基于非匀强电场的谷物水分在线检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷物干燥机械是实现谷物生产机械化的重要机具之一。谷物干燥机械化已经成为我国谷物生产全程机械化的瓶颈。目前,虽然已经有一些塔式干燥机械应用,但我国广大的农村却依然采用自然干燥法干燥谷物。究其原因还是其脱离中国国情。为了加速社会主义新农村建设,实现农业机械化,专家们提出了适合我国农村的平仓式谷物干燥机的设想,并开展广泛研究。但是,由于平仓式谷物干燥机工作原理和结构上的原因,无法采用传统的电容式谷物水分在线检测方法来在线测定谷物水分。所以,研究开发一种适用于平仓式谷物干燥机的新型的谷物水分在线检测方法已经成为一项摆在我们面前刻不容缓的任务。
     本文从匀强电场中谷物的电特性研究入手,深入地研究了谷物的带电方式和特点。结合谷物本身介于电介质与生命体之间这一特点,提出了谷物的带电方式有极化带电、摩擦带电和生命带电三种,并且通过试验探讨了他们的成因和机理。极化带电是由载流子的定向运动和偶极子的取向共同造成的。其贡献多寡与谷物的生命特征有关。当谷物水分较低时,谷物的生命特征较弱,可以作为电介质处理。这时偶极子的取向是极化带电的主要贡献者。而当谷物水分较高时,谷物的生命特征较强,应该作为生命体处理。这时浓差极化增强,载流子的定向运动成为极化带电的主要贡献者。摩擦带电是一种广泛存在的带电形式。它存在于谷物的相对运动中。虽然尚无摩擦带电的权威性成因解释,但是,通过试验,还是能够发现其中的规律。谷物的摩擦带电的电性与其和摩擦材料的介电常数有关。当谷物的介电常数大于摩擦材料的介电常数时,谷物带负电;而当谷物的介电常数小于摩擦材料的介电常数时,谷物则带正电。谷物摩擦电量的多少与两者介电常数的差有关。两摩擦材料介电常数的差越大,摩擦电量也就越多。生命带电是生命活动的表现形式之一。它是由于谷物生命活动中维持细胞膜内外物质交换的膜电势差所造成的,所以,生命带电与谷物的水分具有十分密切的相关关系。从安全水分开始,随着谷物水分的增加,生命带电量增大。
     在电特性应用方面,本文重点介绍了谷物清选分级和水分检测。谷物清选分级研究很多,但应用基本没有。对于谷物清选分级机研制,没有确定一个能够反映谷物分离程度的能够指导设计的参数。通过试验研究,本文提出以极化力和谷物质量组成的参数一极化力质比可以作为谷物清选分级机设计中的量化指标。试验结果表明,优劣谷物之间存在着极化力和极化力质比上的显著差异。本文测定了一些谷物的极化力质比。对于谷物水分检测,静态检测基本成熟,已经有了商品机型销售;而在线检测虽然已经应用在一些大型干燥机上,如塔式干燥机,但是,由于研究状态的不同以及修正措施上的滞后,导致了示值误差高达1.5%左右。更重要的是传统的基于电特性的谷物水分测量都是采用平行平板电容器的结构,这限制了它在许多干燥机上的应用,例如平仓式谷物干燥机。通过农业物料的电特性应用介绍,我们试图寻求一种新的谷物水分在线检测方法。
     本文从满足平仓式谷物干燥机结构需要出发,提出了基于非匀强电场的谷物水分在线检测方法。进行了非匀强电场中谷物电特性理论研究和大量的试验研究。同时设计并试验了共面水平电极谷物水分传感器及其测量系统。基于非匀强电场的谷物水分在线检测方法的理论核心是由双电轴组成的非匀强电场中谷物的电特性。参照匀强电场中谷物电特性,并根据平仓式谷物干燥机的工作特点,确定了测定频率、谷物水分、电极间距以及谷物层厚度等4个影响因素。为了方便研究,设计了由共面水平电极谷物水分传感器及其测量系统组成的专用测定装置。利用电介质物理学和生物物理学知识对非匀强电场中谷物电特性进行了理论研究。双电轴形成电场的等电位曲线为两族圆心互为反演的偏心圆族线。谷物表面极化电荷密度极值点出现在以电轴轴心为圆心的与谷物表面相切的圆的切点处。测定频率对谷物电特性影响与匀强电场中的具有显著的差异,其间不是对数关系,而是反比关系。作者利用声子和势能垒理论以及高分子结构学说,从微观结构上解释了其关系的成因,并且对试验结果进行了宏观拟合,拟合结果是相关性高度显著。当测定频率较高时,水稻品种间的电特性差异较小。谷物水分与电特性的关系也不是对数关系,而是3次多项式的关系。该结果是由极化、水分和非匀强电场三因素共同作用的动态平衡的结果。误差分析结果表明,其误差均小于1%。电极间距对谷物电特性的影响与谷物水分等因素有关。原则上是极间距越小,精度越高。但结合平仓式谷物干燥机的工作特点和试验结果,极间距应当适中。谷物层厚度对电特性的影响主要表现为接触压力和容重。共面水平电极因其电极在同一水平面而不存在接触压力差,容重的影响也是在高水分情况下才有。所以,谷物层厚度对电特性的影响在谷物层厚度小于50cm时可以忽略不计。根据平仓式谷物干燥机的工作特点,基于非匀强电场的谷物水分在线检测方法在测定频率为9000Hz,极间距为16mm条件下,谷物电特性与水分的关系最显著,效果也最佳。
     本文设计了由共面水平电极谷物水分传感器、高频电源、标准电阻和数据处理系统组成的基于非匀强电场的谷物水分在线检测装置。通过比较、选择,确定了最佳目标函数。以电极间谷物的电压降作为目标函数,它与水分的关系也是3次多项式。拟合误差在谷物水分小于23%时,低于2.6%。在安全水分处,误差在0.5%左右。能够满足平仓式谷物干燥机的工作要求。作者还对共面水平电极谷物水分传感器及其测量系统进行了干燥中谷物水分在线检测试验,并分析了试验误差。试验中采用了20912和徐稻3号两个水稻品种以及周麦15小麦品种。通过试验发现,谷物达到安全水分时,水稻的水分目标函数值无种间差异,但与小麦的水分目标函数值存在着不同。这有利于平仓式谷物干燥机水分在线检测的简化操作。
The grain-drying machine is one of important implements in the process accomplishing the mechanization of grain production. The mechanization of grain drying has become the bottleneck of the mechanization of whole grain production process in China. Although some tower drying machines have been used at present, but natural drying method has been applied to dry grain in our vast countryside. The thing accounting for the occurrence is that the machines do not tally with our actual situation. In order to accelerate the construction of a new socialist countryside and accomplish the mechanization of agriculture, experts proposed the idea of pin drying machine which tallies with our actual situation and carried out a lot of researches. But the traditional capacitor method of on-line determination of the water content of grain is not applied to that in pin drying machine because of its operating principle and structure. Therefore, the research of a new method of on-line determination of grain water content suitable for pin drying machine has become a task which brooks no delay confronting us.
     The charging patterns and their characteristics are studied deeply beginning with the research of the electric properties of grain under uniform electric field in this paper. It is put forward that the charging patterns of grain have polarization charging, friction charging and vital charging in light of that the characteristics of grain are between dielectric and organism. The polarization charging is caused by the directional movement of carrier and orientational polarization of dipole jointly. Their contributions are related with the vital characteristics of grain. When the water content of grain is lower, the vital characteristics of grain is weak, it is considered as dielectric. The orientational polarization of dipole is major contributions in the polarization charging. And when the water content of grain is higher, the vital characteristics of grain is strong, it is considered as organism. The concentration polarization increases at this moment. The directional movement of carrier is major contributions in the polarization charging. Friction charging is a charging pattern which exists widely. It exists in relative movement of grain. Although there is not an authoritative explanation of the formation cause of friction charging, but we can find its law by experiments. The charge character of friction charging of grain is related with the dielectric constants of grain and frictional material. When dielectric constant of grain is greater than that of frictional material, grain charges are negative. Whereas dielectric constant of grain is less than that of frictional material, grain charges are positive. The charge quantity of friction charging of grain is related with the quantitative difference between the dielectric constants of grain and frictional material. The larger the difference is, the more the charge quantity is. The vital charging is one of manifestations of biological behavior. It is caused by the potential difference of membrane, which maintains matter exchange between the inner and the outer of cell membrane. Therefore, vital charging has close relation to the water content of grain. Beginning from safe water content of grain, the charge quantity of vital charging increases with the increase of the water content of grain.
     On the use of the electric properties of grain, the cleaning-grading and water determining of grain are introduced mainly. There are many studies of the cleaning-grading of grain, but its use is not seen basically. There is not a parameter, which reflects separate level and is used to guide the design on the development of the cleaning-grading machine of grain. By using of experiment, the parameter that consists of polarization force and grain mass, the ratio of polarization force to mass is proposed in this paper. The ratio of polarization force to mass should be the quantitative parameter on the design of cleaning-grading machine of grain. The experimental results show that there are the remarkable differences of the polarization force and the ratio of polarization force to mass between good grain and bad one. Determining the ratio of polarization force to mass of some grains is carried out in the paper. The quiescent determining technology matures basically and there are commodity machines on sale on the determining of the water content of grain. Although the on-line determining has been used in some large drying machine, for example tower drying machine, but the error is as high as 1.5% because of the difference of research condition and the lag of corrected measure. It is important that all traditional determining devices of water content based on the electric properties of grain use the structure of parallel flat capacitor. This limits to its use on many drying machines, for example pin grain drying machine. We try to find a new on-line determining method of the water content of grain with the introduction of the uses of the electric properties of grain.
     In this paper, proceeding from the requirement of the structure of pin grain drying machine, the method of on-line determination of grain water content is proposed based on non-uniform electric field; the theoretical researches and a lot of experiments are carried out on the electric properties of grain under non-uniform electric field; and the sensor of the water content of grain which has the level electrodes at the same plane and its measure system are designed and tested at the same time. The theoretical core of the determining method of the water content of grain based on non-uniform electric field is the electric properties of grain under non-uniform electric field that is produced by double electric axes. Consulting the electric properties of grain under uniform electric field and according to the operating characteristics of pin grain drying machine, 4 influence factors are determined, they are determining frequency, grain water content, electrode gap and grain layer thickness. For convenient research, the special determining device is designed that consists of the sensor of the water content of grain that has the level electrodes at the same plane and its measure system. Author conducted the theoretical researches on the electric properties of grain under non-uniform electric field by the knowledge of dielectric physics and biophysics. The equipotential lines of the electric field caused by double electric axes are 2 eccentric circle family lines that are mutual inversion. The extremum points of the polarization charge density of grain surface appear in the points of tangency that are the circle that the center of circle is at the center of electric axis and grain surface. The influence of determining frequency on electric properties of grain under non-uniform electric field is obviously different from that under uniform electric field. The relationship is not logarithmic function, whereas is inverse function. Author explains the formation cause of the relationship from microstructure by using the theory of phonon and potential barrier and the doctrine of high polymer. And the fitting on the experimental results is carried out. The coherence of fitting results is of high significance. When the determining frequency is higher, the difference of the electric properties of rice is less. The influence of the water content of grain on electric properties of grain under non-uniform electric field is not logarithmic function, whereas is 3 order multinomial. This result is that of dynamic equilibrium that polarization, water content and non-uniform electric field affect together. The results of error analysis show that the error is less than 1%. The influence of the electrode gap on the electric properties of grain is related with the factor of the water content of grain. Theoretically the thinner the electrode gap is, the higher the precision is. But according to operating characteristic and the experimental results, the electrode gap should be moderate. The influence of the grain layer thickness on the electric properties of grain mainly is contact pressure and bulk weight. There is not the difference of the contact pressure in the level electrodes because the electrodes are at the same plane. The influence of the bulk weight only appears in high water content. Therefore, when the grain layer thickness is less than 50cm, its influence on the electric properties of grain is neglectful. According to operating characteristic of pin grain drying machine, the method of on-line determination of grain water content based on non-uniform electric field has the most significant relationship between the electric properties and the water content of grain and best effect at the determining frequency of 9000Hz and the electrode gap of 16mm.
     In this paper, the device of on-line determination of grain water content based on non-uniform electric field is designed, which consists of the sensor of the water content of grain which has the level electrodes at the same plane, the high frequency power supply, the standard resistance and the data processing system. By means of comparing and choosing, the best objective function is defined, that is potential difference of grain between the electrodes. The relationship between potential difference and water content of grain is 3 order multinomial. The fitting errors are less than 2.6% when the water content of grain is less than 23% and about 0.5% when the water content of grain is the safe water content. This is satisfied with the operating requirement of pin grain drying machine. Author still carries out the experiments of on-line determination of the water content of grain by the sensor of the water content of grain that has the level electrodes at the same plane and its measure system, and conducts the analysis of experimental errors. The grain breeds of 20912, Xudao 3 and Zhoumai 15 are applied in the experiments. By experiments, it is found that there is not a breed difference in the objective function of rice water content at the safe water content of grain, but the objective function of rice water content is different from that of wheat water content. This is good for the simplification of operating determining the water content of grain online in pin drying machine.
引文
1 国家统计局.全国主要农作物面积和产量增减情况[EB/OL].http://www.agri.gov.cn/sjzl/2005/29.htm,2006-05-15/2007-01-10
    2 张宝文.人力发展农业机械化扎实推进现代农业和新农村建设[EB/OL].http://www.ahnjh.gov.cn/Subarea/CH/Content.asp?ID=3710,2006-12-30/2007-01-10
    3 王钰,樊家志.低温谷物干燥机经济效益分析[J].农业科技推广,2006,3:21-22
    4 周惠明.谷物科学原理[M].北京:中国轻工业出版社.2003
    5 沈再春.农产品加工机械与设备[M].北京:中国农业出版社.2002
    6 孙鹏,魏永立,马文军,等.谷物干燥品质的研究[J].农机化研究,2002,3:44-46
    7 Cao Chongwen.Rice Drying and Development of Rice Dryers in China[J].Transactions of the CSAE,2001,17(1):5-9
    8 张绪坤,毛忠怀,赵有斌.热泵干燥技术的现状与发展[J].粮油加工与食品机械,2004,4:56-58
    9 谢英柏,宋蕾娜,杨先亮.热泵干燥技术的应用及其发展趋势[J].农机化研究,2006,4:12-16
    10 尹丽妍,丁辅超,吴文福,等.谷物低温真空干燥机机理的探讨[J].中国粮油学报,2006,21(5):120-132
    11 李工一,张良,李志一,等.电热干燥新方法-远红外技术原理与应用[J].第九届全国红外加热暨红外医学发展研讨会论文摘要集,2003,25(6):78-79
    12 万风岭,谢苏江,周昭军.干燥设备的现状与发展趋势[J].化工装备技术,2006,27(1):10-12
    13 崔金福,廖敏超,蒋宝泉.远红外线辐射加热在谷物干燥上的应用[J].现代化农业,2001,8:34-35
    14 蒋德云,朱德泉,周杰敏.微波干燥粮食的研究[J].粮油食品科技,2006,14(2):12-13
    15 于佳滨,千心彤,李义军.物料干燥原理及方法[J].农机化研究,2004,3:49
    16 张化杰,周丹刚,鞠革,等.热管技术在玉米干燥设备中应用的研究[J].粮食与饲料工业,2000,6:22-23
    17 俞厚忠,王光风,徐玉堂.闭路循环干燥装置及其应用[J].化工机械,2001,28(5):271-273
    18 谷铁城,马继光.种子加工原理与技术[M].北京:中国农业大学出版社,2001
    19 张志鸿,刘文龙.膜生物物理学[M].北京:高等教育出版社,1987
    20 程极济,林克椿.生物物理学[M].北京:人民教育出版社,1982
    21 孙一源,余等苑.农业生物力学及农业生物电磁学[M].北京:中国农业出版社,1996
    22 黎顺田.静电场在农业生物上的应用研究[D].南京:南京农业大学,1989
    23 殷之文.电介质物理学[M].北京:科学出版社.2003
    24 钱新耀.种子的电传导和介电特性的研究.[D].镇江:江苏工学院,1987
    25 董怡为.种子的电特性及静电分选.[D].南京:南京农业大学,1990
    26 查全性.电极过程动力学导论[M].北京:科学出版社,1987
    27 吉林大学.物理化学[M].北京:人民教育出版社,1979
    28 傅献彩,陈瑞华.物理化学[M].北京:高等教育出版社,1984
    29 傅家瑞.种子生理[M].北京:科学出版社,1985
    30 尤田束.测定农产品微波介电特性的新方法[J].浙江大学学报(自然科学版),1998,32(3):357-362
    31 Nelson,S.O.Dielectric properties of grain and seed in the 1 to 50 MC range[J].TRANSACTIONS of ASAE,1965,8(1):38-48
    32 Nelson,S.O.Frequency dependence of the dielectric properties of wheat and rice weevil,[D].Ames,Iowa:lowa State University,1972
    33 Shahab Sokhansanj,Nelson,S.O..Dependence of dielectric properties of whole-grain wheat on bulk density[J].J.Agric.Engng.Res,1988,39(3):173-179
    34 董怡为.谷物的极化带电特性.[J].农业机械学报,2006,37(8):38-40
    35 ASAE.ASAE Standards.1985,82-89
    36 森邦男.農产物の电气的特性[J].晨产物性研究(第1集),1979,154-176
    37 早川千吉朗,坂口荣一郎.農产物、食品等の静电气的特性[J].農产物性研究(第2集),1985,135-155
    38 土夫.电磁现象与应用[M].南昌:江西人民出版社,1982
    39 白希尧.静电处理种子的生理生化试验[J].见:中国静电学会.北京国际静电会议论文集,北京:万国学术出版社,1988,64-69
    40 马景顺.静电场处理玉米种子对萌发中淀粉酶总活性影响的实验研究[J].见:中国静电学会.北京国际静电会议论文集,北京:万国学术出版社,1988,85-91
    41 郑铁松.微波处理稻米酶活力及品质影响[J].郑州粮食学院学报,1996,17(1):1-5
    42 李里特.对静电场下果蔬保鲜机理的初步分析[J].中国农业大学学报,1996,1(2):62-65
    43 蔡兴旺,郭克婷.高压静电场对刺青瓜种子生化指标的影响试验[J].农机化研究,2004,4:139-141
    44 吴旭红,孙为民,张红燕,等.高压静电场对南瓜种子萌发及幼苗生长的生物学效应[J].种子,2004,23(2):27-30
    45 李一,叶家明.高压静电场对水稻陈种生物学效应的研究[J].湖南农业大学学报,1996,22(5):421-426
    46 赵剑,杨文杰,马福荣,等.高压静电场(HVEF)对苜蓿叶片愈伤组织增殖的影响[J].生物 物理学报,1997,13(2):255-260
    47 白亚乡,胡玉才.高压静电场对农作物种子生物学效应原发机制的探讨[J].农业工程学报,2003,19(2):49-51
    48 吴晓星,张佩云,侯福林,等.几种花卉种苗静电处理效果分析[J].山东林业科技,1997,3:12-15
    49 康敏,余登苑,柳学平,等.静电场对植物生长的生物效应研究[J].农业工程学报,1998,12:252-254
    50 Shaw,T.M.,J.A.Galvin.High-frequency-heating characteristics of vegetable tissues determined from electrical-conductivity measurement[J].Proc.IRE,Waves and Electrons Sect,1949,37(1):83-86
    51 Thompson,David R.,Gerald L.Zachariah.Dielectric theory and bioelectrical measurement(Part Ⅱ.Experimental)[J].TRANSACTIONSoftheASAE,1971.14(2):214-215
    52 #12
    53 #12
    54 #12
    55 张立彬,胥芳,周国君,等.苹果的介电特性与新鲜度的关系研究[J].农业工程学报,1996,12(3):186-190
    56 张立彬,胥芳,贾灿纯,等.苹果内部品质的电特性无损检测研究[J].农业工程学报,2000,16(3):104-106
    57 宋金亚,张立彬,计时鸣,等.利用介电特性的水果品质无损检测[J].无损检测,2003,25(8):420-422
    58 柯大观,张立彬,胥芳.基于介电特性的水果无损检测系统研究[J].浙江工业大学学报,2002,30(5):446-450
    59 Harper,J.C.,C.O.Chichester and T.E.Roberts.Freeze-drying of foods[J].AGRICULTURAL ENGINEERING,1962,43(2):78-81,90
    60 胥芳,张立彬,计时鸣.无损检测桃子电特性的试验研究[J].农业工程学报,1997,13(1):202-205
    61 Pace,W.E.,W.B.Westphal,S.A.Goldblithetc..Dielectric properties of potatoes and potato chips[J].J.Food Sci,1968.33:30-36
    62 Stuchly,S.S..Dielectric properties of some granular solids containing water[J].J.Microwave Power,1970,5(2):62-68
    63 Nelson,S.O..Frequency-and temperature-dependent permittivity of fresh fruits and vegetables from 0.01 to I.8GHz[J].TRANSACTIONS of the ASAE,2003,46(2):567-574
    64 丁昌江,梁运章.高压电场干燥胡萝卜的试验研究[J].农业工程学报,2004,20(4):220-222
    65 郭文川,郭康权,王乃信.电激励信号的频率和电压对果品电特性的影响[J].农业工程学报,2004,20(2):62-65
    66 郭文川,朱新华,周闯鹏,等.西红柿成熟度与电特性关系的无损检测研究[J].农业现代化研究,2002,23(6):458-460
    67 Norris K.H.,A.W.Brant.Radio frequency as a means of grading eggs[J].Food Technol,1952,6(6):204-208
    68 沈林生,陈宁,王光亮.用生物电鉴别受精蛋的检测装置的研究[J].农业工程学报,1996,12(3):163-166
    69 F.Pinkerton,I.I.Peters.Conductivity,percent lactose,and freezing point of milk[J].J.Dairy Sci,1958,41:392-397
    70 董怡为,鲁亚芳.蜂蜜的电特性--蜂蜜的电导率与其成分的关系[J].食品科学,1991,11:8-10
    71 查忠秀,鲁亚芳,董怡为.温度对蜂蜜的电导率的影响[J].食品科学,1991,12:4-8
    72 丁英丽.基于电容式传感器的粮食水分测量仪[J].传感器技术,2003,22(4):54-56
    73 王新岚.电容式传感器在面粉水分检测中的应用[J].当代农机,2006,5:100
    74 罗绵荣,梁云根,袁家厚,等.粮食烘干过程中在线式水分测定仪的研究与设计[J].鞍山钢铁学院学报,1998,2l(4):34-38
    75 翟宝峰,王吴.电容式粮食水分检测中的影响因素分析[J].辽宁工学院学报,2002,22(5):1-3
    76 张晓波.电容式谷物水分测定仪校准检验方法研究[J].粮油食品科技,1999,3:28-29
    77 滕召胜,宁乐炜,张海霞,等.粮食干燥机水分在线检测系统研究[J].农业工程学报,2004,20(5):130-133
    78 芦燕敏.粮食烘干机水分在线检测和自动控制[J].粮食流通技术,2001,5:28-29
    79 赵麟祥,刘香斌,蒋蔚.粮食水分含量的在线自动检测[J].现代计量测试,1994,1:21-23
    80 曹云东,林国栋,张阳,等.粮食水分在线检测控制系统[J].仪器与仪表,2003,4:17-19
    81 王熙,王文芹,杨培忠.粮食烘干机粮食水分在线检测技术的应用[J].黑龙江八一农垦大学学报,1998,10(2):38-41
    82 卫福弟,沈大威,房莉.粮食水分在线检测[J].信息技术,2000,5:32-33
    83 张永林,张胜全,刘文生.粮食水分在线测量技术评述[J].武汉工业学院学报,2003,22 (4):36-40
    84 陆静霞.基丁电容式传感器的粮食水分测量仪的研究[J].农机化研究,2005,6:122-123
    85 张吉礼,陆亚俊,刘辉,等.谷物干燥过程参数在线检测与智能预测控制[J].农业机械学报,2003,34(2):50-54
    86 李国肪,毛志怀.粮食干燥过程控制的研究现状与发展方向[J].粮食与饲料工业,2006,417-18
    87 蔡铁,滕召胜,郊舜生.粮食烘干塔水分在线检测系统中的实时信息采集与处理[J].自动化与仪表,2001,16(5):47-50
    88 李庆中,苏宝义,高玉根.流动及静态谷物含水率测定方法研究[J].农业工程学报,1996,12(6):190-194
    1 董怡为.谷物的极化带电特性.[J].农业机械学报,2006,37(8):38-40
    2 傅献彩,陈瑞华.物理化学[M].北京:高等教育出版社,1984
    3 傅家瑞.种子生理[M].北京:科学出版社.1985
    4 钱新耀.种子的电传导和介电特性的研究.[D].镇江:江苏工学院,1987
    5 董怡为.谷物的摩擦带电特性研究[J].农业机械学报,2006,37(8):33-37
    6 黎顺田.静电场在农业生物上的应用研究[D].南京:南京农业大学,1989
    7 刘高平,唐强,金祥瑞等.金属导体摩擦的带电机理[J].中南民族学院学报,2000,19:40-42,43
    8 李琼芬.高分子材料学概论[M].北京:中国人民大学出版社,1986
    9 董怡为.种子的电特性及静电分选.[D].南京:南京农业大学,1990
    10 菅义夫.静电手册[M].北京:科学出版社,1983
    11 孙一源,余等苑.农业生物力学及农业生物电磁学[M].北京:中国农业出版社,1996
    12 张志鸿,刘文龙.膜生物物理学[M].北京:高等教育出版社,1987
    13 程极济,林克椿.生物物理学[M].北京:人民教育出版社,1982
    1 孙一源,余等苑.农业生物力学及农业生物电磁学[M].北京:中国农业出版社,1996
    2 Harmond.Seed cleaning by electrostatic separation[J].Agricultural Engineering,1961,42(1):22-25
    3 Mathes,Boyd.Electrical properties of seed associated with viability and vigor[J].Transactions of theASAE,1969,12(6):778-781
    4 Krishman,P.Electrostatic separation of flower parts from onion seeds[J].Transactions of the ASAE,1985,28(5):1767-1769
    5 赵金平.种子介电分选技术研究现状及发展潜力[J].北京林业大学学报,1996,18(3):98-104
    6 窦伟国,乌力根代来,石辛民,等.静电分选装置的试验研究[J].农业机械学报,1987,4:27-32
    7 张敏华,许乃章,项士英.种子介电分选的主要参数与工作机理的研究[J].农业机械学报,1989,3:44-50
    8 别传爽,汪裕安.种子的介电分选原理与装置研究[J].北京农业工程大学学报,1987,7(3):32-41
    9 李毓玺.DX1-1型种子电力精选机[J].畜牧机械,1990,2:23-25
    10 潘存治.介电式蔬菜种子分选机组[J].农牧与食品机构,1993,6:27-28
    11 赵增煌.吕繁德.种子人小对活力影响的研究[J].种子,1983,2:22-27
    12 赵增煌.种子表面积测定方法的研究及应用[J].种子,1985,2:11-14
    13 钱新耀,沈林森,王光亮.蔬菜种子的电传导和介电特性[J].农业工程学报,1990,6(3):37-43
    14 张晓海,坎杂,于丽红,等.介电式脱绒棉种分选机的研制[J].中国农机化,2005,4:33-35
    15 米双山,高清海,李百做.介电式种子分选机电极线径对分选效果的影响[J].农业工程学报,2004,20(5):142-146
    16 董怡为.极化型静电分级机设计理论[J].农业机械学报,2006,37(8):41-44
    1 杨宪章.电磁场原理[M].北京:高等教育出版社,1986
    2 殷之文.电介质物理学(第二版)[M].北京:科学出版社,2003
    3 马松山.无序体系电子输运中无序作用机理研究[D].长沙:中南大学,2004
    4 张贵恕.生物电现象的发现过程及产生机制[J].沧州师范专科学校学报,1999,15(2):30-32
    5 龚兆胜,赵薇.生物电化学中的广义氧化还原电位缓冲体系[J].云南农业大学学报,2004,19(5):596-599
    6 安莉.水分子极化及介电特性的研究[D].石家庄:河北工业大学,2005
    7 董怡为.种子的电特性及静电分选[D].南京:南京农业大学,1990
    8 钱新耀.种子的电传导和介电特性的研究.[D].镇江:江苏工学院,1987
    9 北京农业工程大学.种子介电特性及分选研究(试验研究报告之九)[R].北京:北京农业工程人学,1986
    10 森邦男.農产物の电气的特性[J].農产物性研究(第1集),1979,154-176
    11 早川千古朗,坂口荣一郎.農产物、食品等の静鼋氯的特性[J].農产物性研究(第2集),1985,135-155
    12 Nelson,Stuart O.Electrical Properties of Agricultural Products- A Critical Review [J].TRANSACTIONS of the ASAE,1973,16(2):384-400
    13 孙一源,余登苑.农业生物力学及农业生物电磁学[M].北京:中国农业出版社,1996
    14 B.И.波勃科大,M.И.格拉佐夫著;许鉴良等译.静电场中纤维充电动力学和运动形式[M].北京:纺织工业出版社,1983
    15 Г.И.斯卡那维.电介质物理学[M].北京:高等教育出版社,1958
    16 潘瑞炽.植物生理学(第四版)[M].北京:高等教育出版社,2003
    17 赵南明,周海梦.生物物理学[M].北京:高等教育出版社,2003
    18 周惠明.谷物科学原理[M].北京:中国轻工业出版社,2003
    19 北京大学生命科学学院编写组.生命科学导论[M].北京:高等教育出版社,2001
    20 傅家瑞.种子生理[M].北京:科学出版社.1985
    21 程极济、林克椿.生物物理学[M].北京:人民教育出版社.1982
    22 Sokhansanj.S.,S.O.Nelson.Dependence of Dielectric Properties of Whole-grain Wheat on Bulk Density[J].J.Agric.Engng.Res.,1988,39():173-179
    23 Nelson S.O..Observations on the Density of Dielectric Properties of Particulate Materials[J].The Journal of Microwave Power,1983,18(2):143-152
    24 浙江农业大学种子教研组.种子学简明教程[M].北京:农业出版社,1981
    25 何曼君,陈维孝,董西侠.高分子物理(修订版)[M].上海:复旦大学出版社,1991
    1 孙一源,余等苑.农业生物力学及农业生物电磁学[M].北京:中国农业山版社,1996
    2 赵学笃,陈元生,张守勤.农业物料学[M].北京:机械工业出版社.1987
    3 钱新耀.种子的电传导和介电特性的研究.[D].镇江:江苏工学院,1987
    4 董怡为.农业物料的电特性及其应用[J].中国农业工程学会学术年会.广州.2005
    5 殷之文.电介质物理学[M].北京:科学出版社.2003
    6 Г.И.斯卡那维.电介质物理学[M].北京:高等教育出版社,1958
    7 马松山.无序体系电子输运中无序作用机理研究[D].长沙:中南大学,2004
    8 何曼君,陈维孝,董两伙.高分子物理(修订版)[M].上海:复旦大学出版社.1991
    9 李琼芬.高分子材料学概论[M].北京:中国人民大学出版社,1986
    10 杨宪章.电磁场原理[M].北京:高等教育出版社,1986

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700