高浓度铝酸钠溶液碳酸化分解的机理与工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝是世界经济中最重要的基础原材料之一。2000年世界氧化铝总产量达到6000万吨,成为仅次于钢铁产量的特大型金属冶炼行业。目前,尽管一些氧化铝生产强化技术正不断涌现,但是烧结法生产氧化铝中分解原液氧化铝浓度低、分解过程能耗高、分解设备产能低等问题并没有得到解决,严重制约了氧化铝生产企业的经济效益。
     本文在铝酸钠溶液碳酸化分解的分解机理、工艺特点以及主要物质析出热力学进行全面分析的基础上,对高浓度铝酸钠溶液(Al2O3浓度为130~210g L-1)碳酸化分解中的以下问题进行了系统实验研究:
     1) 对实际工艺条件下高浓度碳酸化分解的热力学分析表明,高浓度碳酸化分解中氢氧化铝析出是以处于高过饱和度下的铝酸钠自发分解为主;在碳酸化分解中丝钠铝石(Na2O.Al2O3.2CO2.nH2O)析出反应不唯一,增大HCO3-浓度、降低OH-浓度和反应温度均有利于该物质析出:SiO2的平衡浓度与温度、游离碱浓度和苛性比值等有关,分解前期和末期SiO2平衡浓度下降很快,分解中期较稳定。
     2) 铝酸钠过饱和度是高浓度碳酸化分解的主要推动力,过饱和度大小不仅影响溶液的分解速度,并且直接影响氢氧化铝中杂质含量水平。提高分解温度和选择合理的通气制度可以降低铝酸钠溶液的过饱和度,生产结晶良好、Na2O和SiO2杂质含量低的粗颗粒氢氧化铝产品。
     3) 晶种对降低高浓度碳酸化分解产物中杂质含量具有明显效果。晶种能降低铝酸钠溶液与氢氧化铝晶体之间的界面能,有利于新析出的晶体在晶种表面生长;同时,晶种表面活性比溶液中析出的新鲜粒子小,吸附能力弱,减少氢氧化铝中Na2O和SiO2含量,有利于获得杂质含量低的高浓度碳酸化分解产品。
     4) 在经优化后的作业条件下进行高浓度铝酸钠溶液碳酸化分解,能够生产出Na2O和SiO2含量分别低于0.35%、0.035%,中位径和体积平均径分别高于90Llm、100um的优质氢氧化铝。
     (图:38,表:19,参考文献:63)
Alumina is one of the most important raw materials in the world economics. Since the alumina industry has developed with high speed from 1980's in the 20th century, nowadays the total output of alumina annually is up to 4,000,000 tone in our country, only junior to the iron & steel yields in the metallurgical industry.
    In the present dissertation, the technology of carbonization of sodium aluminate solution with high A12O3 concentration (130~210g.L~1) has been studied systematically based on the analysis of the mechanisms and technique characters. Results of the experiment and analysis are as following:
    1. The reaction Gibbs free energies (ArGr) of NaAl(OH)4 and the complicated compound Na2O A12O3- 2CO2- nH2O were calculated, and the variation character and influencing factors of equilibrium content of SiO2 in the carbonization process were also investigated.
    2. The liquor supersaturation, which influences both the precipitation speed and the percentage of impurities in the product, is the main impetus of carbonization of sodium aluminate solution with high A12O3 concentration. Improving carbonization temperature or choosing reasonable gas ventilating system may reduce the liquor supersaturation, and then the coarse grain aluminium trihydroxide with good crystallization and low content of impurities (Na2O, SiO2) can be produced.
    3. It is also demonstrated that the aluminium trihydroxide seeds can improve remarkably quality of the carbonization product. Seeds can decrease the interface energy between aluminium trihydroxide crystal and liquor, which is beneficial to the crystal growth and reduction of impurities absorption.
    
    
    
    4. The pickup behaviors of impurities (Na2O, SiO2) in the conditions of different temperatures, seeds charges and gas ventilating systems were analyzed in the process of carbonization. The product with good quality from carbonization of sodium aluminate solution with 130~200g.L"' A12O3 under the optimized conditions has been obtained.
    (Figures:38; Tables: 19 ; References:63 )
引文
[1]A.R.Burkin. Production of aluminum and alumina[M], The Society of Chemical Industry,1987.6 3~5
    [2]《世界有色金属》编辑部.世界铝工业发展与我国的对策(专集)[J],世界有色金属,1999:14~68
    [3]陈万坤,彭关才.一水硬铝石型铝土矿的强化溶出技术[M],北京:冶金工业出版社,1997:17~31
    [4]陈岱.国际铝工业对冶金级氧化铝的质量要求和发展趋势[J],轻金属,1996,(3):10~18
    [5]杨巧芳,赵清杰.我国氧化铝工业现状及世纪初发展战略探索[J],世界有色金属,2001,6:42~45
    [6]赵清杰,陈建华,中国氧化铝工业发展战略措施探讨[J],镁铝通讯,2001,(3):1~4
    [7]刘中凡、杜雅君.我国铝土矿综合分析,轻金属[J],2000,(12):8~12
    [8]陶英君、杨王华.我国氧化铝发展现状与发展建议[J],轻金属,1998,7:3~9
    [9]邵志博.中国氧化铝发展的方向,世界有色金属[J],1999,(3):8~12
    [10]陈咸张.当前我国氧化铝生产中几个问题[J],有色金属,1999,(3):26~28
    [11]中南工业大学、中州铝厂.强化烧结法氧化铝生产新工艺研究报告,1999.5
    [12]邹晓宏,周科际.中南工大冶金系成为创新排头兵,湖南日报,1999.11.8(第一版)
    [13]郑州铝厂氧化铝分厂.生产技术年报(1997,1998,1999).
    [14]山西铝厂能源处.生产技术年报(1993,1999).
    [15]李小斌.铝酸钠容溶液铝硅分离工艺与理论研究,[博士学位论文].沈阳:东北大学 2000.9:96~112
    [16]V.M.Sizyakov, Yu.A.Volokhov,N.S.hmorgunenko. Study of Structure and Properties of Alumino-Siloca Components in Aluminate Liquors[J], Light Metals, 1983:223~227
    [17]1998, (7): 40~43
    [18]М.Н.Смирнов,程朋远,毛学恒译。论铝酸钠溶液碳酸化分解时氢氧化铝的析出机理[J],轻金属1987,(12):13~15
    
    
    [19]杨重愚.氧化铝生产工艺学(修订版)[M],北京:冶金工业出版社,1993:246~250
    [20]J.V. Sang, Factors Affecting Residual Na_2O in Precipitation Products[J], Light Metals,1988:147~155
    [21]1983:116~158.
    [22]李训诰.铝酸钠溶液碳酸化分解过程初探[J],轻金属,1987,(6):13~18
    [23]仇振琢.SiO_2在铝酸钠溶液分解过程中的行为[J],轻金属1987,(4):14~17
    [24]柳妙修,程兆年,陈念贻.碳酸化分解氢氧化铝中含量影响因素的模式识别[J],金属学报,1990,26(5):B380~B383
    [25]Kenich Sakamoto, Mikio Kanahara, Kenyo Matsushita, Agglomeration of Crystalline Particles of Gibbsite during the Precipitation in Sodium AluMina Solution[J], Light Metals, 1976,(2): 149~157
    [26]J.V. Sang, Factors Affecting the Attrition Strength of AluMina products[J], Light Metals, 1987:121~127
    [27]E.T. White, S.H.bateman。Effect of concentration on growth rate of Al(OH)_3 particle[J], Light Metals, 1988:157~162
    [28]A.A.阿格拉诺夫斯基等.氧化铝生产手册[M],北京:冶金工业出版社,1974.2,19~23
    [29]J.Ohkawa, T. Tsuneizumi,T. Hirao, Technology of Controlling Soda Pick-up in Alumina Trihydrate Precipitation[J], Light Metals, 1985,(1): 345~366
    [30]李永芳.氧化铝生产热力学数据库的研究与开发,[硕士学位论文].长沙:中南大学,2001.5
    [31]1959,(6):1192~1198
    [32]Chanakya Misra, Agitation Effect in Precipitation[J], Light Metals, 1974,(3): 759~775.
    [33]朱金勇,平文正,萨本榕.铝酸钠溶液晶种搅拌分解的搅拌速度,有色金属[J],1990:35~38
    [34]张樵青.关于细种碳分工艺学的研究[J],轻金属1991,(3):7~11
    [35]张宝琦等.铝酸钠溶液加种子碳酸化分解新工艺[J],轻金属,1999,(12):22~25
    [36]Ping Wenzheng, Production of Sandy Alumina by Carbonization Decomposition[J], Light Metals, 1989,22 (19):395~402.
    
    
    [37]B.Garner, B.Cristol and A.Soirat, Precipitation Particle Size Control[J], Light Metals,1999:71~76
    [38]周辉放等.铝酸钠牢液中晶体附聚机理研究[J],有色金属,1994,46(4):.54~57
    [39]DR.B.K.Satapathy and MR.P. Vidyasagar, Effect of Temperature, Retention Time, and Seeding on the Rate of Crystal Growth and Quality of Alumina Hydrate during Precipitation[J], Light Metals, 1990:105~113.
    [40]J.L.Anjier, M.1.Roberson。Precipitation Technology[J], Light Metals, 1983:367~375
    [41]刘昌俊、张绍贵.铝酸钠溶液的连续碳酸化分解[J],山铝科技,1993,(4):1~5
    [42]吴金水.混联法生产氧化铝中的连续碳酸化分解[J],轻金属,1992,(11):15~20
    [43]杨重愚.轻金属冶金学[M],北京:冶金工业出版社,1996.5
    [44]李春荣,毕诗文等.铝酸钠溶液表面张力数学模型的研究[J],轻金属,1986,(3):7~10
    [45]J.A.迪安.兰氏手册[M],北京:科学出版社,1991.3
    [46]黄子卿.电解质溶液理论导论(修订版)[M],北京:科学出版社,1983.8
    [47]李以圭,金属溶剂萃取热力学[M],北京:清华大学出版社,1988.5
    [48]傅崇说.有色冶全原理[M],北京:冶金工业出版社,1993,154~157
    [49]Oku T, Yamada K., The Dissolution Ratio of Quartz and the Rate of Desilication in Bayer Liquor[J], Light metals, 1971:31~36
    [50]Adamson A.N,Bloore E.J,Carr A.R., Basic Principles of Bayer Process Design[J] J.Extr. Met. Of Aluminum. 1963,1:23~25
    [51]M.Murakami, Aspect of Desilication Kinetics with Recycled Seed[J], Light Metals, 1992:113
    [52]Cresswell J, Factors Affecting Desilication of Bayer Process Liquor[J], CHEMECA, 1984, (48): 285
    [53]Jamialahmadi M, Muller-Steinhagen H., Determining Silica Solubility in Bayer Process Liquor[J], JOM,. 1998,11: 44~49
    [54]A. R. Gerson, K. Zheng, et al. The Precipitation Mechanism of Sodium Aluminosilicate Scale in Bayer Plants[J], Light Metals, 1999:28~28
    [55]刘桂华,李小斌,李永芳等.复杂无机化合物组成与热力学数据间的线性关系及其初步应用[J],科学通报,2000,45(13):1386~1391
    
    
    [56]李小斌,李永芳,刘桂华等.复杂化合物硅酸盐吉布斯自由能和焓的一种近似算法[J],硅酸盐学报,2001.3 45~49
    [57]李小斌,刘桂华,彭志宏等.铝酸钠溶液中二氧化硅平衡浓度的研究[J],东北大学学报,2002,(1)
    [58]联合法生产氧化铝编写组.联合法生产氧化铝—控制与分析[M],北京:冶金工业出版社,1977:78,172~176
    [59]1981, (6): 59~60
    [60]Н.И.Ер(?)мин.В.Л.МелъниковА(云南个旧霞石攻关领导小组编),水合铝硅酸钠钾在铝酸钠钾溶液中真实溶解度的研究[J],昆明:霞石译丛,1989.12 199~200
    [61]А.АХанамирова Б.В.Никогосян.晶种对富钾铝酸盐溶液碳酸化分解析出纯度的影响[J],Цветные металлы,1977,(6):37~39
    [62]中科院贵阳地球化学研究所编写组,矿物X射线粉晶鉴定手册[M],北京:科学出版社,1978
    [63]Donald D.Wagman,William H.Evans,Vivian B.Parker at el,The NBS tables of chemical thermodynamic properties(Selected values for inorganic and C1,C2 organic substances in SI units刘天和、赵梦月翻译.NBS化学热力学性质表(SI的单位表示的无机物和C1,C2有机物选择)[M],北京:中国标准出版社,1998.6:B-298

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700