黄土高原植被恢复的土壤水分生态环境
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原地处半干旱半湿润向干旱荒漠的过渡地带,生态环境十分脆弱。水分是制约该区植被恢复和生长及生态重建的主要生态限制因子。研究黄土高原的水分生态环境问题,对于该区的植被恢复等生态环境建设工作具有十分重要的意义。
     本研究针对黄土高原水分生态环境研究的现状及存在的问题,主要致力于下述四个方面的研究:(1)黄土高原的土壤水分背景;(2)黄土高原土壤水分状况的现实;(3)黄土高原水分的植被生产力;(4)基于GIS的黄土高原区域水分生态环境的空间格局。
     经过两年多的野外实地调查、取样及室内分析,获得的主要研究结果如下:
     1.对黄土高原地区气候—降水的区域分异及水资源状况进行了分析。黄土高原地区的区域降水状况及其水资源是决定该区土壤水分生态条件的前提。分析结果显示:(1)黄土高原地区的降水分布自东向西、自南向北逐渐减少,东南部可达900多毫米,西北部最低则仅约100毫米,表现出显著的大陆性气候特征;(2)由于地形等因素的影响,山地森林等局部地区小气候特征明显,降水量高于周围地区,结果形成降水的岛状镶嵌结构;(3)土壤水是黄土高原最重要的水资源之一,它是该区植被水分利用的重要资源。黄土高原的水资源利用程度高,供需矛盾突出;地下水资源赋存有限,不宜开发利用。
     2.发展了“土壤水分背景”的概念,并以之为基础对其各个方面进行了研究,使之形成一个相对独立和完整的体系,主要包括黄土高原土壤水分的背景值、土壤水分背景的区域分异、坡面分异、镶嵌结构及其季节分异等:(1)由于植被生长发展、演替的基础阶段是天然草被群落,故认为黄土高原的土壤水分背景在概念上是特指该区天然草被群落下的土壤水分状况;(2)黄土高原的土壤水分背景值,根据植被地带的不同表现出自南向北逐渐降低的规律:森林地带3米以下土层水分背景值普遍稳定地高于12%,森林草原地带4米以下土层水分背景值稳定大于6%,且均随土层的加深水分含量逐渐增加,而草原带的土壤水分背景值自土表至底土层一直在4%~6%之间徘徊。在土壤水分背景值的垂向分异上,森林带3米以上土层、森林草原带4米以上土层,自上而下增加显著,上述深度以下土层其值则较稳定,而草原带的土壤水分背景值垂向变化不强烈;(3)黄土高原天然草被下土壤水分的百分含量与其有效水含量的区域分布有着相似的规律,即南高北低,同时具有与降水的区域分异相似的镶嵌结构;(4)黄土高原的土壤水分背景值受坡度、坡向、坡位等因素的影响显著,一般规律为缓坡大于陡坡,阴坡大于阳坡,坡脚、沟道大于沟坡和峁坡;(5)黄土高原的土壤水分背景表现出区域范围上的大镶嵌以及局部坡面尺度上的小镶嵌结构;(6)黄土高原的土壤水分背景值受降水的季节分配影响而表现出一定的季节分异,旱季失水,雨季有所恢复,恢复的程度则取决于季节降水量的多寡。
    
     胡良军博士学位论文:黄土高原植被恢复的土壤水分生态环境
    一
     3.分别植被类型、土地类型对黄土高原的土壤水分状况进行了研究,提出了土
    壤干化的判别标准,并就典型地区的土壤水分状况、土壤干化在黄土高原的分布、
    以及土壤水分的自然恢复与补偿等问题进行了探讨。结果表明:(l)人工植被,包
    括人工草被和人工林地的土壤水分状况,低于相应天然草被下的土壤水分状况;一
    些代表性人工草种如沙打旺、首淆等耗水强烈,其土壤水分含量接近萎蔫湿度水平;
    天然草被、灌丛(如柠条)对土壤水分的影响较乔木为低,影响的土壤深度较浅,
    而乔木对深层尤其是5米以下土层的土壤水分状况影响强烈。(2)梯田的土壤水分
    状况较好,在生长有沙打旺的条件下仍具有相当于天然草被下的土壤水分含量;滩
    地在生长首淆(3年生)的条件下有与该地天然草被下相当的土壤水分含量;涧地
    土壤水分优于相应的坡地;撂荒地土壤水分则优于该地天然草被下的土壤水分状况。
     门)黄丘区典型地米脂的沟道横断面土壤水分数据显示,该区的土壤水分总体含量
    水平不高,稳定土壤水分含量保持在5~7%(萎蔫湿度为3.8%);土壤水分含量在
    雨季前后仅反映在距地表 40厘米土层内的变化上,水分的季节性补偿十分有限。(4)
    提出“初始萎蔫湿度”的概念,并将其作为判别土壤干化发生的标准;以此为依据,
    计算并确定了中部黄土高原典型地区的土壤干化层发生分布情况。(5)黄土高原地
    区土壤水分的自然恢复主要发生在雨季,恢复的程度取决于年降水量的多寡,并且
    与所处的植被地带有关。恢复的程度自南向北逐渐减弱。
     4.对黄土高原局部地区水分的植被生产力进行了研究,结合理论分析与黄土高
    原植被生产力的现实表现,提出并建立了该区水分的植被生产力模型。结果表明,
    黄土高原水分的植被生产力与水分的变率具有密切的关系,其次是生物学特性中年
    龄特性的影响。
     5.利用GIS技术和地理综合的观点,在全面考虑各种影响因素的条件下,对黄
    土高原水分生态环境的区域空间格局进行了研究。提出以对不同植被的适生性作为
    黄土高原植被水分生态状况的反映指标。认为,影响并能够反映黄土高原土壤水?
The Loess Plateau of China is located at a transitional area where the semi-humid climate is changing into the semi-arid and arid climate. This makes the eco-environment of the plateau very fragile. Because of both natural and man-induced causes, up to now, the Loess Plateau of China is being a colossal degraded eco-system. In such an area, water is the controlling factor which refrains the growth of vegetation and crop production. So, the study on the water eco-environment of the plateau is significant to vegetation recovery and eco-reconstruction.
    Based on the achievements of related previous studies on this issue and the unsolved problems, here, four aspects are concentrated in this dissertation for the issue. They are: (1) Background of the soil water environment of the plateau; (2) Reality of the soil water environment of the plateau; (3) Vegetation capacity of the soil water of the Plateau; and (4) Spatial differences study for the soil water eco-environment of the plateau using GIS.
    The objectives are approached both by field survey and lab analysis. The following results are obtained based on the field data and analyses:
    1. The spatial heterogeneity of climate and precipitation and the water resources in the Loess Plateau area are analyzed and discussed.
    The water eco-conditions are derived from the regional precipitation and the water resources of the plateau area. Results show that: (1) The precipitation of the Loess Plateau appears to descend spatially from east to west and from south to north. At the southeast, the maximum average annual precipitation can reach 950mm, and the minimum at the northwest is just 150mm. These reflect an obvious continental climate characteristic. (2) Parts of the area show apparent local climatic properties because of the influence of topography, landcover, and so on. Precipitation in mountainous and forest area is usually more affluent than in vicinity, this creates a typical mosaic structure of precipitation distribution like the islands. (3) Soil water is the most significant form of water resources, which is the only water for vegetation uptake. The utilization of surface water resources in areas of the Loess Plateau is in full extent, so the balance between supply and demand is a serious problem. However the
    
    
    use of groundwater has rooms to be extended and the water-using efficiency is relatively low.
    2. The concept of soil water background is developed in this dissertation. Meanwhile, most aspects about this perspective are concerned, which include quantification of the soil water background of the plateau area, the regional spatial variation of soil water background and variation along the slope, mosaic structure and seasonal changes etc. The results show that: (1) For the fundamental circumstance for vegetation development is the original debilitated slope, so the perspective of soil water background specially for the Loess Plateau refers to the soil water conditions on the original slope. (2) The value of soil water background appears to be a descending trend from south to north based on the difference of vegetation zones. In the forest zone, soil moisture contents beneath 3m depth from the soil surface are more than 12% usually; in the forest-pasture zone, the values of soil moisture content beneath 4m depth underground are more than 6% and stable, and tend to be ascending while the depth increases; but the values in the dry pasture zone is lingering between 4% to 6% from the surface layer to sub-layers. Vertically, the values of the upper 3m soil layer in the forest zone and upper 4m soil layer in the forest-pasture zone increase dramatically with depth, and the soil moisture contents beneath the depths seem to be stable, but they vary a little bit along the profile in the pasture zone. (3) The distributions of both regional soil moisture and available soil water are similar, high in the south and low in the north, and have a mosaic structure similar to the regional precipitation distribution. (4) The soil moisture of the original slope is inf
引文
1 杨文治,余存祖主编.黄土高原区域治理与评价,北京:科学出版社,1992.
    2 杨文治,邵明安编著.黄土高原土壤水分研究,北京:科学出版社,2000.
    3 吴钦孝,杨文治主编.黄土高原植被建设与持续发展,北京:科学出版社,1998.
    4 中国科学院黄土高原综合科学考察队.黄土高原地区自然环境及其演变,北京:科学出版社,1991.
    5 杨文治,韩仕峰.黄土丘陵区人工林草地的土壤水分生态环境.中国科学院西北水土保持研究所集刊,1985,(2):18~28.
    6 王百田,阎树文.黄土丘陵沟壑区人工刺槐林地土壤导水性与其外界环境关系的研究.水土保持学报,1988,2(2):49~57.
    7 吴学栋,董俊,乔小林.陇中半干旱丘陵区沙打旺土壤水分动态特征及净初级生产力研究,水制土保持通报,1998,10(6):119~123.
    8 杨新民,杨文治.干旱地区人工林地土壤水分平衡的探讨.水土保持通报,1988,8(3):32~38.
    9 陈一鹗,刘康.渭北旱塬紫花苜蓿的蒸腾强度与水量平衡研究.水土保持通报,1990,10(6):108~112.
    10 卢宗凡,张文军,苏敏,李够霞.干旱坡地草灌带状间作土壤水分变化的数学模型.水土保持学报,1988,2(4):56~59.
    11 曹淑定,从心海,梁一民,李代琼.吴旗飞播沙打旺草地的土壤水分动态研究.水土保持通报,1983,(5):53~59.
    12 余新晓,陈丽华.晋西黄土地区小老树的防治与改造.干旱区资源与环境,1996,10(1):81~86.
    13 程积民,董建国.上黄试区主要灌木树种蒸腾作用的试验研究.水土保持通报,1995,15(2):22~25.
    14 李代琼,梁一民,从心海等.飞播沙打旺草地蒸腾与产量和土壤含水量关系的研究.水土保持通报,1983,(5):32~39.
    15 王孟本,李洪建.柠条林蒸腾状况与土壤水分动态研究.水土保持通报,1990,10(6):85~90.
    16 魏冠东,侯庆春.上黄试区灌木树种蒸腾特征及土壤水分变化初探.水土保持通报,1990,10(6):104~107.
    17 杨文斌,蒋士梅.半干旱区四种针叶林蒸腾作用的研究.生态学杂志,1991,10(3):18~21.
    18 韩蕊莲,梁宗锁,侯庆春等.黄土高原适生树种苗木的耗水特性.应用生态学报,1994,5(2):210~213.
    19 李凯荣,王佑民,冯汀.黄土高原沟壑区刺槐人工林蒸腾状况的研究.陕西林业科技,1989,(4):12~17.
    20 关秀琦,吴钦孝,刘向东等.半干旱地区灌木树种造林密度的试验.水土保持通报,1988,8(4):44~48.
    21 曹淑定,李代琼,梁一民等.吴旗飞播区沙打旺根系的研究.水土保持通报,1983,(5):57~62.
    
    
    22 杨维西.黄土高原人工造林的三大技术措施.水土保持通报,1995,15(3):61~64.
    23 刘增文,王佑民.人工油松林蒸腾耗水及林地水分动态特征的研究.水土保持通报,1990,10(6): 78~84.
    24 袁剑舫.土壤水分的蒸发及其影响因素.土壤学报,1964,12(4):474~481.
    25 袁剑舫,刘月华.水分运行与土壤质地的关系.土壤学报,1964,12(2):143~153.
    26 杨文治,石玉洁,费维温.黄土高原几种土壤在非饱和条件下水分的蒸发性能和抗旱力评价.土壤学报,1985,22(1):13~23.
    27 杨文治,赵沛伦,张启元.不同湿度条件下土壤水分的蒸发性能和移动规律.土壤学报,1981,18(1):24~37.
    28 石玉洁,杨新民,史竹叶.黄土高原几种质地土壤的水分扩散率.中国科学院西北水土保持研究所集刊,1985,(2):29~37.
    29 田积莹,黄义端,雍绍萍.黄土地区土壤物理性质与黄土成因的关系.中国科学院西北水土保持研究所集刊,1987,(5):1~12.
    30 韩仕峰,杨新民,张效忠.黄土高原西部地区土壤水分亏损及其提高途径.水土保持通报,1988,8(2):57~59.
    31 李玉山.土壤水库的功能和作用,水土保持通报,1983,(5):27~30.
    32 韩仕峰,黄旭.黄土高原的土壤水分利用与生态环境的关系.生态学杂志,1993,12(1):25~28.
    33 刘梅,蒋定生,黄国俊等.不同坡面位置土壤水分差异规律分析.水土保持通报,1990,10(2):16~20.
    34 李玉山,韩仕峰,汪正华.黄土高原土壤水分性质及其分区.中国科学院西北水土保持研究所集刊,1985,(2):1~17.
    35 韩仕峰.立体利用土壤水分的生物结构的探讨.水土保持学报,1988,2(4):45~54.
    36 杨文治.黄土高原土壤水分状况分区(试拟)与造林问题.水土保持通报,1983,(5):13~19.
    37 孙长忠,黄宝龙,陈海滨等.黄土高原人工植被与其水分环境相互作用关系研究.北京林业大学学报,1998,20(3):7~14.
    38 梁一民,李代琼,从心海,吴旗沙打旺草地土壤水分及生产力特征的研究.水土保持通报,1990,10(6):113~118.
    39 马玉玺,杨文治,杨新民.陕北黄土丘陵沟壑区刺槐林水分生态条件及生产力研究.水土保持通报,1990,10(6):71~77.
    40 刘康,陈一鹗.黄土高原沟壑区剌槐林水分动态与土产力的研究.水土保持通报,1990,10(6):66~70.
    41 杨新民,杨文治.黄土丘陵区人工林地土壤水分平衡初探.林业科学,1989,25(6):549~553.
    42 杨海军,孙立达,余新晓.晋西黄土区水土保持林水量平衡的研究.北京林业大学学报,1993,15(3):42~50.
    43 邹厚远,鲁子瑜,刘克俭等.沙打旺种群对土壤水分的影响及其调节.生态学杂志,1991,10(3):15~17.
    
    
    44 王孟本,李洪建.晋西北黄土区人工林土壤水分动态的定量研究.生态学报,1995,15(2):178~184.
    45 李洪建,王孟本,陈良富等.刺槐林水分生态研究.植物生态学报,1996,20(2):151~158.
    46 刘增文,余清珠,王进鑫.黄土高原残塬沟壑区坡地刺槐不同皆伐更新幼林地土壤水分动态.生态学报,1997,17(3):234~238.
    47 李凤民,张振万.宁夏盐池长芒草草原和苜蓿人工草地水分利用研究.植物生态学与地植物学学报,1991,15(4):319~329.
    48 王孟本,李洪建.晋西北河北杨林水分生态的研究.生态学报,1991,11(4):313~317.
    49 冯金朝,陈荷生.宁夏沙坡头地区人工固沙植被种间水分竞争的初步研究.生态学报,1994,14(3):260~265.
    50 朱志诚,贾东林.陕北黄土高原黄背草群落生物量初步研究.生态学报,1991,11(2):117~123.
    51 吴刚,冯宗炜.中国油松林群落特征及生物量的研究.生态学报,1994,14(4):415~422.
    52 杨文治.陕北的林草建设和旱作农业,水土保持通报,1983,(2):58~63.
    53 韩仕峰,李玉山,石玉洁等.黄土高原土壤水分资源特征.水土保持通报,1990,10(1):36~43.
    54 李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响.生态学报,1983,3(2):91~101.
    55 杨维西.试论我国北方地区人工植被的土壤干化问题.林业科学,1996,32(1):78~85.
    56 张信宝,安芷生.黄土高原地区森林与黄土厚度的关系.水土保持通报,1994,14(6):1~4.
    57 杨文治,邵明安,彭新德等.黄土高原环境的旱化与黄土中水分的关系.中国科学(D辑),1997,28(4):357~365.
    58 王荷生.华北植物区系的演变和来源.地理学报,1999,54(3):213~223.
    59 于革,孙湘君,秦伯强等.花粉植被化模拟的中国中全新世植被分布.中国科学(D辑),1998,28(1):73~78.
    60 谢家泽,陈志恺.中国水资源.地理学报,1990,45(2):210~219.
    61 苏人琼.黄土高原地区水资源合理利用.自然资源学报,1996,11(1):15~22.
    62 王军,付伯杰,邱扬等。黄土丘陵小流域土壤水分的时空变异特征,地理学报,2000,55(4):428~438.
    63 付伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响.地理学报,1999,54(3):241~246.
    64 安树青,王峥峰,朱学雷等.土壤因子对次生森林群落演替的影响.生态学报,1997,17(1):45~50.
    65 岳明.陕北南部侧柏林演替时期的划分及其特征.植物生态学报,1998,22(4):327~335.
    66 陈利顶,付伯杰,干扰的类型、特征及其生态学意义.生态学报,2000,20(4):581~586.
    67 方精云.我国森林植被带的生态气候学分析.生态学报,1991,11(4):377~387.
    68 刘国华,付伯杰,陈利顶等.中国生态退化的主要类型、特征及分布.生态学报,2000,20(1):13~19.
    69 郝敦元,刘钟龄,王炜等.内蒙古草原退化群落恢复演替的研究.植物生态学报,1997,21(6):503~511.
    
    
    70 朱志诚.陕北黄土高原植被基本特征及其对土壤性质的影响.植物生态学与地植物学学报.1993,17(3):280~286.
    71 陈昌毓.甘肃黄土高原气候植被类型初探.自然资源学报,1987,2(4):347~357.
    72 周广胜,张新时.中国气候—植被关系初探.植物生态学报,1996,20(2):113—119.
    73 付伯杰.黄土区农业景观空间格局分析.生态学报,1995,15(2):113~120.
    74 孙长忠.黄土高原荒坡径流生产潜力研究.林业科学,2000,36(5):12~16.
    75 付伯杰,杨志坚,王仰麟等.黄土丘陵坡地土壤水分空间分布数学模型.中国科学(D辑),2001,31(3):185~191.
    76 邱扬,付伯杰,王军等.黄土丘陵小流域土壤水分时空分异与环境关系的数量分析.生态学报,2000,20(5):741~747.
    77 付伯杰,马克明,周华峰等.黄土丘陵区土地利用结构对土壤养分分布的影响.科学通报,1998,43(22):2444~2448.
    78 王军,付伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响.地理学报,2000,55(1):84~91.
    79 王劲峰,刘昌明,王智勇等.水资源空间配置的边际效益均衡模型.中国科学(D辑),2001,31(5):421~427.
    80 付伯杰,刘国华,陈利顶等.中国生态区划方案.生态学报,2001,21(1):1~6.
    81 苗鸿,王效科,欧阳志云.中国生态环境胁迫过程区划研究.生态学报,2001,21(1):7~13.
    82 王效科,欧阳志云,肖寒等.中国水土流失敏感性分布规律及其区划研究.生态学报,2001,21(1):14~19.
    83 张娜,梁一民.干旱气候对白羊草群落土壤水分和地上部生长的初步观察.生态学报,2000,20(6):964~970.
    84 张兴昌,邵明安,黄占斌等.不同植被对土壤侵蚀和氮素流失的影响.生态学报,2000,20(6):1038~1044.
    85 张兴昌,邵明安,黄土丘陵区小流域土壤氮素流失规律.地理学报,2000,55(5):617626.
    86 刘昌明,孙睿.水循环的生态学方面:土壤—植被—大气系统水分能量平衡研究进展,水科学进展,1999,10(3):251~259.
    87 李洪建,王孟本,柴宝峰.晋西北人工林土壤水分特点与降水关系研究.土壤侵蚀与水土保持学报,1998,4(4):60~65.
    88 余优森,林日暖,邓振镛等.人工草地土壤水分周年变化规律的研究.土壤学报,1992,29(2):175~182.
    89 彭少麟.恢复生态学与退化生态系统的恢复.中国科学院院刊,2000,(3):188~192.
    90 王政权,王庆成.森林土壤物理性质的空间异质性研究.生态学报,2000,20(6):945~950.
    91 冷疏影,宋长青,赵楚年等.关于地理学科“十五”重点项目的思考.地理学报,2000,55(6):751~754.
    
    
    92 黄明斌,杨新民,李玉山.黄土区渭北旱塬苹果基地对区域水循环的影响.地理学报,2001,56(1):7~13.
    93 朱显谟.试论黄土高原的生态环境与“土壤水库”.第四纪研究,2000,20(6):515~520.
    94 唐克丽.开发西部切入点的研究.第四纪研究,2000,20(6):504~513.
    95 邓成龙,袁宝印.末次间冰期以来黄河中游黄土高原沟谷侵蚀—堆积过程初探.地理学报,2001,56(1):92~98.
    96 郭旭东,刘国华,陈利顶等.欧洲景观生态学研究展望.地球科学进展,1999,14(4):353~357.
    97 程国栋,肖笃宁,王根绪.论干旱区景观生态特征与景观生态建设.地球科学进展,1999,14(1):11~15.
    98 王仰麟,赵一斌,韩荡.景观生态系统的空间结构:概念、指标与案例.地球科学进展,1999,14(3):235~241.
    99 马柱国,魏和林,符宗斌.土壤湿度与气候变化关系的研究进展与展望.地球科学进展,1999,14(3):299~304.
    100 穆兴民.黄土高原土壤水分与水土保持措施相互作用.农业工程科学报,2000,16(2):41~45.
    101 马福臣,林海.地球科学“十五”优先资助领域.中国科学基金,2000,(3):183~185.
    102 盛才余,刘伦辉,刘文耀.云南南涧干热退化山地人工植被恢复初期生物量及土壤环境动态.植物生态学报,2000,24(5):575~580.
    103 王孟本,柴宝峰,李洪建等.黄土区人工林的土壤持水力与有效性状况.林业科学,1999,(2):1~11.
    104 沈国舫.西部大开发中的生态环境建设问题.林业科学,2001,37(1):1~6.
    105 上官周平.对黄土高原生态环境整治的思考.林业科学,2000,36(6):3~4.
    106 黄铨.西北生态环境建设问题浅议.林业科学,2000,36(6):4~6.
    107 吴钦孝.黄土高原的林草资源和适宜覆盖率.林业科学,2000,36(6):6~7.
    108 翟明普.西北地区生态环境建设中的森林培育问题.林业科学,2000,36(6):10~11.
    109 沈国舫.写在“西部大开发中的生态环境建设问题”笔淡之前.林业科学,2000,36(5):2.
    110 山仑.怎样实现退耕还林还草.林业科学,2000,36(5):2~4.
    111 中国科学院、中国工程院.加快西北地区发展的几个关键问题.地球科学进展,2000,15(5):489~498.
    112 刘文兆.小流域水分行为、生态效应及其优化调控研究方面的若干问题.地球科学进展,2000,15(5):541~544.
    113 胡良军,邵明安.黄土高原植被恢复的水分生态环境研究进展.应用生态学报,2002,(5)
    114 Henry N. Le Houerou. Climate change, drought and desertification. Journal of Arid Environments, (1996), 34:133~185.
    115 Peter F. Ffolliott, Gerald J. ttfried, W. J. Rietveld. Dryland forestry for sustainable development. Journal of Arid Environments, (1995), 30:143~152.
    
    
    116 A. Warren, Y. C. Sud, B. Rozanov. The future of deserts. Journal of Arid Environments, (1996) , 32:75-89.
    117 Clive Agnew, Andrew Warren. A framework for tackling drought and land degradation. Journal of Arid Environments, (1996) , 33:309-320.
    118 Ichiroku Hayashi. Five years experiment on vegetation recovery of drought deciduous woodland in Kitui, Kenya. Journal of Arid Environments, (1996) , 34:351-361.
    119 J. D. Theunissen. Biomass production of different ecotypes of three grasses species of the semi-arid grasslands of southern Africa. Journal of Arid Environments, (1995) , 29:430-445.
    120 S. D. Smith, C. A. Herr, K. L. Leary, J. M. Piorkowski. Soil-plant water relations in a Mojave Desert mixed shrub community: a comparison of three geomorphic surfaces. Journal of Arid Environments, (1995) , 29:339-351.
    121 F. P. Jordan, O. J. H. Bosch, M. Postma, A. S. de Beer. The Potch vegetation management system: the influence on vegetation condition. Journal of Arid Environments, (1995) , 29:403-411.
    122. Monica B. Bertiller, Nestor O. Elissalde, Cesar M. Rostagno, Guillermo E. Defosse. Environmental patterns and plant ditribution along a precipitation gradient in western Patagonia. Journal of Arid Environments, (1995) , 29:85-97.
    123 Kathryn Haworth, Guy R. McPherson. Effects of Quercus emoryi trees on precipitation distribution and microclimate in a semi-arid savanna. Journal of Arid Environments, (1995) , 3 1:153-170.
    124 Kathleen C. Parker. Effects of complex geomorphic history on soil and vegetation patterns on arid alluvial fans. Journal of Arid Environments, (1995) , 30:19-39.
    125 R. I. Southgate, P. Masters, M. K. Seely. Precipitation and biomass changes in the Namib Desert dune ecosystem. Journal of Arid Environments, (1996) , 33:267-280.
    126 Wei Zhang, Christina Skarpe. Small-scale vegetation dynamics in semi-arid steppe in Inner Mongolia. Journal of Arid Environments, (1996) , 34:421-439.
    127 A. S. Rao, K. E. Saxton. Analysis of soil water and water stress for pearl millet in an Indian arid region using the SPAW Model. Journal of Arid Environments, (1995) , 29:155-167.
    128 Carlos Montana, Bruno Cavagnaro, Oscar Briones. Soil water use by co-existing shrubs and grasses in the Southern Chihuahuan Desert, Mexico. Journal of Arid Environments, (1995) , 31:1-13.
    129 Pedro Luis Valverde, Carlos Montana. A rapid methodology for vegetation survey in Mexican arid lands. Journal of Arid Environments, (1996) , 34:89-99.
    130 F. R. Coronato, M. B. Bertiller. Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia. Journal of Arid Environments, (1996) , 34:1-9.
    131 M. A. El-Demerdash, A. K. Hegazy, A. M. Zilay. Vegeattion-soil relationships in Tihamah coastal plains of Jazan region, Saudi Arabia. Journal of Arid Environments, (1995) , 30:161-174.
    132 Jean-Marc Ourcival, Andre Berger. Equilibrium between soil water potential and predawn potential of two pre-saharan shrub species of Tunisia. Journal of Arid Environments, (1995) , 30:175-183.
    
    
    133 S. J. Streenekamp, O. J. H. Bosch. The influence of rainfall on vegetation composition in different conditional states. Journal of Arid Environments, (1995) , 30:185-190.
    134 Philip A. Townsend. A quantitative Fuzzy Approach to Assess Mapped Vegetation Classifications for Ecological Applications. Remote Sens. Environ. (2000) , 72: 253-267.
    135 Jiang Zemin. Science in China. Science. (2000) , 288(30) :875.
    136 Jean-Pierre Wigneron, Albert Olioso, Jean-Christophe Calvet, Patricl Bertuzzi. Estimating root zone soil moisture from surface soil moisture data and soil-vegetation-atmosphere trandfer modeling. Water Resources Research, (1999) , 35(12) : 3735-3745.
    137 I. Rodriguez-Iturbe, P. D'Odorica, A. Pororato, L. Ridolfi. On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resources Research. (1999) , 35(12) : 3709-3722.
    138 Hubert J. Morel-Seytoux, John R. Nimmo. Soil water retention and maximum capillary drive from saturation to oven dryness. Water Resources Research, (1999) , 35(7) : 2031-2041.
    139 Susanne M. Schlotzhauer, Jonathan S. Price. Soil water flow dynamics in a managed cutover peat field, Quebec: Field and laboratory investigations. Water Resources Research, (1999) , 35(12) : 3675-3683.
    140 Dargie T. C. D., El Demerdash M. A. (1991) . A quantitative study of vegetation-environment relationships in two Egyptian Deserts. Journal of Vegetation Science, 5: 641-656.
    141 Dune T., Zhang W., Aubry B. F. (1991) . Effects of rainfall, vegetation, and microtopography on infiltration and runoff. Water Resources Research, 27: 2271-2285.
    142 Picketl T A, Cadanasso M L. (1995) Landscape ecology, spatial heterogeneity in ecological systems. Science, 269(21) : 33 1-334.
    143 Herkelrath W. N., Miller E. E., Gardner W. R. (1977) . Water uptake by plants: H. The root contact model. Soil Science Society of American Journal, 41: 1039-1043.
    144 Sucoff E. (1972) . Water potential in red pine: soil moisture, evapotranspiration, crown position. Ecology, 53:681-686.
    145 Greg Hancock, Garry Willgoose. (2001) . Use of a landscape simulator in the validation of the SIBERIA catchment evolution model: Declining equilibrium landforms. Water Resources Research, 37(7) : 1981-1992.
    146 Thomas C. Winter. (2001) . The concept of hydrologic landscape. Journal of the American Water Resources Association, 37(2) : 335-349.
    147 Turner M G. (1990) Spatial and temporal analysis of landscape patterns. Landscape Ecology, 4(1) : 21-30.
    148 Jonathan M. Huckle, Jacqueline A. Potter, Rob H. Marrs. (2000) . Influence of environmental factors on the growth and interactions between salt marsh plants: effects of salinity , sediment and waterlogging. Journal of Ecology. (88) :492-505.
    
    
    149 Laura A. Hyatt, Brenda B. Casper. (2000) . Seed bank formation during early secondary succession in a temperate deciduous forest. Journal of Ecology, (88) : 516-527.
    150 Mark A. Davis, J. Philip Grime, Ken Thompson. (2000) . Fluctuating resources in plant communities: a general theory of invisibility. Journal of Ecology, (88) : 528-534.
    151 Andras Bardossy, Jan M. C. Van Mierlo. (2000) . Regional precipitation and temperature scenarios for climate change. Hydrological Sciences Journal, 45(4) : 559-575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700