促红细胞生成素对大鼠急性脊髓损伤后核因子-κB及炎症因子表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分大鼠急性脊髓损伤后核因子-κB及炎症因子表达的时相变化
     目的:
     观察大鼠急性脊髓损伤后脊髓组织中核因子-κB(NF-κB)活性及炎症细胞因子如肿瘤坏死因子-α(TNF-α)、白介素-1β(IL-1β)、白介素-6(IL-6)表达水平的时相变化,探讨其与大鼠急性脊髓损伤后继发性损伤的关系,也为下一步观察促红细胞生成素(EPO)治疗大鼠脊髓损伤提供合理的时间窗。
     方法:
     30只成年SD大鼠体重(250+10)g,随机分成5组(对照组、6h组、24h组、72h组、7d组)。对照组大鼠仅椎板切除,其余大鼠分别用30g力量动脉瘤夹从两侧夹闭脊髓30s造成脊髓损伤模型,分别于术后6h、24h、72h、7d处死取材。用EMSA法检测各组脊髓组织中NF-κB活性,ELISA法检测TNF-α、IL-1β、IL-6的表达,比较分析各组差别。
     结果:
     损伤后6h组脊髓组织中NF-κB活性明显增加,TNF-α、IL-1β、IL-6表达明显上调,与对照组比较有明显差异(p<0.01)。NF-κB活性最高值出现在损伤后72h组,TNF-α、IL-1β表达在损伤后24h组达到高峰,IL-6表达高峰出现在损伤后72h组。7d后各组因子表达均已下降,但仍高于对照组水平(p<0.01)。
     结论:
     TNF-α、IL-1β、IL-6等炎症因子的高表达可能是导致炎症反应、加重脊髓损伤的重要因素,调控NF-κB活性表达可以为临床治疗脊椎损伤提供新的策略。NF-κB活性与各组炎症因子表达高峰期均在24h至72h间,这也为我们观察EPO治疗脊髓损伤提供了时间窗。
     第二部分促红细胞生成素对大鼠急性脊髓损伤后核因子-κB及炎症因子表达的影响
     目的:
     观察促红细胞生成素(EPO)对大鼠急性脊髓损伤后脊髓组织中核因子-κB(NF-κB)表达及炎症细胞因子如肿瘤坏死因子(TNF-α)、白介素1β(IL-1β)、白介素6(IL-6)表达水平的影响,探讨其减轻大鼠急性脊髓损伤后继发伤的机制。
     方法:
     18只体重为(250+10)g的成年SD大鼠随机分成3组:对照组,损伤组和治疗组,每组6只。对照组大鼠仅椎板切除,其余大鼠用30g力量动脉瘤夹从两侧夹闭脊髓30s造成脊髓损伤模型,治疗组予术后1h、1d、2d、3d分别予EPO 5000u/kg腹腔注射,对照组与损伤组相同时间予腹腔注射同等剂量生理盐水。所有动物于术后3d处死取材,用EMSA法检测脊髓组织中NF-κB活性,ELISA法检测TNF-α、IL-1β、IL-6的表达,脊髓含水量测定判断脊髓水肿程度,BBB评分评价大鼠后肢功能恢复情况,比较3组间差异。
     结果:
     3d后EPO治疗组脊髓组织中NF-κB、TNF-α、IL-1β、IL-6的表达水平均比损伤组显著降低(P<0.05),而治疗组大鼠脊髓水肿程度及后肢功能变化较损伤组均无明显统计学意义。
     结论:
     EPO能下调急性脊髓损伤后脊髓组织中炎性信号因子的表达从而抑制炎症反应,对继发性脊髓损伤起到一定的保护作用,而对于减轻脊髓水肿促进脊髓功能恢复方面作用不明显。
Part I
     Expression of nuclear factor-κB and inflammatory cytokines after acute spinal cord injury in rats
     Objective
     To observe the expression level of nuclear factor-κB(NF-κB) and inflammatory factor of tumor necrosis factor (TNF-α), interleukin(IL)-1βand IL-6 after acute spinal cord injury in rats, and to explore its possible relationship with acute spinal cord injury,also observed for the next step of erythropoietin (EPO) treatment of spinal cord injury in a reasonable time window.
     Methods
     30 SD rats weighting(250+10)g were randomly divided into 5 groups(control group, 6h group, 24h group, 72h group, 7d group), SD rat model of acute spinal cord injury were established by aneurysm clip with 30g power cord clamping from both sides of spinal cord for 30s. Rats after operation were sacrificed respectively after 6h, 24h, 72h and 7d. The expression of NF-κB was detected by EMSA assay and the expression of TNF-α, IL-1βand IL-6 were examined with ELISA in spinal cord tissue.
     Result
     The activity of NF-κB and the expression of TNF-α, IL-1βand IL-6 were significantly higher than control group 6 hours after spinal cord injury(P<0.01). The highest NF-κB activity in 72h after operation, TNF-α, IL-1βexpression peaked at 24h and IL-6 expression peaked at 72h after operation. Factor expression in each group after 7 days had fallen, but still higher than the level of control group(P<0.01).
     Conclusion
     The high expression of TNF-α, IL-1βand IL-6 may lead to inflammation and increase the important factors in spinal cord injury, regulation of the expression of NF-κB activity can provide a new clinical treatment strategy for spinal cord injury. NF-κB activity and expression of inflammatory cytokines in each group wre in the peak period between 24h to 72h, this provided a time window to observe the EPO treatment of spinal cord injury.
     Part II
     The effect of erythropoietin on the expression of NF-κB and inflammatory cytokines after acute spinal cord injury in rats
     Objective
     To observe the influence of erythropoietin (EPO) administration on expression of nuclear factor-kappa B(NF-κB) and inflammatory cytokines of tumor necrosis factor-α(TNF-α), interleukin(IL)-1β, IL-6 following acute spinal cord injury and to explore the possible mechanisms of reducing secondary spinal cord injury.
     Methods
     18 SD rats weighting(250+10)g were randomly divided into 3 groups: Control group, injury group and treatment group. Treatment group were given intraperitoneal injection of EPO(5000u/kg) at 1h, on the 1st, 2nd and 3rd day after establishment of spinal cord injury model. All rats were sacrificed after 3days. The expression of NF-κB was detected by EMSA assay and the expression of TNF-α, IL-1βand IL-6 were examined with ELISA, the spinal cord edema was evaluated by spinal cord water content, and the hindlimb function in rats was evaluated by the BBB Rating.
     Result
     The levels of NF-κB, TNF-α, IL-1β, IL-6 in spinal cord tissue of treatment group were significantly lower than those in injury model group(P<0.05), and the levels of spinal cord edema and indlimb function were no statistically significant.
     Conclusion
     EPO administration can down-regulate the expression of the inflammatory cytokines, inhibit the inflammatory response and play a role in protecting the secondary spinal cord injury, but the Functional recovery of spinal cord was no significant change.
引文
1. Bachmeier BE, Nerlich AG, Weiler C, et al. Analysis of tissue distribution of TNF-alpha, TNF-alpha-receptors, and the activating TNF- alpha-converting enzyne suggests activation of the TNF-alpha system in the ageing intervertebral disc.Ann NY Acad Sci, 2007, 1096:442-541.
    2. Xu R, Xu G, Shi J, et al. A correlative study of NF-kappaB activity and cytokines expression in human chronic nasal sinusitis. Laryngol Otol,2007,121:644-649.
    3. Nystrom B, Berglund J E, Bergquist E. Methodological analysis of an experimental spinal cord compression model in the rat. Acta Neurol Scand, 1988,78(6):460-466.
    4. Edgar S, Patrick M, Mitheal M, et al. Rapid detection of nuclear binding proteins with mini-extracts prepared form a small number of cell. Nucl Acid Res, 1989, 17:6419-6421.
    5.颜子颖,王海林.精编分子生物学指南.第一版,北京:科学出版社, 1998: 332-333.
    6. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol, 2003, 21: 335-376.
    7.杨玉荣,余锐萍,梁宏德. Tol1-NF-kB信号途径及其介导的功能.细胞生物学杂志, 2007, 29(4): 483-486.
    8. Kang YJ, Seti-Nebi A, Davis RJ, et al. Multiple activation mechanisms of p38alpha mitogen-activated protein kinase. J Biol Chem, 2006, 281(36): 26225-26234.
    9. Akira S, Takeda K, Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2001, 2(8): 675-680.
    10.李基民,权正学,刘渤.核转录因子-κB信号途径与急性脊髓损伤继发伤的研究进展.创伤外科杂志,2009,11:85-87.
    11. Conti A, Cardali S, Genovese T, et al. Role of inflammation in the secondary injury following experimental spinal cord trauma. Neurosurg Sci, 2003, 47: 89-94.
    12.毕涉,高骥援,主编.炎症与抗炎症药.北京,人民卫生出边社, 1993.
    13. Rothwell NJ, Luheshi G, Toulmond S. Cytokines and their receptors in the central nervous system: physiology, pharmacology, and pathology. Pharmacol Ther,1996, 69: 85-95.
    14. Laskowitz DT, Goel S, Bennett ER, et al. Apolipoprotein E suppresses glial cell secretion of TNF alpha. J Neuroimmunol, 1997, 76: 70-74.
    15.苗巍巍,杨有庚,程杰平,等.肿瘤坏死因子-α在大鼠急性脊髓损伤中的表达.中国老年学杂志, 2009, 29: 535-537.
    16.陈宣维,贾连顺,林建华,等.重组人促红细胞生成素对大鼠脊髓损伤后肿瘤坏死因子-α表达的影响.中国矫形外科杂志, 2004, 12: 362-364.
    17.李想,王少波.脊髓损伤后炎症性细胞因子表达的变化及甲基强的松龙的影响.中国康复理论与实践, 2005, 11: 91-93.
    18. Kosaku K, Katina C, Elizabeth V, et al. Interleukin-1βmessenger ribonucleic acid and protein levels after fluid-percussion brain injury in rats: importance of injury severity and brain temperature. Neurosurgery, 2002, 51: 195 - 203.
    19. Braughler JM, Hall ED, Means ED, et al. Evaluation of an intensive methylprednisolone sodium succinate dosing regimen in experimental spinal cord injury. J Neurosurg, 1987, 67: 102-105.
    20. Amar AP, Levy ML. Pathogenesis and pharmacological strategies for mitigating secondary damage in acute spinal cord injury. Neurosurgery, 1999, 44: 1027- 1039.
    21. Hall ED. The neuroprotective pharmacology of methylprednisoloneglucocorticoid steroid. J Neurosurg, 1992, 76: 13-22.
    
    1. Alexander JK, Popovich PG. Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Prog Brain Res, 2009, 175: 125-137.
    2. Pinzon A, Marcillo A, Pabon D, et al. A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury. Exp Neurol, 2008, 213: 129-36.
    3. Okutan O, Solaroglu I, Beskonakli E, et al. Recombinant human erythropoietin decreases myeloperoxidase and caspase-3 activity and improves early functional results after spinal cord injury in rats. Journal of Clinical Neuroscience. 2007, 14: 364-368.
    4. Erbayraktar S, Yilmaz O, Gokmen N, et al. Erythropoietin is a multifunctional tissue-protective cytokine. Curr Hematol Rep, 2003, 2(6): 465-470.
    5. Bernaudin M, Nedelec AS, Divoux D, et al.Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. Cereb Blood Flow Metab, 2002, 22(4): 393-403.
    6. Dame C, Juul SE, Christensen RD. The biology of erythropoietin in the central nervous system and its neurotrophic and neuroprotective potential. Biol Neonate, 2001, 79: 228-235.
    7. Gorio A, Cokmen N, Erbayraktar S, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci USA, 2002, 99 (14):9450-9455.
    8. Calapai G, Marciano MC, Corica F, et al. Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol, 2000, 401(3): 349-356.
    9. Celik M, Gokmen N, Erbayraktar S, et al. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci USA, 2002, 99(4): 2258-2263.
    10. Morishita E, Masuda M, Nagao M, et al. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience, 1997, 76(1): 105-116.
    11. LaRosa G, Cardali S, Genovese T, et al. Inhibition of nuclear factor-kappaB activation with pyrrolidine dithiocarbamate attenuating inflammation and oxidative stress after experimental spinal cord trauma in rats. J Neurosurg Spine, 2004, 1: 311-312.
    12. Bethea JR, Castro M, Keane RW, et al. Traumatic spinal cord injury induces nuclear factor-кB activation. J Neurosci, 1998, 18: 3251-3260.
    13. Villa P, Bigini P, Mennini T, et al. Erythropoietin selectiely attenuates cytokine production and inflammation in cerebral is chemia by targeting neuronal apoptosis. J Exp Med, 2003, 198(3):971-975.
    14.周华,刘华,黄坚,等. IL-10对脊髓损伤后细胞凋亡和CD95作用的初步研究.苏州大学学报, 2005, 25(3): 395-401.
    1. Alexander JK, Popovich PG. Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. Prog Brain Res, 2009, 175: 125-137.
    2. Gorio A, Gokmen N, Erbayraktar S, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad SCI USA, 2002, 99: 9450-9455.
    3. Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine, 2001, 26: S2-12.
    4. Jacobs WB, Fehlings MG. The molecular basis of neural regeneration. Neurosurgery, 2003, 53(4): 943-948.
    5. Stys PK. White matter injury mechanisms. Curr Mol Med, 2004, 4: 113-130.
    6.李建明,初同伟.脊髓损伤后星形胶质细胞的病理变化及相关治疗措施的进展.中国脊柱脊髓杂志, 2007, 17(8): 632-634.
    7. Taoka Y, Okajima K. Role of leucocytes in spinal cord injury in rats.J Neurotrauma, 2000, 17(3): 219-229.
    8. Guimar?es JS, Freire MA, Lima RR, et al. Mechanisms of secondary degeneration in the central nervous system during acute neural disorders and white matter damage. Rev Neurol, 2009, 48: 304-310.
    9. Bethea JR, Castro M, Keane RW, et al. Traumatic spinal cord injury induces nuclear factor-кB activation. J Neurosci, 1998, 18: 3251-3260.
    10.李基民,权正学,刘渤.核转录因子-κB信号途径与急性脊髓损伤继发伤的研究进展.创伤外科杂志, 2009, 11: 85-87.
    11. Prendes M, Zheng Y, Beg AA. Regulation of developing B cell survival by RelA-containing NF-kappa B complexes. J Immunol, 2003, 171: 3963-3969.
    12. Genc S, Koroglu TF, Genc K. Erythropoietin and the nervous system. Brain Res, 2004, 1000(1-2): 19-31.
    13. Gene s, Koroglu TF, Gene K, et al. Erythropoietin as a novel neuroprotectant. Restor Neurol Neuro SCI, 2004, 22(2):105-119.
    14. Marti HH. Erythropoietin and the hypoxic brain. J Exp Biol, 2004, 207: 3233-3242.
    15. Sirene AL, Knerlich F, Poser W, et al. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol(Berl), 2001, 101(3): 271-276.
    16. Jelkmann W. Effects of erythropoietin on brain function. Curr Pharmaceut Biotechnol, 2005, 6(1): 65-79.
    17. Chin K, Yu X, Beleslin-Cokic B, et al. Production and processing of erythropoietin receptor transcripts in brain. Brain Res Mol Brain Res, 2000, 81 (1-2): 29-42.
    18. Nagai A, Nakagawa E, Choi HB, et al. Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol, 2001, 60(4): 386-392.
    19.胡杨,郑启新,秦文.不同药物途径促红细胞生成素用于治疗大鼠急性脊髓损伤的研究.中国康复医学杂志, 2009, 24(6): 512-514.
    20. Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signal in cascades. Nature, 2001, 412(6847): 641-647.
    21. Chong ZZ, Kang JQ, Maiese K. Hematopoietic factor erythropoietin fosters neuroprotection through novel signal transduction cascades. Cereb Blood Flow METAB, 2002, 22(5): 503-514.
    22. Kaptanglu E, Solaroglu I, Okutan O, et al. Erythropoietin exerts neuroprotection after acute spinal cord injury in rats: effect on lipid peroxidation and early ultrastructural findings. Neurosury Rev, 2004, 27(2): 113-120.
    23. Rivlin A, Tator CH. Regional spinal cord blood flow in rats after severe cord trauma. Neurosurg, 1978, 49(6): 844-853.
    24. Maiese K, Li FQ, Chong ZZ. Erythropoietin in the braincan the promise to protect be fulfilled? Trends Pharmacol SCI, 2004, 25(11): 577-583.
    25. Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke, 2004, 35(7): 1732-1737.
    26. Choi DW. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neuro SCI Lett, 1985, 58(3): 193-197.
    27. Morishita E, Masuda M, Nagao M, et al. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience, 1997, 76(1): 105-116.
    28. Calapai G, Marciano MC, Corica F, et al. Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharmacol, 2000, 401(3): 349-356.
    29. Hayashi T, Sakurai M, Abe K, et al. Apoptosis of motor neurons with induction of caspases in the spinal cord after ischemia. Stroke, 1998, 29(5): 1007-1012.
    30. Murat C, Necati G, Serhat E, et al. Eeythropoietin prevents motor neuron apotosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad SCI USA, 2002, 99: 2258-2263.
    31. Vairano M, Russo CD, Pozzoli G, et al. Eeythropoietin exerts antiapoptotic effects on rat microglial cells in vitro. Eur J Neurosci, 2002, 16: 584-592.
    32. Assandri R, Egger M, Gassmann M, et al. Erythropoietin modulates intracellular cacium in a human neuroblastoma cell line. J Physiol, 1999, 516: 343-352.
    33. Hoke A. Erythropoietin and the neurous system: novel therapeutic options for neuroprotection. New York: Springer, 2006, 147-164.
    34. Shingo T, Sorokan ST, Shimazaki T, et al. Erythropoietin of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci, 2001, 21: 9733-9743.
    35. Maiese K, Li FQ, Chong ZZ. Erythropoietin in the braincan the promise to protect be fulfilled? Trends Pharmacol SCI, 2004, 25(11): 577-583.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700