抑制熟料溶出二次反应添加剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烧结法氧化铝生产碱石灰铝土矿熟料中含有约30%的2CaO·SiO2, 2CaO·SiO2在熟料溶出时在一定条件下部分与铝酸钙钠溶液相互反应,使已溶出的Al2O3和Na2O重新析出又进入赤泥而损失,降低了Al2O3的溶出率,同时,还直接影响后续工序的正常进行和生产技术指标。针对这一问题,本论文开展了抑制熟料二次反应添加剂的研究,通过在熟料溶出时加入添加剂提高熟料中氧化铝的溶出率。这一方法操作简单,但效益可观,它可以在不改变原生产流程和设备的条件下提高氧化铝产量和若干工序的生产技术指标。
     本论文在实验室试验初步筛选和制备出能抑制熟料二次反应的添加剂,使Al2O3溶出率可提高1%左右,且考察了添加剂对后续工序—赤泥沉降性能和粗液脱硅性能的影响。同时探讨了抑制熟料二次反应添加剂抑制机理,研究了添加剂在2CaO·SiO2颗粒上的吸附规律和液固分离的分布走势以及在铝酸钠溶液中积累速度。在实验室基础上,对添加剂进行了扩大试验和半工业生产现场应用试验。主要研究结果如下:
     在熟料溶出过程中,添加抑制二次反应添加剂能有效地抑制2CaO·SiO2的分解。富含醚、醇、羧基等多种官能团的腐殖酸钠能最有效地抑制二次反应的发生,其最佳添加量为熟料量的0.43%时,氧化铝的溶出率提高3.87%,但它的添加量太大,工业生产过程难以实施使用,另外,它本身为棕黑色,使产品氢氧化铝色泽变暗,所以,不能选择为最终产品;含有羧基的聚合物AY1000,其最佳添加量为熟料量的0.10%时,氧化铝的溶出率提高2.17%;含有羟基的聚合物PEG2000聚合物,其最佳添加量为熟料量的的0.25%时,氧化铝的溶出率提高1.48%;聚合物AY1000和聚合物PEG2000复配,具有协同效应,可以大大降低添加剂的添加量,它们按1:1复配,得到的抑制二次反应添加剂DBDX,其添加量为熟料量的0.003%时,熟料氧化铝溶出率比空白提高1%,该添加剂能满足工厂生产实际的要求,显现出较好的经济效益。
     抑制二次反应添加剂DBDX加入地点选择在碳分母液分料箱中,溶解添加剂的溶液应在70min内使用完,否则,添加剂失效。
     添加剂加入量为熟料量的0.05%以下,聚合物AY能够提高赤泥的沉降速度、溢流澄清度,降低底流液固比,改善赤泥的过滤性能;聚合物PEG能够提高赤泥的沉降速度、溢流澄清度,降低底流液固比,但使赤泥的过滤性能变差;复合添加剂DBDX使赤泥的沉降速度、溢流澄清度,底流液固比都得到不同程度改善,没有恶化赤泥的过滤性能,对赤泥沉降性能不会带来不利影响。聚合物AY和添加剂DBDX的调整液溶出熟料,其粗液进行二段脱硅,硅量指数未比空白有所降低,因此,熟料溶出添加抑制二次反应聚合物AY和添加剂DBDX对脱硅工序未带来不利影响。
     通过对β-C2S与铝酸钠溶液反应后渣相进行红外光谱测定以及溶液SiO2和Ca2+浓度分析,得到的结果表明,聚合物AY的抑制机理可能主要通过羧基以化学键吸附在β-C2S表面上,即化学吸附,同时与Ca2+形成稳定化合物;聚合物PEG的作用机理主要可能为物理吸附,易脱附,所以其抑制二次反应效果比化学吸附的聚合物AY略差。
     建立了氯化钡法测定铝酸钠溶液中的聚合物PEG的方法,最佳测定条件为:波长520nm,碘液3.0ml,BaCl21.0ml,显色时间2min。在此条件下得到其线性回归方程为A=0.2492+0.0836C,线性关系良好,能满足试验测定精度的要求。
     聚合物AY和聚合物PEG在硅酸二钙—铝酸钠溶液固液界面上的吸附都是有饱和吸附量类型的吸附,且聚合物AY达到饱和吸附的时间为40 min,聚合物PEG为20min;聚合物AY在硅酸二钙颗粒上的吸附为单分子吸附,吸附等温线呈典型的“L”型,符合Langmuin方程,聚合物AY的吸附自由能EAY=57.89kJ/mol,为化学吸附为主;聚合物PEG在硅酸二钙颗粒上的吸附为多分子吸附,吸附等温线呈典型的“S”型,符合Freundlich方程。聚合物PEG的吸附自由能用D—R等温方程式计算EPEG=1.63kJ/mol,用经验式计算EPEG=2.44kJ/mol,为物理吸附为主。
     熟料量的0.005%添加剂DBDX加入熟料溶出体系时,有约70%被赤泥带出系统,残留在铝酸钠溶液中的仅占30%。由此可见,有机添加剂的累积现象不明显。
     扩大试验是在3L容积的球磨机内进行的,进一步考察添加剂加入位置和方式。DBDX添加剂在熟料溶出扩大试验——3L容积的球磨机内溶出中,能抑制熟料溶出过程二次反应,使熟料溶出氧化铝净溶出率提高1%以上;添加剂的最佳添加方式是:将添加剂预先溶入调整液,然后,再进入熟料溶出磨中。
     工业生产应用试验在铝酸钠溶液氧化铝浓度110~120g/L、溶出磨下料60t/h左右规模的条件下进行。在一台溶出磨中加入添加剂、DBDX,其溶出浆液进入对应的分离槽;其余三台溶出磨不加添加剂,其溶出浆液进入其对应的分离槽。对比加入添加剂的溶出磨与其余三台不加添加剂溶出磨的初溶和分溶的差值变化评价添加剂抑制二次反应的效果。试验发现,加入添加剂的溶出系统,熟料溶出率提高了1.12%,表明了添加剂DBDX抑制熟料溶出二次反应是有效的。本论文成功地开发出抑制熟料溶出二次反应添加剂DBDX。
There is 30% of 2CaO·SiO2 in bauxite clinker which is produced by sintering method in alumina producing process.2CaO·SiO2 can react with sodium aluminate in some conditions when clinker is leached.So some quantity of Al2O3 and Na2O that leached into solution from clinker will go into the red mud and it leads to loss of Al2O3.Thus the leaching ratio of Al2O3 was reduced,and the subsequent process and producing technique index were influenced as well.Based on the upon problems,this paper studied the additives to inhibit the secondary reaction of clinker. The alumina leaching ratio can be increased by adding additives during clinker leaching.This method can increase alumina output and improve producing technique index of some process without changing the original production process and equipments.what's more,the method is easy to operate, but it has great economic benefits.
     The additive that can improve 1% of alumina leaching ratio by inhibiting secondary reaction of clinker was screened and prepared preliminarily in the lab. Secondly, the impacts of the additive on the subsequent process------sedimentation of red mud and desilication of pregnant liquor were studied.Thirdly, the inhibiting mechanism was discussed.Fourthly, the adsorption behavior of additive adsorbed on 2CaO·SiO2,distribution trend of solid-liquid separation and the accumulating speed of additive in sodium aluminate solution were investigated.The enlarged experiment and semi-industrial application experiment were carried out on the basis of lab experimentation.The main results were as follows:
     The decomposition of 2CaO·SiO2 could be effectively inhibited by adding additive during clinker leaching.Sodium humate which was rich in aether, alcohol,and carboxyl was the most effective.The alumina leaching ratio was increased by 3.87% with 0.43% sodium humate added.But this quantity of additive was too high and could hardly apply industrially. Besides, sodium humate was brownish black in itself and it could darkle the product of aluminum hydroxide.So it couldn't be the final additive.Polymer AY1000 and PEG2000 had less inhibitory effect than sodium humate.The former which was rich in carboxyl could increase alumina leaching ratio by 2.17% with 0.10% additive and the latter of which could increase alumina leaching ratio by 1.48% with 0.25 % additive.The compound of polymer AY1000 and PEG2000 had synergistic effect,and the quantity of additive was reduced greatly.For example,DBDX which was compound of AY1000:PEG2000 equal to 1:1 could increase alumina leaching ratio by 1% with 0.003% additive.So DBDX met the requirements of production activity and it showed better economical benefits.
     Additive DBDX should be added in material-separating box of carbon denominator liquid and the solution that was dissolved with additive should be used up in 70 min, or it would be a failure.
     Polymer AY and PEG had the following effects on subsequent processes when the quantity that added was 0.05% weight ratio of clinker:they both speeded up sedimentation of the red mud,improved clarity of the overflow, and reduced liquid-solid ratio of the underflow. What was different was:polymer AY improved filtration property of the red mud while PEG worsened it.Compound additive DBDX could improve sedimentation of the red mud,clarity of the overflow and liquid-solid ratio of the underflow. What's more,it didn't affect filtration property of the red mud.The silica index of the second desilication that with additive AY or DBDX added during clinker leaching was not lower than that of without additive.So polymer AY and DBDX didn't have impacts on subsequent processes while used as additives.
     Infrared spectrometry of slag phase after sodium aluminate solution reaction was measured.SiO2 and Ca2+ concentrations were also analyzed. The results indicate that:the inhibition mechanism of polymer AY was adsorption on surface ofβ-C2S by carboxyl,meanwhile the stable compounds was formed with Ca2+.The inhibition mechanism of polymer PEG was probably physical adsorption which is easy desorption.So the effect of PEG was lower than AY on inhibiting secondary reaction.
     Barium chloride method was established to determine polymer PEG in sodium aluminate solution.The optimal conditions for determining were:wavelength 520nm,iodine solution 3.0ml,BaCl2 1.0 ml and color-reacting time 2min. The liner regression equation that obtained under the optimal conditions was A= 0.2492+0.0836C.The linear relationship of the equation was good and it met the requirements of test accuracy.
     The adsorption that polymer AY and PEG adsorbed in the interface of dicalcium silicate-sodium aluminate solution was both saturated adsorption style. The time that AY and PEG adsorbed until saturated were 40min and 20min respectively. The adsorption that polymer AY adsorbed on dicalcium silicate particles was single molecule adsorption and the adsorption isotherm was "L" style,which was in accordance with Langmuin equation.The adsorption was mainly chemisorption and the adsorption free energy was EAY=57.89kJ/mol.The adsorption that polymer PEG adsorbed on dicalcium silicate particles was multimolecule adsorption and the adsorption isotherm was "S" style,which was in accordance with Freundlich equation.The adsorption was mainly physisorption and the adsorption free energy obtained from isotherm equation and empirical formula was EPEG=1.63kJ/mol and EPEG=2.44kJ/mol respectively.
     Almost 70% of DBDX was carried out by the red mud and 30% of it remained in sodium aluminate solution when 0.005% (weight ratio of clinker) of it added while leaching.So the accumulation of organic additive was not remarkable.
     The enlarged experiment was carried out in a 3L-volume ball mill.The place and method for adding additive were further investigated as well.The results showed that DBDX could inhibit secondary reaction of clinker and improve net leaching ratio of alumina more than 1%.The optimal method to add additive was:added the additive into sodium aluminate solution first and then leached the clinker with the solution in the mill.
     The industrial application experiment was carried out under the condition of alumina concentration 110~120g/L and the blanking speed in the boll mill 60t/h. Four boll mills were used in the experiment and one of them was added additive. The slurry after leaching went into corresponding separating tank respectively. The inhabitation effects of additive were evaluated by comparing the difference of the leaching ratio of alumina after first and second leaching between boll mills with and without additive.The results showed that leaching ratio of alumina with additive DBDX was improved to 1.12% than blank.It proved additive DBDX was available for inhibiting secondary reaction of clinker. Thus additive DBDX was exploited successfully.
引文
1.毕诗文,于海燕.氧化铝生产工艺.lnd ed.北京:冶金出版社,2005:222-223
    2.刘中凡.世界铝土矿资源综述,轻金属,2001.5:P7-12
    3.毕诗文,于海燕.氧化铝生产工艺lnd ed.北京:冶金出版社,2005:223-224
    4.袁艺,项阳,黄芳,袁华俊.铝酸盐烧结熟料溶出二次反应浅析[J].轻金属,1999,(12):10-12
    5.陈红武,周宗科.烧结法熟料溶出条件对二次反应影响分析,轻金属,2001(8):21-24
    6.毕诗文,于海燕.氧化铝生产工艺.lnd ed.北京:冶金出版社,2005:254-255
    7.李太昌.二次反应抑制剂及其添加工艺技术研究[J],有色金属(冶炼部分),2002,(1):26-28.
    8.管彩莲,杨艳.碳酸钠浓度对溶出液中二氧化硅含量的影响[J],轻金属,2003(11):11-14
    9.陈锋.表面活性剂性质、结构、计算与应用[M],北京:中国科学技术出版社,2004,6-9.
    10.赵国玺.表面活性剂物理化学[M],北京:北京大学出版社,1994,12-36.
    11.包信和,邓景发.表面化学[M],北京:冶金工业出版社,1987,45-58.
    12.Lucassen E H.阴离子表面活性剂-表面活性剂作用[M],北京:轻工业出版社,1985,98-125.
    13.Atkins P W.物理化学[M],北京:科学出版社,1987,222-264.
    14.刘程.表面活性剂产品大全[M],北京:化学工业出版社,1998,117-182.
    15.张天胜.表面活性剂应用技术[M],北京:化学工业出版社,2001,325-518.
    16.杜巧云.表面活性剂基础及应用[M],北京:中国石化出版社,1996,223-320.
    17.tevenson.Model structure of humic acids,1982
    18.卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989:144.
    19.杨敏,王红斌,戴云.山基土中腐植酸的提取及其红外光谱[J].云南民族学院学报(自然科学版),2002,11(1):573-574
    20.Ramos-Tejada M M,de Vicente J.Effect of humic acid adsorption on the rheological properties of sodium montmorillonite suspensions[J],Journal of Rheology,2001,45(5):1159-1172.
    21.王彦吉,宋增福.光谱分析与色谱分析[M].北京:北京大学出版社,1995.
    22.Lee M C,Snosymk V L,Crittenden J C.Activated carbon adsorption of homic substance[J].J A W W A,1981,73 (8):440-447.
    23.LIU ai-guo,Richard D,Gonzalez.Adsorption desorption in a system consisting of humic acid heavy metals and clay minerals[J].Journal of Colloid and Interface Science,1999,218(1):225-232.
    24.潘祖仁.高分子化学[M].北京:化学工业出版社,2003
    25.戚立宽.拜耳法赤泥浆液的沉降分离特性[J],轻金属,1996,(7):17-20
    26.10.C.Sato, L.M,1978,197
    27.沈钟,王果庭。胶体与表面化学[M],北京:化学工业出版社,1991:46-100
    28.毕诗文,于海燕.氧化铝生产工艺.lnd ed.北京:冶金出版社,2005:257-258
    29.Кyзнeцов.洗涤对于氧化铝生产过程中赤泥沉降速度的影响[J],国外轻金属,1966(4):1-3
    30.吕子剑.有机物对拜耳法赤泥浆液沉降性能的影响及新型絮凝剂的研究.博士论文,2006
    31.颜肖慈,罗明道.界面化学[M],北京:化学工业出版社,2005(1):153-158
    32.J Addai.过饱和铝酸盐苛性碱溶液中氢氧化铝晶体之间的相互作用[J],Light Metals,1998:159-166
    33.John Ralston,Particle-particle interactions and their relevance to the Bayer process (Conference papers),Fourth international alumina quality workshop, Darwin 2-7 June,1996:141-147
    34.胡筱敏.化学助滤剂[M],北京:冶金工业出版社,1999:124-156
    35.沈钟,王果庭.胶体与表面化学[M],北京:化学工业出版社,1991:46-80
    36.张放.阳离子化有机高分子絮凝剂[J],有色金属(冶炼部分),1978,(12):29-32
    37.吴若琼,刘今.合成絮凝剂在沉降分离过程中的使用[J],轻金属,1991,(7):14-17
    38.曹文仲,顾松青.合成高分子絮凝剂的物理化学性质和应用技术研究[J],轻金属,1996,(5):8-13
    39.东北师范大学等编.有机化学[M],北京:高等教育出版社,1987:280-310
    40.R. D.Brssinga, C.D.Fulford,Light Metals.1986:51-56
    41.L.J.Connelly, D.O.Owen, Light Metals.1986:61-65
    42.路建美,朱秀林.低分子量聚丙烯酸钠的研制及应用[J],化学世界,1994,(9):471-475
    43.赵劭,曹文仲.高效絮凝剂(PAS-1)的效果试验[J],轻金属,1997,(9):12-15
    44.Loretta Y. Li,G. K.Rutherford.Effect of bauxite property on the settling of red mud[J],International Journal of Mineral Processing,1996,48():169-182
    45.马喜平.聚丙烯酰胺类阳离子聚合物的合成及应用[J],化学世界,1995,(11):588-591
    46.杨继萍,李惠生,黄鹏程.部分水解聚丙烯酰胺在多孔介质中的静态吸附研究——水解度对吸附量的影响[J],高分子学报,1997,(5):601-605
    47.张文晋,牛宏斌.絮凝剂在拜耳法赤泥分离洗涤过程中的应用[J],轻金属,2003,(4):19-20
    48.A.S.Rotherberg,D.P.Spitzer, Light Metals,1989:91
    49.柴平海,张文清,金鑫荣.甲壳素/壳聚糖开发和研究的新动向[J],化学通报,1999,(7):8-11
    50.王小红,马建标.甲壳素/壳聚糖及其衍生物的应用[J],功能高分子学报,1999,12(6):197-202
    51.Ryuji yamauchi,Yuji Arai,preparation of partially N-succinylated chitosans and their cross-linked gels,Carbohydrate research[J],1981,88():172-175
    52.Berkovich L A, Tsyrupa M P,the synthesis of crosslinked copolymers of maleilted chitosan and acrylamide[J],journal of polymer science,1983, 21():1281-1287
    53.Eugene Loubaki,Michele Ourevitch,chemical modification of Chitosan by glycidyl trimethylammonium chloride.Characterization of modified chitosan by [3C-and H-NMR spectroscopy[J],Eur Polym J,1991,27(3):311-317
    54. Muzzarelli R A A, Fabio tanfani, N-(O-carboxybenzyl) chitosan,N-carboxymethyl chitosan and dithiocabamate chitosan:New chelating derivatives of chitosan,pure & App Chem,1982,54(11):2141-2150
    55.Muzzarelli R A A,removal of uranium from solutions and brines by a derivative of chitosan and ascordic acid[J],Carbohydrate polymers,1985,50: 85-89
    56.kazuya Ohga,Yoshiaki Karauchi,Adsorption of Cu2+ or Hg2+ ion on resins prepared by crosslinking metal-complexed chitosans[J].Bull chem.Soc,1987, 60(1):444-446
    57.张廷安,杨欢.用壳聚糖絮凝剂处理含镉废水(2)[J],东北大学学报(自然科学版),2001,22(5):548-552
    58.彭立凤.壳聚糖的制备及其在废水处理中的应用[J],化学世界,1999,40(4):176-179
    59.汪玉庭,程格,朱海等.交联壳聚糖对重金属离子的吸附性能研究[J],环境污染与防治,1998,20(1):1-3
    60.Ansur Y L, some. Chemical and analytical aspects of polysaccaridw modifications[J],Macromolecules,1984,17(3):272-281
    61.Keisuke Kurita, Yoshiyuki Koyoma.Chitins preparation and properties of novel aminated chitin derivatives[J],Macromolecules,1990,23(11): 2865-2869
    62.Keisuke Kurita, Yoshiyuki Koyoma,Facile preparation of water-soluble chitin from chitosan,chemistry letters[J],Macromolecules,1989:1597-1598
    63.Sehchi Mima, Masaru Miya, Highly deacetylated chitosan and its properties[J], Journal of applicated polymer science,1983,(28):1909-1917
    64.M D Hard, Making emulsion polymers work better in the Bayer process[J], Light Metals,1994,117-120
    65.吴琼珍,杨世杰,汤世泰等.平果铝土矿拜耳法赤泥沉降分离絮凝剂的研究[J],轻金属,1996,(7):7-14
    66.山田兴一.赤泥的絮凝和沉降[J],轻金属,1982,(2):20-21
    67. J.Paul,葡萄糖同质异构盐对拜耳法氢氧化铝析出的影响[J],Light Metals, 1980:119-130
    68.T K Hunter, Advances with chemical additives for the alumina industry[J], Light Metals,1991:159-165
    69.R.P. Mahoney, Trihydrate clarification aid for the Bayer process,16 May 1994, Patent No.GB2270519
    70.Donald P. Smitzer,聚合物对拜耳法流程中底流泥浆流变性能的影响[J],Light metals,1994:1225-1230
    71.Donald P. Spitzer,拜耳法生产用新絮凝剂的研制[J],light Metals,1991: 167-171
    72.Maritza Faneite,Utilization of new polymer in interalumina[J],Light Metals, 1994:129-131
    73.张廷安,张国悦,吕子剑.用壳聚糖絮凝剂分离赤泥的比较研究[J],材料与冶金学报,2003,2.(1):29-32
    74.毕诗文,于海燕.氧化铝生产工艺lnd ed.北京:冶金出版社,2005:257
    75.毕诗文,于海燕.氧化铝生产工艺lnd ed北京:冶金出版社,2005:70-72
    76.杨群太,吕子剑.烧结法生产氧化铝中粗液两段常压脱硅工艺研究[J],轻金 属.2004,(4):10-13
    77.朱明,胡曙光,丁庆军.硅酸二钙球磨颗粒特征与水化活性的分形研究[J].武汉理工大学学报,2005,27(12):25-29.
    78.卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989:144.
    79.宋祥飞.表面化学与活性剂[M],北京:化学工业出版社,(重订版)1996,108-126.
    80.顾惕人.表面过剩和表面自由能[M],北京:冶金工业出版社,1984,2-36.
    81.Adomso A W.表面的物理化学[M],北京:科学出版社,1985,22-66.
    82.段世铎.界面化学[M],北京:高等教育出版社,1990:208-210.
    83.钱建刚,吴锦屏,顾惕人.非离子表面活性剂的吸附机理和表面活性剂胶团化对二氧化硅悬浮液稳定性的影响[J],高等学校化学学报,1994,17(6):933-938.
    84.GB12005.4
    85.武少华,何宏,袁淑琴,等.氯化钡法及其在聚砜超滤膜性能测定中的应用[J].水处理术,1995,21(4):193-197
    86.Cao Xuejun(曹学君),Liu Yanming(刘彦明),Wu Xingyan(邬行彦).Chinese J.Anal.Chem.(分析化学),1993,21(12):1470
    87.Nag A,Mitra G, Ghosh P C.Anal.Biochem.,1996,237(2):224-231
    88..Francois M,De Neve R.Talanta,1985,32(6):491-497
    89..Barth HG.Handbook of HPLC,Katz E. ed.,Marcel Dekker: NewYork.1998,78:273-292
    90.Tomaszewski K,Szymanski A,Lukaszewski Z.Talanta,1999,50(2):299-306
    91.Leister WH,Weaner L E,Walker D G.J.Chromatogr.A,1995,704(2):369-376
    92.Keioth EM, Emilia B,Bryan J P, Marina P, Kristen J S,Robert E S.Anal.Chem., 2000,72(18):4372-4380
    93.Ersoy L,Atmaca S,Saglik S,Imre S.Anal.Commun.,1996,33(1):19-20
    94.Fink S W, Freas R B.Anal.Chem.,1989,61(15):2050-2054
    95.Leenheer J A, Wershaw R L, Brown P A, Noyes T I.Environ.Sci.Technol. 1991,25(1):161-168
    96.[日]近藤精一,石川达雄,安部郁夫吸附科学.李国希译.北京:化学工业出版社,2005,135~136.
    97.Garcla-Delgado R A, Cotouelo-Minguez L M, Rod-figuez J J.Equilibrium Study of Single-Solute Ad-sorption of Anionicsurfactants With Polymeric XADResins[J].Sep Sci Technol,1992,27(7):975-987.
    98.Garcla-Delgado R A, Cotouelo-Minguez L M,Rod-figuez J J.Equilibrium Study of Single-Solute Ad-sorption of Anionicsurfactants With Polymeric XADResins[J].Sep Sci Technol,1992,27(7):975-987.
    99.Aquilar-Armenta G,Hernandez-Ramirez G, Flores-loydan E, etal. Adsorption Kinetics of CO2,O2,N2 and CH4 in Cation-Exchanged Clinoptilolite [J].J. P hys. Chem.,B,2001,105:1313~1319.
    100.S UKhan.Equilibrium and kinetic studies of the adsorption of 2,4-D and Picloram on humic acid[J].Can J Soil Sci,1973,53:429-434
    101.Carter M C,Kilduff JE,Weber W J Jr. Site energy distribution analysis of preloaded-adsorbents[J].Environ SciTech,1995,29(7):1773-1780.
    102.Von Oepen B,Kordel W, Kleln W. Sorption of non-polar and polar compounds to soils:process,measurements and experience with the applicability of the modified OECD guidelines [J].Chemosphere,1991,22(2):285-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700