯.2005.黄土高原沙棘灌丛资源保护和发展问题.生态环境,14(5):789~793.
    张静,常庆瑞.2006.渭北黄土高原不同林型植被对土壤肥力的影响.水土保持通报,26(3):26~28.
    张俊伶,李晓林,杨志福.1997.三叶草根间菌丝桥在氮素传递中的作用初探.核农学报,11(4):247~253.
    张俊伶,李晓林,杨志福.1995.玉米根间菌丝桥对磷的传递作用初报.北京农业大学学报,21(1):76.
    张俊伶,李晓林,左元梅,杨志福.1998.三叶草根间菌丝桥传递衰亡根系中磷的作用.生态学报,18(6):589~594.
    张俊伶,李晓林.1996. VA菌根的菌丝桥及其生态意义.世界农业,(11):37~40.
    张万红,唐明.2006.中国北方VA菌根真菌资源.西北林学院学报,21(2):121~125.
    赵丹丹,李涛,赵之伟.2006.丛枝菌根真菌-豆科植物-根瘤菌共生体系的研究进展.生态学杂志,25(3):327~333.
    赵建民,陈彩虹,李靖.2010.水土保持对黄河流域水资源承载力的影响.水利学报,41(9):1079~1086.
    赵金莉,贺学礼.2010.毛乌素沙地克隆植物生长对AM真菌多样性和菌根形成的影响.生态学报,30(5):1349~1355.
    郑顺安,常庆瑞.2006.黄土高原不同类型人工林对土壤肥力的影响.西北农林科技大学学报(自然科学版),34(2):119~123.
    中国科学院南京土壤研究所土壤物理研究室.1978.土壤物理性质测定法.北京:科学出版社:77~88.
    钟文辉,王薇,林先贵,尹睿申,卫收.2009.核酸分析方法在土壤微生物多样性研究中的应用.土壤学报,46(2):334~341.
    朱红惠,龙良坤,羊宋贞,姚青.2005. AM真菌对青枯菌和根际细菌群落结构的影响.菌物学报,24(1):137~142.
    朱娟,张树生,李岳峰,茆泽圣,冉炜,沈其荣.2009.番茄菌根根际土壤产几丁质酶细菌的分离及其几丁质酶活性研究.南京农业大学学报,32(3):78~82.
    Aldrich-Wolfe L.2007. Distinct mycorrhizal communities on new and established hosts in a transitionaltropical plant community. Ecology,88(3):559~566.
    Al-Karaki GN, Clark RB.1998. Growth, mineral acquisition and water use by mycorrhizal wheat grownunder water stress. Journal of Plant Nutrition,21(2):263~276.
    Amaya-Carpio L, Davies F, Fox T, He C.2009. Arbuscular mycorrhizal fungi and organic fertilizerinfluence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp.fistulosa. Photosynthetica,47(1):1~10.
    Ames RN, Reid CPP, Porter LK, Cambardella C.1983. Hyphal uptake and transport of nitrogen from two15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytologist,95(3):381~396.
    Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ.1997. Bacteria from rhizosphere andhyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil,192(1):71~79.
    Artursson V, Finlay RD, Jansson JK.2005. Combined bromodeoxyuridine immunocapture andterminal-restriction fragment length polymorphism analysis highlights differences in the active soilbacterial metagenome due to Glomus mosseae inoculation or plant species. Environmentalmicrobiology,7(12):1952~1966.
    Atkinson CJ, Mansfied TA, Kean AM, Davies WJ.1989. Control of stomatal aperture by calcium inisolated epidermal tissue and whole leaves of Commelina communis L.. New Phytologist,111(1):9~17.
    Atul-Nayyar A, Hamel C, Hanson K, Germida J.2009. The arbuscular mycorrhizal symbiosis links Nmineralization to plant demand. Mycorrhiza,19(4):239~246.
    Augé RM.2004. Arbuscular mycorrhizae and soil/plant water relations. Canadian Journal of Soil Science,84(4):373~381.
    Azcón R, Barea JM.2010. Mycorrhizosphere interactions for legume improvement. In: Khan Ms, MusarratJ, Zaidi A (Eds.), Microbes for Legume Improvement. Springer-Verlag, Germany, pp:237~271.
    Azcón R, Borie F, Barea JM.1982. Exocellular acid phosphatase activity of lavender and wheat roots asaffected by phytate and mycorrhizal inoculation. In: Gianinazz S, Gianinazzi PV, Trouvelot A (Eds.),Les Mycormzes: Biologie et Utilisation. Dijon: INRA:83~85.
    Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V.2009. Mycorrhizas functional processesand ecological impact. Springer-Verlag, Berlin, Heidelberg.
    B th E, Spokes J.1989. The effect of added nitrogen and phosphorus on mycorrhizal growth response andinfection in Allium schoenoprasum. Canadian Journal of Botany,67(11):3227~3232.
    Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J Douds DD, Lammers PJ, Shachar-Hill Y.2003. Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate aswell as lipid. Plant Physiology,131(3):1496~1507.
    Bago B, Pfeffer PE, Shachar-Hill Y.2001. Could the urea cycle be translocating nitrogen in the arbuscularmycorrhizal symbiosis? New Phytologist,149(1):4~8.
    Bago B, Vierheilig H, Pich Y, Azcón-Aguilar C.1996. Nitrate depletion and pH changes induced by theextraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenicculture. New phytologist,133:273~280.
    Bagyaraj DJ, Menge JA.1978. Interaction between a VA mycorrhiza and azotobacter and their effects onrhizosphere microflora and plant growth. New Phytologist,80(3):567~573.
    Barea JM, Azcón R, Azcón-Aguilar C.2005a. Interactions between Mycorrhizal Fungi and Bacteria toImprove Plant Nutrient Cycling and Soil Structure. In: Buscot F, Varma A (Eds.), Microorganisms inSoils: Roles in Genesis and Functions. Springer-Verlag, Berlin, Heidelbert, pp:195~212.
    Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C.2005b. Microbial cooperation in the rhizosphere. Journalof Experimental Botany,56(417):1761~1778.
    Barrett G, Campbell C, Fitter AH, Hodge A.2011. The arbuscular mycorrhizal fungus Glomus hoi cancapture and transfer nitrogen from organic patches to its associated host plant at low temperature.Applied Soil Ecology,48(1):102~105.
    Berg G, Smalla K.2009. Plant species and soil type cooperatively shape the structure and function ofmicrobial communities in the rhizosphere. FEMS Microbiology Ecology,68(1):1~13.
    Berta G, Fusconi A, Trotta A.1993. VA mycorrhizal infection and the morphology and function of rootsystems. Environmental and Experimental Botany,33(1):159~173.
    Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T.2000. Disruption of the Paenibacilluspolymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere.Environmental Microbiology,2(3):333~342.
    Bhatia NP, Adholeya A, Sharma A.1998. Biomass production and changes in soil productivity duringlongterm cultivation of Prosopis juliflora (Swartz) DC inoculated with VA mycorrhiza and Rhizobiumspp. in a semi-arid wasteland. Biology and Fertility of Soils,26(3):208~214.
    Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Dominguez L, Sersic A, Leake JR, Read DJ.2002. Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature,419(6905):389~392.
    Bolan NS.1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants.Plant and Soil,134(2):189~207.
    Bomberg M, Jurgens G, Saano A, Sen R, Timonen S.2003. Nested PCR detection of Archaea in definedcompartments of pine mycorrhizospheres developed in boreal forest humus microcosms. FEMSMicrobiology Ecologist,43(2):163~171.
    B rstler B, Renker C, Kahmen A, Buscot F.2006. Species composition of arbuscular mycorrhizal fungi intwo mountain meadows with differing management types and levels of plant biodiversity.Biology andFertility of Soils,42(4):286~298.
    Bothe H, Turnau K, Regvar M.2010. The potential role of arbuscular mycorrhizal fungi in protectingendangered plants and habitats. Mycorrhiza,20(7):445~457.
    Bowen GD, Rovira AD.1968. The influence of microorganisms on growth and metabolism on plant roots.In: Wittington WJ (Eds.), Root growth. Butterworth, London, pp:170~199.
    Brodie E, Edwards S, Clipson N.2002. Bacterial community dynamics across a floristic gradient in atemperate upland grassland ecosystem. Microbial Ecology,44(3):260~270.
    Bronick C, Lal R.2005a. Soil structure and management: a review. Geoderma,124(1-2):3~22.
    Bronick CJ, Lal R.2005b. Manuring and rotation effects on soil organic carbon concentration for differentaggregate size fractions on two soils in northeastern Ohio, USA. Soil and Tillage Research,81(2):239~252.
    Buscot F.2005.What are soils? In: Buscot F, Varma S (Eds.), Microorganisms in Soils:Roles in Genesisand Functions. Springer-Verlag, Heidelbert, Germany, pp:3~18.
    Cabello M, Irrazabal G, Bucsinszky AM, Saparrat M, Schalamuk S.2005. Effect of an arbuscularmycorrhizal fungus, Glomus mosseae, and a rock-phosphate-solubilizing fungus, Penicillium thomii,on Mentha piperita growth in a soilless medium. Journal of Basic Microbiology,45(3):182~189.
    Caesar-TonThat TC.2002. Soil binding properties of mucilage produced by a Basidiomycete fungus in amodel system. Mycological Research,106(8):930~937.
    Carlsen SCK, Understrup A, Formsgaard IS, Mortensen AG, Ravnskov S.2008. Flavonids in the roots ofwhite clover: interaction of arbuscular mycorrhizal fungi and a pathogenic fungus. Plant and Soil,302(1-2):33~43.
    Carpenter-Boggs L, Loynachan TE, Stahl PD.1995. Spore germination of Gigaspora margarita stimulatedby volatiles of soil-isolated actinomycetes. Soil Biology and Biochemistry,27(11):1445~1451.
    Cavaglieri L, Orlando J, Etcheverry M.2009. Rhizosphere microbial community structure at differentmaize plant growth stages and root locations. Microbiological Research,164(4):391~399.
    Cavagnaro TR, Jackson LE, Scow KM, Hristova KR.2007. Effects of arbuscular mycorrhizal on ammoniaoxidizing bacteria in an organic farm soil. Microbial Ecology,54(4):618~626.
    Changey K, Swift RS.1986. Studies on aggregate stability. Ⅱ. The effect of humic substances on thestability of reformed soil aggregates. European journal of soil science,37(2):337~343.
    Chaudhary VB, Bowker MA, O’Dell TE, Grace JB, Redman AE, Rillig MC, Johnson NC.2009.Untangling the biological contributions to soil stability in semiarid shrublands. EcologicalApplications,19(1):110~122.
    Chenu C.1989. Influence of a fungal polysaccharide, scleroglucan, on clay microstructures. Soil Biologyand Biochemistry,21(2):299~305.
    Citterio S, Prato N, Fumagalli P, Aina R, Massa N, Santagostino A, Sgorbati S, Berta G.2005. Thearbuscular mycorrhizal fungus Glomus mosseae induces growth and metal accumulation changes inCannabis sativa L.. Chemosphere,59(1):21~29.
    Crush JR.1974. Plant growth responses to vesicular-arbuscular mycorrhizae. VII. Growth and nodulationof some herbage legumes. New Phytologist,73(4):743~745.
    Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Louc o MA, Jakobsen I.2007. Enzymaticevidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. PlantPhysiology,144(2):782~792.
    Dennis PG, Miller AJ, Hirsch PR.2010. Are root exudates more important than other sources ofrhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol Ecology,72(3):313~327.
    Dessaux Y, Hinsinger P, Lemanceau P.2010. Rhizosphere: Achievements and Challenges. Springer, NewYork.
    Dexter AR.1988. Advances in characterization of soil structure. Soil and Tillage Research,11(3-4):199~238.
    Diamantidis G, Effosse A, Potier P, Bally R.2000. Purification and characterization of the first bacteriallaccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biology and Biochemistry,32(7):919~927.
    Díaz-Zorita M, Perfect E, Grove JH.2002. Disruptive methods for assessing soil structure. Soil and TillageResearch,64(1-2):3~22.
    Dunbar J, Ticknor LO, Kuske CR.2001. Phylogenetic specificity and reproducibility and new method foranalysis of terminal restriction fragment profiles of16S rRNA genes from bacterial communities.Applied and Environmental Microbiology,67(1):190~197.
    el Zahar Haichar F, Marol, C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J, Heulin T, Achouak W.2008. Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal,2(12):1221~1230.
    Fitter AH.2005. Darkness visible: reflections on underground ecology. Journal of Ecology,93(2):231~243.
    Franzluebbers AJ, Wright SF, Stuedemann JA.2000. Soil aggregation and glomalin under pastures in theSouthern Piedmont USA. Soil Science Society of America Journal,64(3):1018~1026.
    Frenzel A, Manthey K, Perlick AM, Meyer F, Puhler A, Kuster H, Krajinski F.2005. Combinedtranscriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatulalectin genes. Molecular plant-microbe interactions,18(8):771~782.
    Frey B, Schüeepp H.1993. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungiassociated with Zea mays L.. New Phytologist,124(2):221~230.
    Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G.2004. Impact of two Fluorescentpseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and Pacquisition. Mycorrhiza,14(3):185~192.
    Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA.1991. Enzymatic studies on the metabolism ofvesicular-arbuscular mycorrhizas. V. Is H+-ATPase a Component of ATP-hydrolysing enzymeactivities in plant-fungus interfaces? New Phytologist,117(1):61~67.
    Goicoechea N, Szalai G, Antolin MC, Sanchez-Diaz M, Paldi E.1998. Influence of arbuscular mycorrhizaeand Rhizobiumon free polyamines and proline levels in water-stressed alfalfa. Journal of PlantPhysiology,153(5-6):706~711.
    Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bucking H, Lammers PJ,Shachar-Hill Y.2005. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature,435(7043):819~823.
    Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P.2009b. Genome-wide reprogrammingof regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizalsymbiosis in Lotus japonicus. New Phytologist,182(1):200~212.
    Guether M, Neuh user B, Balestrini R, Dynowski M, Ludewig U, Bonfante P.2009a. Amycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released byarbuscular mycorrhizal fungi. Plant Physiology,150(1):73~83.
    Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ionnidis V, Oakeley E, Docquier M,Descombes P, Briggs S, Paszkowski U.2005. Comparative transcriptomics of rice reveals an ancientpattern of response to microbial colonization. Proceedings of the National Academy of Sciences of theUnited States of America,102(22):8066~8070.
    Gupta ML,Prasad A,Ram M, Kumar S.2002. Effect of the vesicular-arbuscular mycorrhizal (VAM) fungusGlomus fasciculatum on the essential oil yield related characters and nutrient acquisition in the cropsof different cultivars of menthol mint (Mentha arvensis) under field conditions. BioresourceTechnology,81(1):71~79.
    Gutjahr C, Casieri L, Paszkowski U.2009. Glomus intraradices induces changes in root systemarchitecture of rice independently of common symbiosis signaling. New Phytologis,182(4):829~837.
    Harrison MJ, Dewbre GR and Liu J.2002. A phosphate transporter from Medicago truncatula involved inthe acquisition of phosphate released by arbuscular mycorrhizal fungi. The Plant Cell Online,14(10):2413~2429.
    Hart MM, Reader RJ.2005. The role of the external mycelium in early colonization for three arbuscularmycorrhizal fungal species with different colonization strategies. Pedobiologia,49(3):269~279.
    Hausmann NT, Hawkes CV.2010. Order of plant host establishment alters the composition of arbuscularmycorrhizal communities. Ecology,91(8):2333~2343.
    Hawkins HJ, George E.2001. Reduced15N-nitrogen transport through arbuscular mycorrhizal hyphae toTriticum aestivum L. supplied with ammonium vs. nitrate nutrition. Annals of Botany,87(3):303~311.
    Hodge A, Campbell C, Fitter AH.2001. An arbuscular mycorrhizal fungus accelerates decompositi on andacquisition nitrogen directly from organic material. Nature,413(6853):297~299.
    Hodge A, Fitter AH.2010. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organicmaterial has implications for N cycling. Proceedings of the National Academy of Sciences,107(31):13754~13759.
    Jakobsen I, Smith SE, Smith FA.2002. Function and diversity of arbuscular mycorrhizae in carbon andmineral nutrition. In: van der Heijden MGA, Sanders IR (Eds.), Mycorrhizal ecology, Springer-Verlag,Mycorrhizal Ecology, pp:75~92.
    Jastrow JD.1996. Soil aggregate formation and the accrual of particulate and mineral-associated organicmatter. Soil Biology and Biochemistry,28(4-5):665~676.
    Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y.2005. The uptake, metabolism,transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytologist,168(3):687~696.
    Joanne L, Hodge A, Fitter AH.2008. Arbuscular mycorrhizal fungi can transfer substantial amounts ofnitrogen to their host plant from organic material. New Phytologist,181(1):199~207.
    Johansen A, Jakobsen I, Jensen ES.1992. Hyphal transport of15N-labelled nitrogen by aversicular-arbuscular mycorrihizal fungus and its effect on depletion of inorganic soil N. NewPhytologist,122(2):281~288.
    Johansen A, Jakobsen I, Jensen ES.1994. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungusassociated with cucumber grown at three nitrogen levels. Plant and Soil,160(1):1~9.
    Joner EJ, Jakobsen I.1995. Growth and extracellular phosphatase activity of arbuscular mycorrhizalhyphae influenced by soil organic matter. Soil Biology and Biochemistry,27(6):1153~1159.
    Joner EJ, Johansen A.2000. Phosphatase activity of external hyphae of two arbuscular mycorrhizal fungi.Mycological Research,104(1):81~86.
    Jones DL, Hodge A, Kuzyakov Y.2004. Plant and mycorrhizal regulation of rhizodeposition. NewPhytologist,163(3):459~480.
    Karandashov V, Bucher M.2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in PlantScience,10(1):22~29.
    Krsek M, Wellington EMH.1999. Comparison of different methods for the isolation and purification oftotal community DNA from soil. Journal of Microbiological Methods,39(1):1~16.
    Langley JA, Hungate BA.2003. Mycorrhizal controls on belowground litter quality. Ecology,84(9):2302~2312.
    Leigh J, Hodge A, Fitter AH.2009. Arbuscular mycorrhizal fungi can transfer substantial amounts ofnitrogen to their host plant from organic material. New Phytologist,181(1):199~207.
    Li H, Smith SE, Holloway RE, Zhu Y, Smith FA.2006. Arbuscular mycorrhizal fungi contribute tophosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growthresponses. New Phytologist,172(3):536~543.
    Li JM, Jin ZX, Gu QP.2011. Effect of plant species on the function and structure of the bacterialcommunity in the rhizosphere of leadzinc mine tailings in Zhejiang, China. Canadian Journal ofMicrobiology,57(7):569~577.
    Li XL, George E, Marschner E.1991. Extension of the phosphorus depletion zone in VA-mycorrhizal whiteclover in a calcareous soil. Plant and Soil,136(1):41~48.
    Liang CC, Li T, Xiao YP, Liu MJ, Zhang HB, Zhao ZW.2009. Effects of inoculation with arbuscularmycorrhizal fungi on maize grown in multi-metal contaminated soils. International Journal ofPhytoremediation,11(8):692~703.
    Linder MB, Szilvay GR, Nakari-Set l T, Penttil ME.2005. Hydrophobins: The protein-amphiphiles offilamentous fungi. FEMS Microbiology Reviews,29(5):877~896.
    Linderman RG.2000. Effects of mycorrhizas on plant tolerance to diseases. In: Kapulnik Y, Douds DDJ(Eds.), Arbuscular Mycorrhizas: Physiology and Function. Dordrecht, the Netherlands: KluwerAcademic Publishers, pp:345~365.
    Liu GB.1999. Soil conservation and sustainable agriculture on Loess Plateau: challenge and prospective.AMBIO,28(8):663~668.
    Marschner Petra, Baumann K.2003. Changes in bacterial community structure induced by mycorrhizalcolonisation in split-root maize. Plant and Soil,251(2):279~289.
    Marx C, Dexheimer J, Gianinazzi-Pearson V, Gianinazzi S.1982. Enzymatic studies on the metabolism ofvesicular-arbuscular mycorrhizas. IV. Ultracytoenzymological evidence (ATPase) for active transferprocesses in the host-arbuscule interface. New Phytologist,90(1):37~43.
    Meyer JR, Linderman RG.1986. Selective influence on populations of rhizosphere or rhizoplane bacteriaand actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biology and Biochemistry,18(2):191~196.
    Miller RM, Jastrow JD.2000. Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (Eds.),Arbuscular mycorrhizae: physiology and function. Kluwer Academic Press, Dordrecht, TheNetherlands:3~18.
    Mummey DL, Rillig MC, Holben WE.2005. Neighboring plant influences on arbuscular mycorrhizalfungal community composition as assessed by T-RFLP analysis. Plant and soil,271(1):83~90.
    O'Donnell AG, Seasman M, Macrae A, Waite I, Davies JT.2001. Plants and fertilizers as drivers of changein microbial community structure and function in soils. Plant and Soil,232(1):135~145.
    Oehl F, Laczko E, Bogenrieder A, Stahr K, B sch R, van der Heijden M, Sieverding E.2010. Soil type andland use intensity determine the composition of arbuscular mycorrhizal fungal communities. SoilBiology and Biochemistry,42(5):724~738.
    Ohtomo R, Saito M.2005. Polyphosphate dynamics in mycorrhizal roots during colonization of anarbuscular mycorrhizal fungus. New Phytologist,167(2):571~578.
    Oliveira RS, Castro PML, Dodd JC, Vosátka M.2005. Synergistic effect of Glomus intraradices andFrankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenicsediment. Chemosphere,60(10):1462~1470.
    Olsson PA, Johnson NC.2005. Tracking carbon from the atmosphere to the rhizosphere. Ecology Letters,8(12):1264~1270.
    Panwar J, Tarafdar JC.2006. Arbuscular mycorrhizal fungal dynamics under Mitragyna parvifolia (Roxb.)Korth. in Thar Desert. Applied Soil Ecology,34(2-3):200~208.
    Parniske M.2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews:Microbiology,6(10):763~775.
    Paszkowski U, Kroken S, Roux C, Briggs SP.2002. Rice phosphate transporter include an evolutionarilydivergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the NationalAcademy of Sciences,99(20):13324~13329.
    Pearson JN, Jakobsen I.1993. Symbiotic exchange of carbon and phosphorus between cucumber and threearbuscular mycorrhizal fungi. New Phytologist,124(3):481~488.
    Phillips JM, Hayman DS.1970. Improved procedures for clearing and staining parasitic and stainingparasitic and vesicular-arbuseular mycorrhizal fungi for rapid assessment of infection. Transactions ofthe British Mycological Society,55(1):158~161.
    Pivato B, Offre P, Marchelli S, Barbonaglia B, Mougel C, Lemanceau P, Berta G.2009. Bacterial effects onarbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, andhost plant. Mycorrhiza,19(2):81~90.
    Purin S, Rillig MC.2007. The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and anew hypothesis for its function. Pedobiologia,51(2):123~130.
    Raven J, Smith S, Smith F.1978. Ammonium assimilation and the role of mycorrhizas in climaxcommunities in Scotland. Transactions of Botanical Society of Edinburgh,43(1):27~35.
    Ren J, Dang HY, Song LS, Sun S, An LG..2006. Bacterial and cyanobacterial diversities determined byT-RFLP analyses in the Jiaozhou Bay. Acta Oceanologica Sinica,25(4):113~123.
    Rhodes LH, Gerdemann JW.1975. Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions.New Phytologist,75(3):555~561.
    Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C.2009. Acquisition of phosphorus andnitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant and Soil,321(1):305~339.
    Riley D, Barber SA. Salt accumulation at the soybean (Glycine Max.(L.) Merr.) root-soil interface. SoilScience Society America Journal,34(1):154~155.
    Rillig MC, Lutgen ER, Ramsey PW, Klironomos JN, Gannon JE.2005. Microbiota accompanying differentarbuscular mycorrhizal fungal isolates influence soil aggregation. Pedobiologia,49(3):251~259.
    Rillig MC, Mardatin N, Leifhei EF, Antunes PM.2010. Mycelium of arbuscular mycorrhizal fungiincreases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biologyand Biochemistry,42(7):1189~1191.
    Rillig MC, Mummey DL.2006. Mycorrhizas and soil structure. New Phytologist,171(1):41~53.
    Rillig MC, Wright SF, Eviner VT.2002. The role of arbuscular mycorrhizal fungi and glomalin in soilaggregation: comparing effects of five plant species. Plant and Soil,238(2):325~333.
    Rillig MC.2004. Arbuscular mycorrhizae, glomalin and soil quality. Canadian Journal of Soil Science,84(4):355~363.
    Roesti D, Gaur R, Johri BN, Imfeld G., Sharma S, Kawaljeet K, Aragno M.2006. Plant growth stage,fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promotingrhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biology andBiochemistry,38(5):1111~1120.
    Rosenberg K, Bertaux J, Krome K, Hartmann A, Hartmann A, Bonkowski M.2009. Soil amoebae rapidlychange bacterial community composition in the rhizosphere of Arabidopsis thaliana. The ISMEJournal,3(6):675~684.
    Russo A, Felici C, Toffanin A, G tz M, Collados C, Barea J.M, Moenne-Loccoz Y, Smalla K,Vanderleyden J, Nuti M.2005. Effect of Azospirillum inoculants on arbuscular mycorrhizaestablishment in wheat and maize plants. Biology and Fertility of Soils,41(5):301~309.
    Safir G.1968. The influence of vesicular arbuscalar mycarrhizal on the risistance of onion toPhyrenochaeta terreations[博士学位论文]. Urbana: University of Illionois.
    Sander D, Pelloux J, Brownlee C, Harper JF.2002. Calcium at the crossroads of signaling. Plant Cell,14(1):401~417.
    Scheublin TR, Sanders IR, Keel C, van der Meer JR.2010. Characterisation of microbial communitiescolonising the hyphal surfaces of arbuscular mycorrhizal fungi. The ISME Journal,4(6):752~763.
    Schimel JP, Weintraub MN.2003. The implications of exoenzyme activity on microbial carbon andnitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry,35(4):549~563.
    Schnepf A, Jones D, Roose T.2011.Modelling nutrient uptake by individual hyphae of arbuscularmycorrhizal fungi: temporal and spatial scales for an experimental design. Bulletin of MathematicalBiology,73(9):2175~2200.
    Schnepf A, Roose T, Schweiger P.2008. Impact of growth and uptake patterns of arbuscular mycorrhizalfungi on plant phosphorus uptake—a modelling study. Plant and Soil,312(1):85~99.
    Schüepp H, Miller DD, Bodmer M.1987. A new technique for monitoring hyphal growth ofvesicular-arbuscular mycorrhizal fungi through soil. Transactions of the British Mycological Society,89(4):429~435.
    Schüβler A, Martin H, Cohen D, Fitz M, Wipf D.2006. Characterization of a carbohydrate transporter fromsymbiotic glomeromycotan fungi. Nature,444(7121):933~936.
    Shockley FW, McGraw RL, Garrett HE.2004. Growth and nutrient concentration of two native foragelegumes inoculated with Rhizobium and mycorrhiza in Missouri, USA. Agroforestry systems,60(2):137~142.
    Singh BK, Nunan N, Ridgway KP, McNicol J, Young JPW, Prosser JI, Millard P.2008. Relationshipbetween assemblages of mycorrhizal fungi and bacteria on grass roots. Environmental Microbiology,10(2):534~541.
    Singh K.2011. Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonasfluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolusvulgaris L.. European Journal of Soil Biology,47(5):288~295.
    Six J, Bossuyt H, Degryze S, Denef K.2004. A history of research on the link between (micro) aggregates,soil biota, and soil organic matter dynamics. Soil and Tillage Research,79(1):7~31.
    Six J, Conant RT, Paul EA, Paustian K.2002. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils. Plant and Soil,241(2):155~176.
    Smith FA, Grace EJ, Smith SE,2009. More than a carbon economy:nutrient trade and ecologicalsustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist,182(2):347~358.
    Smith FA, Smith SE.1997. Tansley Review No.96. Structural diversity in (vesicular)-arbuscularmycorrhizal symbioses. New Phytologist,137(3):373~388.
    Smith SE, Read DJ.1997. Mycorrhizal symbiosis. London: Academic Press:191~201.
    Smith SE, Smith FA, Jakobsen I.2003. Mycorrhizal fungi can dominate phosphate supply to plantsirrespective of growth responses. Plant Physiologist,133(1):16~20.
    Smith SE.1980. Mycorrhizas of autotrophic higher plants. Biological Reviews,55(4):475~510.
    Solaiman MZ, Ezawa T, Kojima T, Saito M.1999. Polyphosphates in intraradical and extraradical hyphaeof an arbuscular mycorrhizal fungus, Gigaspora margarita. Applied and environmental microbiology,65(12):5604~5606.
    Solaiman ZM, Abbott LK.2008. Influence of arbuscular mycorrhizal fungi, inoculum level and phosphorusplacement on growth and phosphorus uptake of Phyllanthus calycinus under jarrah forest soil. Biologyand Fertility of Soils,44(6):815~821.
    Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH.2003. Rapid turnover of hyphae of mycorrhizalfungi determined by AMS microanalysis of14C. Science,300(5622):1138~1140.
    Tanaka Y, Yano K.2005. Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of Nsupplied. Plant, Cell and Environment,28(10):1247~1254.
    Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F.2010. Efficacy of indigenousarbuscular mycorrhizal fungi for promoting white yam (Dioscorea rotundata) growth in West Africa.Applied Soil Ecology,45(2):92~100.
    Tian C, He X, Zhong Y, Chen J.2003. Effect of inoculation with ecto-and arbuscular mycorrhizae andRhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forests,25(2):125~131.
    Tian CJ, He XY, Zhong Y, Chen J.2002. Effects of VA mycorrhizae and Frankia dual inoculation ongrowth and nitrogen fixation of Hippophae tibtana. Forest Ecology and Management,170(1-3):307~312.
    Tisdall JM, Oades JM.1980. The effect of crop rotation on aggregation in a red-brown earth. AustralianJournal of Soil Research,18(4):423~434.
    Tisdall JM, Oades JM.1982. Organic matter and water-stable aggregates in soils. Journal of Soil Science,33(2):141–163.
    Toussaint JP, St-Arnaud M, Charest C.2004. Nitrogen transfer and assimilation between the arbuscularmycorrhizal fungus Glomus intraradices Schenck&Smith and Ri T-DNA roots of Daucus carota L.in an in vitro compartmented system. Canadian journal of microbiology,50(4):251~260.
    Trimble MR, Knowles NR.1995. Influence of vesicular–arbuscular mycorrhizal fungi and phosphorus ongrowth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber (Cucumis sativus L.)plants during establishment. Canadian Journal of Plant Science,75(1):239~250.
    van Aarle IM, Rouhier H, Saito M.2002. Phosphatase activities of arbuscular mycorrhizal intraradical andextraradical mycelium, and their relation to phosphorus availability. Mycological Research,106(10):1224~1229.
    van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A,Sanders IR.1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variabilityand productivity. Nature,396(6706):69~72.
    van der Heijden MGA, Streitwolf-Engel R, Riedl R, Siegrist S, Neudecker A, Ineichen K, Boller T,Wiemken A, Sanders IR.2006. The mycorrhizal contribution to plant productivity, plant nutrition andsoil structure in experimental grassland. New Phytologist,172(4):739~752.
    Veresoglou SD, Shaw LJ, Sen R.2011. Glomus intraradices and Gigaspora margarita arbuscularmycorrhizal associations differentially affect nitrogen and potassium nutrition of Plantago lanceolatain a low fertility dune soil. Plant Soil,340(1-2):481~490.
    Voets L, Goubau I, Olsson PA, Merckx R, Declerck S.2008. Absence of carbon transfer between Medicagotruncatula plants linked by a mycorrhizal network, demonstrated in an experimental microcosm.FEMS Microbiology Ecology,65(2):350~360.
    Voets L, Providencia IE, Fernandez K, IJdo M, Cranenbrouck S, Declerck S.2009. Extraradical myceliumnetwork of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions.Mycorrhiza,19(5):347~356.
    Wang FY, Lin XG, Yin R, Wu LH.2006. Effects of arbuscular mycorrhizal inoculation on the growth ofElsholtzia splendens and Zea mays and the activities of phosphatase and urease in amulti-metal-contaminated soil under unsterilized conditions. Applied Soil Ecology,31(1-2):110~119.
    Watt M, Kirkegaard JA, Passioura JB.2006. Rhizosphere biology and crop productivity—a review.Australian Journal of Soil Research,44(4):299~317.
    Wessels JGH.1999. Fungi in their own right. Fungal Genetics and Biology,27(2-3):134~145.
    Woolhouse H. Membrane structure and transport problems considered in relation to phosphorus andcarbohydrate movements and the regulation of endotrophic mycorrhizal associations. In: Sanders FE,Mosse B, Tinker PB (Eds.), Endomycorrhizas, Proceedings of a Symposium held at the University ofLeeds, Academic Press, London, pp.209~239.
    Wright S, Upadhyaya A.1998. A survey of soils for aggregate stability and glomalin, a glycoproteinproduced by hyphae of arbuscular mycorrhizal fungi. Plant and Soil,198(1):97~107.
    Wright SF, Upadhyaya A.1996. Extraction of an abundant and unusual protein from soil and comparisonwith hyphal protein of arbuscular mycorrhizal fungi. Soil Science,161(9):575~586.
    Wu QS, Zou YN, He XH.2010. Contributions of arbuscular mycorrhizal fungi to growth, photosynthesis,root morphology and ionic balance of citrus seedlings under salt stress. Acta Physiologiae Plantarum,32(2):297~304.
    Xu P, Christie P, Liu Y, Zhang J, Li X.2008. The arbuscular mycorrhizal fungus Glomus mosseae canenhance arsenic tolerance in Medicago truncatula by increasing plant phosphorus status andrestricting arsenate uptake. Environmental Pollution,156(1):215~220.
    Young JL, Aldag RW.1982. Inorganic forms of nitrogen in soil. In: Stevens FJ (Eds.), Nitrogen inagricultural soils. Agronomy Monograph. American Society of Agronomy, pp.22:43~66.
    Zhang HQ, Tang M, Chen H, Tian ZQ, Xue YQ, Feng Y.2010. Communities of arbuscular mycorrhizalfungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides inZhifanggou watershed. Plant and Soil,326(1-2):415~424.
    Zhou JZ, Bruns MA, Tiedje JM.1996. DNA recovery from soils of diverse composition. Applied andEnvironmental Microbiology,62(2):316~322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700