苜蓿夜蛾和大豆食心虫气味感受相关蛋白基因的克隆分析及表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苜蓿夜蛾(鳞翅目:夜蛾科)和大豆食心虫(鳞翅目:小卷蛾科)是大豆生长期和结荚期的两种主要害虫,随着近年来免耕和重迎茬面积增加,两种害虫的发生明显加重,成为造成大豆品质和产量降低的主要因素之一。昆虫触角是嗅觉感器分布集中的部位,触角上的各种感器调节着昆虫行为与化学、物理等各种环境刺激因子的关系,在昆虫的寄主定位、识别、取食、觅偶、交配、繁殖、栖息、防御与迁移等过程中起着极为重要的作用。因此,研究其嗅觉感器的形态与结构是探索昆虫嗅觉行为和识别机制的必要前提。昆虫的嗅觉识别过程是非常复杂的,多种蛋白参与了这一过程,这些蛋白主要包括气味结合蛋白、气味受体以及气味降解酶。深入研究嗅觉识别过程中的几个主要蛋白的结构与功能对于阐明嗅觉识别的分子机理非常重要。因此,本试验以苜蓿夜蛾和大豆食心虫为研究对象,利用扫描电镜对触角的超微结构进行了观察,利用RT-PCR和RACE的方法克隆得到了嗅觉识别的相关基因,并对相关基因的功能进行了分析,以期为阐明这两种害虫嗅觉识别的分子机理提供依据。
     利用扫描电镜对苜蓿夜蛾触角上的感受器类型进行观察,结果表明,雌雄苜蓿夜蛾的触角类型都是线状触角,由柄节、梗节和鞭节组成。触角上有8种感器分布,分别为毛形感器、刺形感器、锥形感器、腔锥形感器、耳形感器、鳞形感器、栓锥形感器和Bohm氏鬃毛,触角感器主要分布于触角的迎风面和侧面,柄节周围被鳞片包被,鞭节背风面有半包围状整齐排列的鳞片,鳞片结合处有零星分布的磷形感器、刺形感器;在整个触角上,感器主要集中在鞭节,柄节和梗节较少。不同类型感器相比而言,以毛形感器数量最多,刺形感器排列较为整齐和规律。每一鞭小节背风面都覆盖有鳞片,后排鳞片的前缘盖着前排鳞片的基部,层层相叠,绝大多数感器着生在触角的迎风面和侧面。
     利用RT-PCR和RACE的方法得到了苜蓿夜蛾和大豆食心虫的五个气味结合蛋白(OBP)和一个气味受体蛋白(Or83b)基因的全长,其中包括两种昆虫的信息素结合蛋白(PBP)和普通气味结合蛋白1(GOBP1),苜蓿夜蛾的普通气味结合蛋白2(GOBP2)和受体蛋白Or83b蛋白。用苜蓿夜蛾的信息素结合蛋白、普通气味结合蛋自1和2三条序列构建了三个基因的原核表达载体,并且在大肠杆菌中成功进行了表达。
     苜蓿夜蛾PBP基因cDNA序列的全长为625个碱基,包括一个510个碱基的开放读码框,编码170个氨基酸组成的多肽,推导出的分子量为19.0kD,预测等电点pI为5.65。在27-28位为信号肽切割位点,并存在1个N位糖基化位点。大豆食心虫PBP基因cDNA序列的全长为610个碱基,包括一个504个碱基的开放读码框,编码168个氨基酸组成的多肽,推导出的分子量为19.3kD,预测等电点pI为5.55。在24-25位为信号肽切割位点,并在52的位置上有一个N位糖基化位点。通过和已知昆虫PBP基因cDNA序列的对比,发现两种昆虫的PBP基因氨基酸序列有典型OBP家族特点的六个保守的半胱氨酸,苜蓿夜蛾和大豆食心虫PBP与其他已知鳞翅目昆虫PBP的同源性分别在44%-96%和45%-70%之间,对比过程中发现在已研究昆虫PBPs的研究发现多种昆虫中存在三种PBPs,也就是PBP存在不同的亚型,多种PBP存在的特征可能与昆虫间信息素成分的多样性有关。
     苜蓿夜蛾GOBP1基因cDNA序列的全长为973个碱基,包括一个495个碱基的开放读码框,编码164个氨基酸组成的多肽,推导出的分子量为19.0kD,预测等电点pI为5.32。在19-20位为信号肽切割位点。大豆食心虫GOBP1基因cDNA序列的全长为920个碱基,包括一个492个碱基的开放读码框编码163个氨基酸组成的多肽,推导出的分子量为18.8kD,预测等电点pI为5.29。在19-20位为信号肽切割位点。通过和已知昆虫GOBP1基因的cDNA序列对比,发现两种昆虫的GOBP1基因氨基酸序列有典型OBP家族特点的六个保守的半胱氨酸,苜蓿夜蛾和大豆食心虫GOBP1与其他已知鳞翅目昆虫GOBP1的同源性分别在63%-95%和65%-82%之间。
     苜蓿夜蛾GOBP2基因cDNA序列全长为624个碱基,包括一个489个碱基的开放读码框,编码162个氨基酸组成的多肽,推导出的分子量为18.2kD,预测等电点pI为5.30。在21-22位为信号肽切割位点。通过和已知昆虫GOBP2基因的cDNA序列对比,发现有典型OBP家族特点的六个保守的半胱氨酸,与已知鳞翅目昆虫GOBP2的同源性在75%-99%,说明GOBP2基因在鳞翅目昆虫中比较保守。
     苜蓿夜蛾Or83b基因cDNA序列全长1715个碱基,包括一个1422个碱基的开放读码框,编码473个氨基酸,分子量约为53.5kD,多肽的预测等电点pI为8.37。对苜蓿夜蛾Or83b氨基酸序列进行分析预测,发现苜蓿夜蛾Or83b氨基酸序列中存在2个N位糖基化位点,N-端无信号肽,含有7个跨膜区域,N末端在细胞膜内,而C末端在细胞膜外,符合昆虫气味受体的结构特征。通过和已知昆虫的Or83b基因的cDNA序列对比,发现苜蓿夜蛾的Or83b和其他鳞翅目昆虫Or83b同源性达到96%以上。
     对五条气味结合蛋白的生物信息学分析,发现这五条基因编码的蛋白具有昆虫气味结合蛋白的典型特征:小分子量、水溶性酸性蛋白;序列中有6个保守的半胱氨酸,N-末端有信号肽,具有分泌蛋白的特征。苜蓿夜蛾气味受体蛋白Or83b具有昆虫气味受体的典型特征:具有七个跨膜区,N末端在细胞膜内,C末端在细胞膜外,N-无信号肽。
     对苜蓿夜蛾PBP、GOBP1、GOBP2和Or83b四条基因在雌雄成虫的触角、腹部和足三个器官的表达情况进行了研究,结果表明四条基因在雌雄触角、腹部和足中均有表达,同时通过对苜蓿夜蛾PBP各器官荧光定量分析,发现苜蓿夜蛾PBP主要存在于雄虫触角中,在雄虫触角中表达量是雌虫的30倍以上,而雌虫触角中的表达量也是其他器官的3倍以上。
Heliothis viriplaca (Lepidoptera:Noctuoidea) and Leguminivora glycinivorella (Lepidoptera: Olethreutidae) are important Lepidopteran pests for soybean in grow and pod period. Recently, the two pests more and more serious because of the increase area field of the free cultivate and plant soybean for several years. They are one of the main reasons of the quality and output decline. Sensillae is focus on antennae, and measure relation between the insect behavior and the environment stimulate factor of chemic and physical. It is important to insect to find host plant, food, mate and pertect prey and migrate. Therefore, the morphology and configuration is precondition of explore insect olfactory behavior and identify system. Insect olfactory identify process is very complex and many protein participate in. They are odorant binding protein, odorant receptor and odorant degrading enzymes. The proteins are important to elucidate the olfactory identify molecular mechanism. In this paper, the antenna of H viriplaca was observed by scanning electron microscopy, and use RT-PCR and RACE method to clone and analysis the olfactory related genes form antenna of H viriplaca and L glycinivorella. The Primary results are as follows:
     The antenna of H viriplaca was observed by scanning electron microscopy. Female and male moths are filiform and consist of the scape, pedicel and flagellum, and eight types of sensillawere found. These were sensilla trichodea, sensilla chaetica, sensilla basiconca, sensilla coelocomica, Sensilla auricillica, sensillum squamiformia, sensilla styloconica and Bohm's bristles. The Sensillae distributed the rear and side of antenna, the scape was wrapped by squama, half of the flagellum was wrapped in order by squama, and a few of sensillum squamiformia and sensilla chaetica distributed in the squamas. Sensillae focus on flagellum, only a few Sensillae in scape and pedicel. Sensilla trichodea was the most sensillae, and sensilla chaetica was orderly on the antenna. The every little flagellum rear coverd by squamas, so most of the sensillae was in the rear and side of antenna.
     Five OBPs and one OR genes were cloned from the antenna of H viriplaca and L glycinivorella by RT-PCR and RACE method. They are PBP and GOBP1of H viriplaca and L glycinivorella, GOBP2and Or83b of H viriplaca, and the PBP, GOBP1and GOBP2with vector pet21b were construeted and successed expressed in E. coll induced by IPTG.
     The H viriplaca PBP cDNA was625bp in length and contained an open reading frame of510bp. The ORF encoded a polypeptide of170amino acid residues with a predicted molecular weight of19.0kD and a p1of5.65. A signal peptide of27residues was predicted at the N-terminus of the protein, and only one putative N-glycosylation sites was identified at the position34. The L. glycinivorella PBP cDNA was610bp in length and contained an open reading frame of504bp. The ORF encoded a polypeptide of168amino acid residues with a predicted molecular weight of19.3kD and a p1of5.55. A signal peptide of24residues was predicted at the N-terminus of the protein, and only one putative N-glycosylation sites was identified at the position52. Sequence blasted and analysed with other known insects indicated that HvirPBP and LglyPBP were characterized by six conservative Cys, which shared typical feature of OBP family. Identity of HvirPBP and LglyPBP were44%-96%and45%-70%with other known Lepidoptera insects. The kown insects had three subfamilies, and it may be connect with diversity pheromone.
     The H viriplaca GOBP1cDNA was973bp in length and contained an open reading frame of495bp. The ORF encoded a polypeptide of164amino acid residues with a predicted molecular weight of19.0kD and a p1of5.32. A signal peptide of19residues was predicted at the N-terminus of the protein. The L. glycinivorella GOBP1cDNA was920bp in length and contained an open reading frame of492bp. The ORF encoded a polypeptide of163amino acid residues with a predicted molecular weight of18.8kD and a p1of5.29. A signal peptide of19residues was predicted at the N-terminus of the protein. Sequence blasted and analysed with other known insects indicated that HvirGOBP1and LglyGOBP1were characterized by six conservative Cys, which shared typical feature of OBP family. Identity of HvirGOBP1and Lgly GOBP1were65%-95%and65%-82%with other known Lepidoptera insects.
     The H viriplaca GOBP2cDNA was624bp in length and contained an open reading frame of489bp. The ORF encoded a polypeptide of162amino acid residues with a predicted molecular weight of18.2kD and a pi of5.30. A signal peptide of21residues was predicted at the N-terminus of the protein. Sequence blasted and analysed with other known insects indicated that HvirGOBP2was characterized by six conservative Cys, which shared typical feature of OBP family. Identity of HvirGOBP2was well conserved, and between75%and99%with other known Lepidoptera insects.
     The H. viriplaca Or83b cDNA was1715bp in length and contained an open reading frame of1422bp. The ORF encoded a polypeptide of473amino acid residues with a predicted molecular weight of53.5kD and a p1of8.37. Two putative N-glycosylation sites were identified at the position110and170, and no signal peptide at the N-terminus of the protein. Sequence blasted found the sequence of H. viriplaca Or83b was well conserved, and over96%identity with Or83bs of other Lepidoptera moths. Analysed the sequence indicated that HvirOr83b has seven transmembrane domains, which shared typical feature of odorant receptor family.
     Analysed the five odorant binding proteins found they had the odorant binding protein typical feature, included small molecular weight, water-solubility acidic protein; six conservative Cys in sequences, A signal peptide was predicted at the N-terminus of the protein which secretory protein character. HvirOr83b has seven transmembrane domains, which shared typical feature of odorant receptor, and no signal peptide at the N-terminus of the protein.
     PBP, GOBP1, GOBP2and Or83b four genes expressed in different organs in H. viriplaca, the four genes not only expressed in the antennae of both male and female adults but also expressed in abdomen and legs. Analysed PBP in different organs by RT-PCR method found that PBP gene is main expressed in male antenna, it was30times higher than PBP gene in male antenna, and PBP gene in male antenna was3times higher than PBP other organs.
引文
[1]MAIBECHE-COISNE M, SOBRIO F, DELAUNAY T, et al. How many insect species are there on earth[J]. Science,1992,241:1441-1449.
    [2]PIMM S L, RUSSEL G J, GITTLEMAN J L, et al. The future of biodiversity[J]. Science, 1995,269:347-350.
    [3]谷少华.首蓓盲蜻嗅觉相关基因的发掘及功能分析[D].北京:中国农业科学院研究生院,2010。
    [4]VOGT R G, RIDDIFORD L M. Pheromone binding and inactivation by moth antennae[J]. Nature,1981,293:161-163.
    [5]王桂荣,郭予元,吴孔明.棉铃虫普通气味结合蛋白Ⅱ基因的表达及鉴定[J].昆虫学报,2002,45(3):285-289.
    [6]WANG G R, GUO Y Y, WU K M. Molecular cloning, bacterial expression of pheromone binding protein in the antenna of Helicoverpa armigera (Htbner)[J]. Archives of Insect Biochemistry and Physiology,2004,57(1):15-27.
    [7]CLYNE P J, WARR G G, FREEMAN M R, et al. A novel family of divergent seven transmembrane proteins:Candidate odorant receptors in Drosophila[J]. Neuron,1999,22(2): 327-338.
    [8]VOSSHALL L B, AMREIN H, MOROZOV P S, et al. A spatial map of olfactory receptor expression in the Drosophila antenna[J]. Cell,199996:725-736.
    [9]HILL C A, FOX A N, PITTS R J, et al. G protein-coupled receptors in Anopheles gambiae[J]. Science,2002,298(5591):176-178.
    [10]ROGERS M E, JANI M K, VOGT R G. An olfactory-specific glutathione-Stransferase in the sphinx moth Manduca sexta[J]. J. Exp. Biol.,1999,202:1625-1637.
    [11]Wang G R, Guo Y Y, Wu K M. Cloning of cDNA fragment of an antennal-specific gene in Helicoverpa armigera (Htbner)[J]. Chinese Journal of Agricultural Biotechnology,2004,1(1): 1-7.
    [12]Pelosi P. Odorant-binding proteins[J]. Crit. Rev. Biochem. Molec. Biol.,1994,29:199-228.
    [13]Steinbrecht R A. Pore structures in insect olfactory sensilla:a review of data and concepts[J]. International Journal of Insect Morphology and Embryology,1997,26(3):229-245.
    [14]Steinbrecht R A, Stankiewiez B A. Molecular composition of the wall of insect olfaetory sensilla-the chitin question[J]. Journal of insect physiology,1999,45(8):785-790.
    [15]Rutzler M, Zwiebel L J. Molecular biology of insect olfaction:recent progress and conceptual models[J]. J.Comp.PhysioL,2005,191(9):777-790.
    [16]乔奇.烟夜蛾气味受体基因和G蛋白α亚基基因的克隆与表达[D].郑州:河南农业大学植物保护学院,2008.
    [17]马瑞燕,杜家纬.昆虫的触角感器[J].昆虫知识,2000,37(3):179-183.
    [18]彩万志,庞熊飞,花保祯,等.普通昆虫学[M].北京:中国农业大学出版社,2001,37-42.
    [19]Schneider D. Insect antennae[J]. Annu. Rev. Entomol..1964, (9):103-122.
    [20]Altner H. Insect sensillum specificity and structure:an approach to a new typology[J]. Olfaction and Taste,1977,6:295-303.
    [21]孙凡,胡基华,王广利,等.东北大黑鳃金龟嗅感器超微结构[J].昆虫学报,2007,50(7):675-681.
    [22]Hallberg E. Sensory organs inIPs typograPhus (Insecta-. ColeoPtera)-Fine structure of antennal sensilla[J]. Protoplasma,1982,111(3):206-214.
    [23]YOkohari F, Tominaga Y, Tateda H. Antennal hygroreceptors of the honey bee, Apis mellifera L[J]. Cell and Tissue Research,1982,226(1):63-73.
    [24]Tominaga Y, EYokohari, External structure of the sensillum capitulum, a hygro-and thermoreceptive sensillum of the cockroach, Periplaneta Americana[J]. Cell Tissue Res,1982, 226(2):309-318.
    [25]Yokohari E. The coelocapitular sensillum, anantennal hygro-and thermoreceptive sensillum of the honey bee, Apis mellifera L[J]. Cell and Tissue Research,1983,233(2):355-365.
    [26]Ramaswamy S, A Gupta. Sensilla of the antennae and the labial and maxillary palps of Blattella germanica(L.)(Dictyoptera:Blattellidae):Their classification and distribution[J]. J.Morphol,1981,168:269-279.
    [27]Hintze-Podufal C, B Otto. Extenal morphology of antennae and their sense organs in the roach Gromphadorhina brunneri (Blattoidea:Dietyoptera) [J]. Journal of Morphology,1975, 146(2):251-263.
    [28]Norton W, S Vinson. A comparative ultrastructural and behavioral study of the antennal sensory sensilla of the Parasitoid Cardiochiles nigriceps (hymenoptera:Braeonidae)[J]. Journal of Morphology,1974,142(3):329-349.
    [29]Barlin M, S Vinson. Multiporous plate sensilla in the antennae of the Chalcidoidea (Hymenoptera)[J]. Ini. J. Insect Morphol. Embryol,1981,168:97-108.
    [30]CAVE R, M GAYLOR. Anteunal sensilla of male and female Telenomus reynoldsi Gordh and Coker (Hymenoptera:Scelionidae)[J]. International journal of insect morphology & embryology,1987,16(1):27-39.
    [31]Navasero R, G Elzen. Sensilla on the antennae, foretarsi and Palpi of Microplitis croceipes(Cresson)(Hymenoptera:Braconidae)[J]. Proceedings of the Entomological Society of Washington,1991,93(3):737-747,
    [32]OLSON D, D ANDOW. Antennal sensilla of female Trichogramma nubilae (Ertle and Davis) (Hymenoptera:Trichogrammatidae) and comparisons with other parasitic hymenoptera[J]. International journal of insect morphology & embryology,1993,22(5):507-520.
    [33]Isidoro N. Morphology of antennal gustatory sensilla and glands in some parasitoids Hymenoptera with hypothesis on their role in sex and host recognition[J]. Journal of Hymenoptera Research,1996,5:206-239.
    [34]李建勋.甜菜夜蛾Spodoptera exigua (Hiibner)化学感受基础的研究[D].重庆:西南大学,2008.
    [35]Altner, H. Insect sensillum specificity and structure:an approach to a new typology:In LeMagnen J. & MacLeod P. (eds):Olfaction and Taste. Information Retrieval[C].London, 1977,4:295-303.
    [36]Almaas T, Mustaparta H. Heliothis virescenst Response characteristics of receptor neurons in sensilla trichodea Type 1 and Type 2[J]. J. Chem. Ecol.,1991,17(5):953-972.
    [37]Gnatzy W, Mohren W, Steinbrecht R A. Pheromone receptors in Bombryx mori and Antheraea pernyi. II.Morphometric analysis[J].Cell Tissue Res.,1984,235:35-42.
    [38]Ljungberg H, Anderson P, Hansson B S. Physiology and morphology of pheromone-specific sensilla on the antennae of male and female Spodoptera littoralis (Lepidoptera:Noctuidae)[J]. J. Insect Physiol.,1993,39:253-260.
    [39]Steinbrecht R A. Zur morphometrie der antenne des seindenspinners, Bombyx mori L.zahl und verteilung der Riechsensillen (Insecta, Eepidoptera)[J]. Z. Morphol. Tiere.,1970,68:93-126.
    [40]Steinbrecht R A, Gnatzy W. Pheromone receptors in Bombryx mori and Antheraea pernyi.I. Reconstruction of celluar organization of sensilla trichodea[J]. Cell Tissue Res.,1984,235: 25-34.
    [41]Steinbrecht R A, Laue M, Ziegelberger G. Immunocytochemical of pheromone-binding protein and general odorant binding protein in olfactory sensilla of the silk moth Antheraea and Bombyx[J]. Cell Tissue Res.,1995,282:203-217.
    [42]Steinbrecht R A, Ozaki M, Ziegelberger G. Immunocytochemical localization of pheromone-binding protein in moth antennae[J]. Cell Tissue Res.,1992,270:287-302.
    [43]Lango K. Morphological characteristics of the antennal fiagellum and its sensilla chaetica with character displacement in the sandfly Phlebotomus argentipes Annandale and Brunetti sensu lato (Diptera:Psyehodidae)[J]. J. Biosci.,2000,25(2):163-172.
    [44]Cuperus P. Distribution of antennal sense organs in male and female ermine moth, Yponomeuta vigintipunctatus(Retzius)(Lepidoptera:Yponomeutidae)[J]. Int.J.Insect Morphol. Embryol,1983,12(1):59-66.
    [45]杜芝兰.中华蜜蜂工蜂触角感受器的扫描电镜观察[J].昆虫学报,1989,32(2):166-169.
    [46]Jefferson RN, Rrubin R E, Mcfarland S U, et al. Sex pheromones of noetuid moths. XX11. The external morphology of the antennae of Triehoplusia ni, Heliothis zea, Prodenia omithogalli, and Spodoptera exigua[J]. Ann. Entomol. Soe. Am,1970,63:1227-1238.
    [47]Albert P, Seabrook W. Morphology and histology of the antenna of the male eastern spruce budworm, Choristoneura fumiferana(Clem.)(Lepidoptera:Tortrieidae)[J]. Can. J. Zool, 1973,51:443-448.
    [48]Hallberg E, Hansson B S, Steinbreeht R A. Morphological characteristics of antennal sensilla in the European cornborer Ostrinia nubilalis(lepidoptera:Pyralidae)[J].Tissue and cell,1994, 26:489-502.
    [49]HANSSON, B. Olfaction in Lepidoptera[J]. Cellular and Molecular Life Sciences,1995, 51(11):1003-1027.
    [50]Faueheux M. Morphology and distribution of sensilla on the cephalic appendages, tarsi and ovipositor of the European sunflower moth, Homoeosoma nebulella Den. And Schiff(Lepidoptera:Pyralidae)[J], Int.J.Insect Morphol. Embryol,1991,20(6):291-307.
    [51]Van der Pers J, Thomas G, Den otter C. Interactions between plant odours and pheromone reception in small ermine moths (Lepidoptera:Yponomeutidae)[J]. Chemical Senses, 1980.5(4):367-371.
    [52]Davis E, Sokolove P. Temperature responses of antennal receptors of the mosquito, Aedes aegypti[J]. Journal of Comparative Physiology A:Sensory, Neural, and Behavioral Physiology,1975,96(3):223-236.
    [53]Shields V D, Hildebrand J G. Fine structure of antennal sensilla of the female sphinx moth, Manduca sexta (Lepidoptera:Sphingidae).11. Auriculate, coeloconic, and styliform complex sensilla[J]. Can J Zool,1999,77(2):302-313.
    [54]Oehieng S, Hallbe E, Hansson B. Fine structure and distribution of antennal sensilla of the desert locust, Schistocerca gregaria (Orthoptera:Acrididae)[J]. Cell and Tissue ResearEh, 1998,291(3):525-536.
    [55]Shields V D, Hildebrand J G Fine structure of antennal sensilla of the female sphinx moth, Manduea sexta(Lepidoptera:Sphingidae). I. Trichoid and basiconic sensilla[J]. Can J Zool, 1999,77(2):290-301.
    [56]胡文静,陈文龙,韦卫,等.茶银尺蠖雄蛾触角的扫描电镜观察[J].昆虫知识,2010,47(5):938-940.
    [57]杨广,黄桂诚,尤民生.小菜蛾触角的显微结构及其作用[J].福建农业大学学报,2001,30(1):75-79.
    [58]简美玲,张来丽,毛润乾.曲纹紫灰蝶触角感受器的扫描电镜研究[J].华南农业大学学报,2011,32(2):52-56.
    [59]李竹,陈力.触角感器特征应用于昆虫分类的研究进展[J].昆虫分类学报,2010,32:113-118.
    [60]Li F, Prestwich G. D. Expression and characterization of a lepidopteran general odorant binding protein. Insect Biochem[J]. Mol. Biol.,1997,27(5):405-4121.
    [61]钟涛,尹姣,刘怀,等.草地螟触角普通气味结合蛋白基因的克隆及序列分析[J].植物保护,2008,34(4):31-36.
    [62]修伟明,董双林.斜纹夜蛾信息素结合蛋白cDNA片段的克隆及序列分析[J].南京农业大学学报,2007,30(3):53-57.
    [63]张升祥,徐世清,王更先,等.家蚕普通气味结合蛋白基因的表达及分子进化研究[J].蚕业科学,2010,36(4):610-618.
    [64]Ko H J. Park T H. Enhancement of odorant detect ion sensitivity by the expression of odorant- binding protein[J]. Biosens. Bioelectron.,2008,23(23):1017-1023.
    [65]Lautenschlager C, Leal W S, Clardy J. Bombyx mori Pheromone-Binding Protein Binding Nonpheromone Ligands:Implications for Pheromone Recognition[J]. Cell Press,2007,15: 1148-1154.
    [66]徐红星,陈东旭,张雅林,王敦.小菜蛾普通气味结合蛋白2基因的原核表达与多克隆抗体制备[J].环境昆虫学报,2010,32(2):194-198.
    [67]陈东旭,于欢,徐红星,等.小菜蛾性信息素结合蛋白I基因的表达及多克隆抗体制备[J].西北农业学报,2011,20(8):182-186.
    [68]Pelosi P, Zhou J J, Ban L P, et al. Soluble proteins in insect chemical communication[J]. Cell. Mol. Life Sci.,2006,63,1658-1676.
    [69]Yasukawa J, Tomioka S, Aigaki T, et al. Evolution of expression patterns of two odorant-binding protein genes, Obp57d and Obp57e, in Drosophila[J]. Gene,2010,467: 25-34.
    [70]Pelletier J, Leal W S. Characterization of olfactory genes in the antennae of the Southern house mosquito, Culex quinquefasciatus[J]. Journal of Insect Physiology,2011,2691:1-15.
    [71]Field L M, Pickett J A, Wadhams L J. Molecular studies in insect olfaction[J]. Insect Mol Biol,2000,9:545-551.
    [72]ZHOU J J, HE X L, PICKETT J A, et al. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti:genome annotation and comparative analyses[J]. Insect Molecular Biology,2008,17(2):147-163.
    [73]中建梅,胡黎明,宾淑英,等.瓜实蝇普通气味结合蛋白基因的克隆及原核表达[J].华中农业大学学报,2011,30(4)455-460.
    [74]孙红岩,尹姣,冯红林,等.草地螟普通气味结合蛋白(Lsti-GOBP1)蛋白表达纯化及结合特性分析[J].昆虫学报,2011,54(4):381-389.
    [75]Pelosi P, Maida R. Odorant-binding proteins in insects[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1995,111(3):503-514.
    [76]Du G, Ng C S, Prestwich G D. Odorant binding by a pheromone binding protein:active site mapping by photo affinity labeling[J]. Biochemistry,1994,33:4812-4819.
    [77]Du G, Prestwieh G D. Protein structure encodes the ligand binding specificity in Pheromone binding Protein[J]. Biochemistry,1995,34:8726-8732.
    [78]王桂荣.棉铃虫气味结合蛋白的分子结构及对气味的识别[D].北京:中国农科院研究生院,2002.
    [79]Hoffman S A, Aravind L, Velmurugan S. Female Anopheles gambiae antennae:increased transcript accumulation of the mosquito-specific odorant-binding-protein OBP2[J]. Parasites & Vectors,2012,5:27-32.
    [80]GU S H, SUN Y, REN L Y, et al. Cloning, expression and binding specificity analysis of odorant binding protein 3 of the lucerne plant bug, Adelphocoris lineolatus (Goeze) [J]. Chinese Science Bulletin,2010,55(34):3911-3921.
    [81]陈华才,刘军,张晓燕,等.茶尺蠖普通气味结合蛋白(GOBP)的基因克隆与序列分析[J].茶叶科学,2010,30(1):37-44.
    [82]朱家颖,杨璞,吴国星,等.丽蝇蛹集金小蜂气味结合蛋白基因的克隆与序列分析[J].环境昆虫学报,2010,32(4):476-482.
    [83]张小辉,朱忠珂,祁艳霞.中华蜜蜂气味结合蛋白5,9,11,12基因克隆及生物信息学分析[J].黑龙江畜牧兽医,2010,4:140-141.
    [84]Ozaki K, Utoguchi A, Yamada A, et al. Identification and genomic structure of chemosensory proteins (CSP) and odorant binding proteins (OBP) genes expressed in foreleg tarsi of the swallowtail butterfly Papilio xuthus[J]. Insect Biochemistry and Molecular Biology,2008,38: 969-976.
    [85]Gu S H, Wang S P, Zhang X Y, et al. Identification and tissue distribution of odorant binding protein genes in the lucerne plant bug Adelphocoris lineolatus (Goeze) [J]. Insect Biochemistry and Molecular Biology,2011,41:254-263.
    [86]Zhang S G, Maida R, Steinbrecht R A. Immunolocalization of odorant-binding proteins in noctuid moths(insecta, lepidoptera) [J]. Chem. Senses,2001,26(7):885-896.
    [87]Vogt R G, Rybczynski R, Lerner M R. Molecular cloning and sequencing of general odorant-binding proteins GOBPI and GOBP2 from the tobacco hawk moth Manduea sexta: comparisons with other insect OBPs and their signal peptides[J]. J Neurosci,1991,11(10): 2972-2984,
    [88]钟国华,李苗孟,胡美英,等.斜纹夜蛾普通气味结合蛋白基因SlitGOBP1的克隆及序列分析[J].华南农业大学学报,2008,29(2):38-43.
    [89]钟国华,李苗孟,胡美英,等.斜纹夜蛾触角气味结合蛋白基因SlitGOBP2的克隆与序列分析[J].华南农业大学学报,2008,27(5):578-584.
    [90]李红亮,聂文敏,高其康,等.中华蜜蜂气味结合蛋白ASP2cDNA的克隆及原核表达[J].中国农业科学,2008,41(3):933-938.
    [91]陈华才,刘军,张晓燕,等.茶尺蠖普通气味结合蛋白基因片段cDNA的克隆与序列分析[J].中国计量学院学报,2009,20(3):278-282.
    [92]金丰良,董小林,许小霞,等.斜纹夜蛾普通气味结合蛋白I cDNA的克隆及在原核细胞中的表达[J].中国农业科学2009,42(3):891-899.
    [93]吴仲南,杜永均,诸葛启钏.斜纹夜蛾普通气味结合蛋白GOBPI基因的表达定位分析[J].昆虫学报,2009,52(6):610-616.
    [94]李亮,杨文玲,郭线茹,等.烟夜蛾性信息素结合蛋白2(PBP2)基因的克隆、序列分析与时空表达[J].昆虫学报,2009,52(11):1199-1205.
    [95]张升祥,崔为正,王更先,等.野桑蚕性信息素结合蛋白(PBP)亚家族基因的克隆与进化分析[J].蚕业科学,2009,35(4):776-782.
    [96]张升祥,徐世清,孔令斐,等.野桑蚕性信息素结合蛋白基因pbpl、气味受体基因orl和or3的克隆及其与家蚕同源基因的进化分析[J].昆虫学报,2009,52(8):917-922.
    [97]Zhang T T, Gu S H, WuKM, et al. Construction and analysis of cDNA libraries from the antennae of male and female cotton bollworms Helicoverpa armigera (Hiibner) and expression analysis of putative odorant-binding protein genes[J], Biochemical and Biophysical Research Communications,2011,407:393-399.
    [98]Yang G, Winberg G, Ren H, et al. Expression, purification and functional analysis of an odorant binding protein AaegOBP22 from Aedes aegypti[J]. Protein Expression and Purification,2011,75:165-171.
    [99]杨芳.甜菜夜蛾和斜纹夜蛾信息素蛋白3基因的分子克隆和表达动态[D].南京:南京农业大学,2010.
    [100]杨芳,贺鹏,董双林.斜纹夜蛾信息素结合蛋白3基因的分子鉴定及进化分析[J].南京农业大学学报,2010,33(5):65-70.
    [101]修伟明,董双林,王荫长.昆虫信息素结合蛋白及其分子运输机制和生理功能研究进展[J].昆虫学报,2005,48(5):778-784.
    [102]Zhou J J, Vieira F G, He X L, et al. Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum[J]. Insect Mol.Biol.,2010,19:113-122.
    [103]Zhou J J, Field L M, He X L. Insect odorant-binding proteins:do they offer an alternative pest control strategy? [J] Outlooks on Pest Management,2010,31-34.
    [104]Zhou J J, Robertson G, He X L, et al. Characterisation of Bombyx mori Odorant-binding Proteins Reveals that a General Odorant-binding Protein Discriminates Between Sex Pheromone Components[J]. J. Mol.Biol.,2009,389:529-545.
    [105]谷少华,孙洋,任丽燕,等.苜蓿盲蝽气味结合蛋白AlinOBP3的克隆、表达及结合特性分析[J].科学通报,2010,55(27-28):2690-2701.
    [106]Sealoni A, Monti M, Angeli S. Structural analysis and disulfidebridge pairing of two odorant binding proteins from Bombyx mori[J]. Biochem. Biophys. Res. Commun,1999,266: 386-391.
    [107]Leal W S, Nikonova L, Peng G. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori[J]. FEBS letters,1999,464(1-2):85-90.
    [108]Leal W S, Angela M V, Yuko I. Kinetic and molecular properties of pheromone binding and release[J]. Proc.Natl.Acad. Sci. USA,2005,102(15):5386-5391.
    [109]Pesenti M E., Spinelli S, Bezirard V, et al. Queen Bee Pheromone Binding Protein pH-Induced Domain Swapping Favors Pheromone Release[J]. J. Mol. Biol.,2009,390: 981-990.
    [110]Xu W, Leal W S. Molecular switches for pheromone release from a moth pheromone-binding protein[J], Biochemical and Biophysical Research Communications,2008,372:559-564.
    [111]Michel E, Damberger F F., Ishida Y, et al. Dynamic Conformational Equilibria in the Physiological Function of the Bombyx mori Pheromone-Binding Protein[J], Journal of Molecular Biology,2011,3:1-10.
    [112]Wogulis M, Morgan T, Ishida Y, et al. The crystal structure of an odorant binding protein from Anopheles gambiae:Evidence for a common ligand release mecnanism[J]. Biochem. Bioghys. Res. Commun.,2006,33:157-164.
    [113]Zhang D, Leal W S. Conformational isomers of insect odorant-binding proteins[J]. Archives of Biochemistry and Biophysics.,2002,397(1):99-105.
    [114]Nikonov A A, Peng G H., TsuruPa G. Unisex pheromone detectors and pheromone-binding proteins in searab beetles[J]. Chem. Sense.,2002,27:495-504.
    [115]Wojtasek H, Hansson B S, Leal W S. Attracted or repelled? A matter of two neurons, one pheromone binding protein, and a chiral center[J]. Biochem. Biophys. Res. Commun.,1998, 250:217-222.
    [116]Wojtasek. H, leal W S. Conformational change in the pheromone-binding protein from Bombyx mori induced by PH and by interaction with Membranes[J]. J. Bio. Chem.,1999, 274(43):30950-30956.
    [117]Lautenschlager C, Leal W S, Clardy J. Coil-to-helix transition and ligand release of Bombyx mori pheromone-binding protein[J]. Bioehem. Biophys. Res. Commun.,2005,335: 1044-1050.
    [118]Jin X, Zhang S G, Zhang L. Expression of odorant-binding and chemosensory proteins and spatial map of chemosensilla on labial palps of Locusta migratoria (Orthoptera:Acrididae) [J]. Arthropod Struct. Dev.,2006,35:47-56.
    [119]Steinbrecht R A. Structure and function of insect olfactory sensilla[J]. Ciba. Found Symp., 1996,200:158-157.
    [120]Damberger F F, Ishida Y, Leal W S, et al. Structural bas is of ligand binding and release in insect pheromone-binding proteins.-NMR structure of antheraea polyphemusPBPl at pH 4. 5[J]. J. Mol. B io.,2007 373(4):811-819.
    [121]Laue M, Steinbrecht R A, Ziegelberger G. Immunocytochemical localization of general odorant binding protein in olfactory sensilla of the silkmoth Antheraea polyphemus[J]. Naturwissenschaften,1994,81:178-180.
    [122]Vogt R G, Rogers M E, Franeo M D, et al. A comparative study of odor binding protein genes:differential expression of the PBP1-GOBP2 gene cluster in Manduca sexta(Lepidoptera)and the organization of OBP genes in Drosophila melanogaster (Diptera)[J]. J. Exp. Biol.,2002,205:719-744.
    [123]Callahan F E, Vogt R G, Tucker M L, et al. High Level Expression of Male Specific" Pheromone Binding Proteins (PBPs) in the Antennae of Female Noctuid Moths[J]. Insect Biochem.Molec. Biol.,2000,30:507-514.
    [124]Krieger J, E.von N R, Mameli M, et al. Binding Proteins from the Antennae of Bombyx mori[J].Insect Biochem.Mol.Biol.,1996,26:297-307.
    [125]Forstner M, Gohl T, Breer H, et al. Candidate Pheromone binding Proteins of the silk moth Bombyx mori[J]. Invert Neurosei.,2006,6:177-187.
    [126]龚达平,赵萍,林英,等.家蚕信息素结合蛋白BmPBP2和BmPBP3基因的初步鉴定 及表达分析[J].昆虫学报,2006,49(3):355-362.
    [127]张升祥,张瑶,徐世清,等.家蚕蛹和成虫期GOBP/PBP亚家族基因簇基因定位与表达分析[J].昆虫学报.2010,53(10):1069-1076.
    [128]Riviere S, et al. A Pheromone-binding protein from the cockroach Leucophaea maderae: cloning, expression and Pheromone binding[J]. The Biochemical journal,2003.371(Pt2): 573-579.
    [129]Paesen G C, Happ G M. The B Proteins secreted by the tubular accessory sex glands of the male mealworm beetle, Tenebrio molitor, have sequence similarity to moth pheromone-binding proteins[J]. Insect Biochem Mol Biol,1995,25(3):401-408.
    [130]Ozaki M, Kazuyo Morisaki, Wataru Idei, et al. A putative lipophilic stimulant carrier protein conunonly found in the taste and olfactory systems. A unique member of the pheromone-binding protein superfamily[J]. FEBS Journal,1995,230(1):298-308.
    [131]Ozaki M, Takahara T, Kawahara Y, et al. Perception of noxious compounds by contact chemoreceptors of the blowfly, Phormia regina:putative role of an odorant-binding protein[J]. Chemical senses,2003,28(4):349-359.
    [132]Tuccini A, Maida R, Rovero P, et al. Putative odorant-binding protein in antennae and legs of Carausius morosus (Insecta, Phasmatodea)[J]. Insect biochemistry and molecular biology, 1996,26(1):19-24.
    [133]Calvello M, Brandazza A, Navarrini A, et al. Expression of odorant-binding proteins and chemosensory proteins in some Hymenoptera[J]. Insect Biochem. Mol. Biol.,2005,35: 297-307.
    [134]Li S, Picimbon J F, Ji S, et al. Multiple functions of an Odorant-binding protein in the mosquito Aedes aegypti[J]. Biochem. Bioph. Res.Com.,2008,372:464-468.
    [135]Prestwich G D. Proteins that smell:Pheromone recognition and signal transduction[J]. Bioorg. Med. Chem.,1996,4(3):505-511.
    [136]Kaissling K E. A quantitative model of odor deactivation based on the redox shift of the pheromone-binding protein in moth antennae[J]. Ann N Y Acad Sci 1998,30(855):320-322.
    [137]Vogt R G, Callahan F E, Rogers M E, et al. Odorant binding protein Diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris(Hemiptera, Heterotera)[J]. Chem. Senses,1999,24(5):481-495.
    [138]Rybczynski R, Reagan J, Lemer M R. A pheromone-degrading oxidase in the antennae of the moth Manduca sexta[J]. J Neurosci.1989,9(4):1341-1353.
    [139]Rogers M E, Sun M, Lerner M R, et al. Snmp-1, a Novel Membrane Protein of Olfactory Neurons of the Silk Moth Antheraea polyphemus with Homology to the CD36 Family of Membrane Proteins[J]. The Journal of Biological Chemistry,1997,272:14792-14799.
    [140]Pennisi E. Fruit Fly Odor Receptors Found[J]. Science,1999,283(5406):1239-1340.
    [141]Jones W D, Nguyen TT, Kloss B, et al. Functional conservation of an insect odorant receptor gene across 250 million years of evolution[J].Curr. Biol.,2005.15(4):119-121,
    [142]Vosshall L B, Stocker R F. Molecular architecture of smell and taste in Drosophila[J]. Annu. Rev. Neurosci.,2007,30:505-533.
    [143]Fox A N, Pitts R J, Robertson H M, et al. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding[J].Proc. Natl.Acad. Sci. USA.,2001,98(25):14693-14697.
    [144]Nakagawa T, Sakurai T, Nishioka T, et al. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors[J]. Science,2005,307(5715):1638-1642.
    [145]Sakurai T, Nakagawa T, Mitsuno H, et al. Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori[J]. Proc. Natl. Acad. Sci. USA..2004, 101(47):16653-16658.
    [146]Wanner K W, Anderson A R, Trowell S C, et al. Female-biased expression of odourant receptor genes in the adult antennae of the silkworm, Bombyx mori[J].Insect Mol.Biol.. 2007,16(1):107-119.
    [147]Bohbot J, Pitt R J, Kwon H W, et al. Molecular characterization of the Aedes aegypti odorant receptor gene family[J]. Insect Mol. Bio.,2007,16:525-537.
    [148]Robertson H M, Wanner K W. The chemoreceptor superfamily in the honey bee, Apis mellifera:expansion of the odorant. but not gustatory, receptor family[J]. Genome Res., 2006,16(11):1395-1403.
    [149]Pace U, Hanski E, Salomon Y, et al. Ordorant-sensitive adenylate cyclase may mediate olfactory reception[J]. Nature,1985,316:255-258.
    [150]Rhein L D, Cagan R H. Biochemical studies of olfaction:islation characterization and ordorant binding activity of cilia from rainbow trout olfactory rosettes[J]. Proc. Natl. Acad. Sci.,1980,77:4412-4416.
    [151]Hildebrand J G. Olfactory control of behavior in moth:central processing of odor information and the functional significance of olfactory glomeruli[J]. J. Comp. Physio.A.,1996,178: 5-19.
    [152]Benton R. On the origin of smell:odorant receptors in insects[J]. Cell Mol. Life Sci.,2006, 63(14):1579-1585.
    [153]Lundin C, Kall L, Kreher S A, et al. Membrane topology of the Drosophila OR83b odorant receptor[J]. FEBS Lett.,2007,581(29):5601-5604.
    [154]Larsson M C, Domingos A I, Jones W D, et al. Or83b encodes a broadly expressed odorant receptor essential for Drosophila olfaction[J]. Neuron,2004,43(5):703-714.
    [155]Hallem E, A, Dahanukar A, Carlson J R. Insect odor and taste receptors[J]. Annu. Rev. Entomol.,2006,51:113-135.
    [156]Pitts R J, Fox A N, Zwiebel L J. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae[J]. Proc. Natl. Acad. Sci. USA.,2004,101(14):5058-5063.
    [157]Robertson H M, Warr C G, Carlson J R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster[J]. Proc. Nat1. Acad. Sci. USA.,2003,100: 14537-14542.
    [158]Smith D P. Odor and pheromone detection in Drosophila melanogaster[J]. Pflugers. Arch., 2007,454(5):749-758.
    [159]Vosshall L, Wong A, Axel R. An olfactory sensory map in the fly brain[J]. Cell,2000, 102(2):147-159.
    [160]修伟明,张逸凡,杨殿林,等.2个新的鳞翅目OR83b类化感蛋白基因的克隆和序列分析[J].中国农业科学,2010,43(3):618-625.
    [161]张逸凡,修伟明,杨殿林,等.甜菜夜蛾非典型嗅觉受体基因OR2的组织特异性和时空表达.中国农学通报,2011,27(7):231-235.
    [162]Malnic B, Hirono J, Sato T, et al. Combinatorial receptor codes for odors. Cell,1999,96: 713-723.
    [163]Kopp A, Barmina O, Hamilton A M, et al. Evolution of gene exppression in the Drosophila olfactory system[J]. Mol. Biol. Evol.,2008,25(6):1081-1092.
    [164]张春香,姜玉锁.昆虫气味受体的分子进化与信号转导的研究进展[J].中国畜牧兽医,2011,38(5):66-69.
    [165]Dobritsa A A, Van der Goes van Naters W, Warr C G, et al. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna[J]. Neuron,2003,37(5):827-841.
    [166]Kiely A, Authier A, Kralicek AV, et al. Functional analysis of a Drosophila melanogaster olfactory receptor expressed in Sf9 cells[J]. J. Neurosci. Methods,2007,159(2):189-194.
    [167]Wicher D, Schafer R, Bauernfeind R, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels[J]. Nature,2008,452(7190): 1007-1011.
    [168]乔奇,原国辉,李海超,等.昆虫气味受体研究进展[J].昆虫学报,2008,51(1):75-80.
    [169]Melo A C, Rutzler M, Pitts R J, et al. Identification of a chemosensory receptor from the yellow fever mosquito. Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs[J]. Chem. Senses,2004,29(5):403-410.
    [170]Libert S,Zwiener J, Chu X, et al. Regulation of Drosophila life span by olfaction and food-derived odors[J]. Science,2007,315(5815):1133-1137.
    [171]Neuhaus E M, Gisselmann G, Zhang W, et al. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster[J], Nat. Neurosei.,2005,8(1):15-17.
    [172]Sato K, Pellegrino M, Nakagawa T, et al. Insect olfactory receptors are heteromeric ligand-gated ion channels[J]. Nature,2008,452(7190):1002-1006.
    [173]Ha T S, Smith D P. Insect Odorant Receptors:Channeling Scent. Cell,2008,133:761-763.
    [174]刘召,花保祯.昆虫对气味信息素的感受机制[J].西北农林科技大学学报,2010,38(11)186-192.
    [175]陈茜,吴仲南,杜永均,等.斜纹夜蛾嗅觉受体基因Ⅱ的表达谱分析[J].昆虫学报,2011,54(8):881-886.
    [176]Krieger J, Raming K, Dewer Y M, et al. A divergent gene family encoding candidate olfactory receptors of the moth Heliothis virescens[J]. Eur. J. Neurosci.,2002,16(4): 619-628.
    [177]仵均祥.农业昆虫学(北方本)[M].北京:农业出版社,2002:259.
    [178]王焱,穆兰芳,曾凡荣,等.樟巢螟成虫触角感器的扫描电镜观察[J].应用昆虫学报,2011,48(3):675-679.
    [179]杨美红,张金桐,范丽华,等.榆木蠹蛾性信息素通讯系统的超微结构观察[J].昆虫学报,2011,54(5):522-530.
    [180]王霞,徐静,刘凤英,等.豆野螟触角感器的电镜超微结构及嗅觉功能[J].昆虫学报,2008,51(12):1225-1234.
    [181]江南,李庆,周建华,等.麻疯树柄细蛾触角及其感器的扫描电镜观察[J].昆虫知识,2010,47(2):355-359.
    [182]杨慧,严善春,彭璐.兴安落叶松鞘蛾触角及其感器的扫描电镜观察[J].昆虫知识,2008,45(3):405-417.
    [183]刘淼,任炳忠.中华蚱蜢触角感受器的扫描电镜观察[J].吉林师范大学学报,2006,(1):6-8.
    [184]胡霞,周祖基,蒋学建,等.川硬皮肿腿蜂雌蜂触角超微结构观察[J].辽宁林业科技,2006,(2):4-7.
    [185]Carolina L, Lukas K, Scott A K, et al. Membrane topology of the Drosophila OR83b odorant receptor[J]. Federation of European Biochemical Societies, 2007,581:5601-5604.
    [186]中建梅,胡黎明,宾淑英,等.瓜实蝇嗅觉受体基因的克隆及表达谱分析[J].昆虫学报,2011,54(3):265-271.
    [187]吕彬。对叶榕四种榕小蜂非常规律嗅觉受体基因克隆、进化和特异性表达[D].山东:山动农业大学,2008.
    [188]QIAO Q, LI HC, YUAN G h, et al. Cloning and Expression Analysis of cDNA Encoding Or83b-Like Receptor from Helicoverpa assulta[J]. Agricultural Sciences in China,2010, 9(7):1001-1007.
    [189]Su CY, Menu z K, Carlson JR. Olfactory perception:receptors, cells, and circuits[J]. Cell, 2009,139(1):45-59.
    [190]李殉,刘晶晶,龚亮,等.小菜蛾气味受体蛋白PlxyOr83b基因的克隆及表达[J].昆虫学报,2011,54(5):502-507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700