绿盲蝽(Apolygus lucorum)性信息素的提取鉴定及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿盲蝽Apolygus lucorum是我国黄河流域和长江流域地区棉花产区的重要害虫,除危害棉花外,绿盲蝽在枣、葡萄、樱桃、桃、苹果、茶树、杨树苗和马铃薯等其它作物上危害也十分严重,一般年份能够损失可达到20-30%,严重年份超过50%。同时,绿盲蝽抗药性非常严重,危害严重地区每年需要喷洒化学农药10余次。大量使用农药,在杀死天敌的同时,给环境及人类健康造成了潜在危害。
     鉴于大面积爆发的绿盲蝽缺乏有效的防治方法,我们提出利用性信息素来作为监测和防治绿盲蝽的手段。本研究利用气相色谱(GC)、气相色谱-质谱联用(GC-MS)、触角电位仪(EAG)、气相色谱-触角电位联用(GC-EAD)和田间试验等方法与技术,首次对我国绿盲蝽的种内化学通讯进行了系统的研究,旨在探明我国绿盲蝽性信息素通讯及其动态变化规律,并为利用性信息素防治绿盲蝽提供理论支持和试验依据。主要结果如下:
     1.绿盲蝽性信息素的提取和鉴定
     通过气相色谱-质谱联用(GC-MS)分析,雌性绿盲蝽二氯甲烷提取物中的主要成分有三种:4-氧代-反-2-己烯醛、丁酸己酯和丁酸-反-2-己烯酯,其含量分别为21.75±2.04μg/头、1.42±0.56μg/头和23.74±1.89μg/头。而雄性绿盲蝽二氯甲烷提取物中主要成分与雌虫相同,但其比例有所不同,具体含量分别为13.68±3.32μg/头、27.73±6.54μg/头和3.84±1.67μg/头。丁酸己酯和丁酸-反-2-己烯在雌雄体内的比例完全相反,丁酸己酯为雄性绿盲蝽分泌的反性信息素。
     2.性信息素的释放规律
     绿盲蝽性信息素的释放量从暗周期开始到暗周期后2小时内没有明显变化;但从暗周期后2小时开始,提取物中4-氧代-反-2-己烯醛和反-2-丁酸己烯酯的含量迅速减少,至暗周期后约5小时其含量减少至最低点,说明绿盲蝽性信息素的释放高峰期可能在暗周期开始后2h-4h。光周期时雌性绿盲蝽体内性信息素含量逐渐增加,光照10h后即可达到4-氧代-反-2-己烯醛和反-2-丁酸己烯酯含量达到较高水平。说明绿盲蝽性信息素产生后并非立即释放出来,而是先在体内贮存,待暗周期求偶时释放。雌性绿盲蝽提取物中丁酸己酯的含量非常低,平均含量低于0.5μg,同时与暗周期、光周期没有明显的关系,没有明显规律性。
     3.性信息素的合成及活性测定
     利用化学合成受到对绿盲蝽提取三种主要组分:4-氧代-反-2-己烯醛、丁酸己酯和丁酸-反-2-己烯酯进行了人工合成,并通过核磁共振(HNMR)和质谱(MS)进行结构确认。通过触角电位(EAG)和气相色谱-触角电位联用(GC-EAD)对人工合成的性信息素进行了初步活性测定,证明三种人工合成化合物均能引起雄性绿盲蝽的触角反应,其中丁酸己酯的EAG反应最强,达到6.36±0.54mV,同时三种组分的二元、三元混合物的EAG活性显著高于单一组分。但是在Y形管嗅觉仪测定行为试验时,无论是单一组分还是二元、三元组分均不能明显吸引雄性绿盲蝽。
     4.田间诱捕试验及配方优化
     以实验室人工合成的性信息素化合物配制成自制诱芯进行田间诱捕试验,结果发现,单一组分诱捕到雄性绿盲蝽数量非常少,同时非常不稳定。而4-氧代-反-2-己烯醛和丁酸-反-2-己烯酯配比在一定范围时,能够诱捕到大量雄性绿盲蝽。通过田间试验对性诱剂配方进行优化,得出4-氧代-反-2-己烯醛和丁酸-反-2-己烯酯的比例在900:600时诱捕效果最好。丁酸己酯对诱捕效果没有贡献,并且会抑制对雄虫的吸引。
     5.反性信息素的研究
     丁酸己酯能够明显抑制性诱剂对雄性绿盲蝽的吸引效果,并且有非常高的活性。在由4-氧代-反-2-己烯醛和丁酸-反-2-己烯酯配组成的诱芯中,加入不同浓度的丁酸己酯,可以看出随着丁酸己酯量的增加,诱捕数量明显减少。当丁酸己酯达到性诱剂有效成分10%以上,性诱剂几乎失去活性。雌雄绿盲蝽交配后,雄性绿盲蝽将之注入雌虫体内或者诱导雌雄绿盲蝽产生丁酸己酯,其作用在于干扰其他雄性绿盲蝽对该雌虫的化学通讯定位,阻止其他绿盲蝽与该雌虫二次交配。
     6.其他盲蝽性信息素的初步研究
     采用同样的提取和鉴定方法,对中黑盲蝽Adelphocoris suturalis、三点盲蝽Adelphocoris fasciaticollis和苜蓿盲蝽Adelphocoris lineolatus的性信息素进行了初步鉴定,发现其主要组分同样为4-氧代-反-2-己烯醛、丁酸己酯和丁酸-反-2-己烯酯,但与绿盲蝽相比三种盲蝽中4-氧代-反-2-己烯醛含量很少。其中雌性中黑盲蝽和三点盲蝽中以丁酸己酯为主,雌性苜蓿盲蝽提取物中以丁酸-反-2-己烯酯为主。本研究首次鉴定和分析了绿盲蝽的性信息素的主要成分及其精确含量和比例,首次发现绿盲蝽中反性信息素的存在,并对其干扰绿盲蝽交配进行了验证试验。通过EAG反应、田间诱捕试验验证了性信息素的活性成分,获得了最佳诱芯的配方,可以直接应用于绿盲蝽的田间大量诱捕。本研究丰富了昆虫性信息素研究的内容,为绿盲蝽的高效、无毒、无污染、无公害防治提供了新方法、新途径。
Apolygus lucorum is a significant kind of pest in the Huanghe Valley and Longriver Valley of China. Besides damaging cotton, the pest seriously damage the other crops such as jujube, grape, cherry, peach, apple, tea plant, poplar and potato. The loss can reach 20-30% of the above crop planted in the common years, and can exceed 50% in some years. Moreover, Apolygus lucorum are very restricted to drugs, so the disaster areas need to spread pesticide for more than 10 times, which killed the pests but at the same time cause potential damage to the environment and human health.
     Considering there were no effective ways to prevent the extensive outbreak of Apolygus lucorum, we came up with the idea to use sex pheromone to monitor and control Apolygus lucorum. In this research we applied the methods of GC, GC-MS, EAG, GC-EAG and field tests to find out how chemical communication mechanism of Apolygus lucorum works and explored their dynamic change regulation. All of these will offer theoretical support and experimental basis for the prevention and treatment to Apolygus lucorum. The main results are showed as follows:
     1, Extraction and identification of the sex pheromone from Apolygus lucorum
     According to GC-MS, the female sex pheromone from Apolygus lucorum mainly consists of 4-oxo-(E)-2-hexenal, hexylbutyrate, trans-2-hexenylbutyrate, their contents were 21.75±2.04μg, 1.42±0.56μg , 23.74±1.89μg respectively。The key components of male sex pheromone were the same compared with the female except their proportion, Which were 13.68±3.32μg、27.73±6.54μg and 3.84±1.67μg respectively. The ratio of hexylbutyrate and Trans-2-hexenylbutyrate were totally opposite between the male and female pest, so hexylbutyrate was anti-sex pheromone of the male.
     2, Releasing pattern of sex pheromone
     The amount of sex pheromone remained unchanging during the first two hours of the dark period; then 4-oxo-(E)-2-hexenaland, trans-2-hexenylbutyrate decreased rapidly until the fifth hour reach to the bottom amount. This phenomenon show that the releasing peaks of the pests’sex pheromone may probably be between the second to the forth hour .During the light period the sex pheromone in female pest gradually increased, until the tenth hour the amount 4-oxo-(E)-2-hexenal and trans-2-hexenyl butyrate reached to a very high level. This illustrated that Apolygus lucorum don’t release their sex pheromone immediately after producing .The pests were kept the sex pheromone in body and then released until mating call in dark period. The content of hexylbutyrate abstracts from female was really low, averagely lower than 0.5μg, which also had no obvious relationship with dark-light period.
     3. Synthesis and bio-activities of sex pheromone
     We synthesized the three main components abstracted from Apolygus lucorum: 4-oxo-(E)-2-hexenal、hexylbutyrate、and trans-2-hexenylbutyrate by using chemical methods, and verified their saturation through HNMR and MS. Then their activities were preliminary tested with EAG and GC-EAD. All synthetic compounds can cause antennal reaction and hexylbutyrate had the strongest EAG activity which reached 6.36±0.54mV. And the activity of the binary and the ternary components was better than the single component. However, when doing behavior test in Y-tube olfactometer, any of the components can’t obviously attract the male.
     4, Field test and the optimization of formulation
     The synthetic sex pheromones were used to make lures in field test. The result showed that the single component was unstable and can only attract small number of the male Apolygus lucorum. One the other hand, the components of 4-oxo-(E)-2-hexenal and trans-2-hexenylbutyrate within a certain range can get good results. Through optimization test we noted that the best ratio of 4-oxo-(E)-2-hexenal and trans-2-hexenylbutyrate was 900:600. Hexylbutyrate had no contribution to attraction but had inhibitory action to the male pests.
     5, Research of anti-sex pheromone
     Hexylbutyrate can apparently restrain the sex pheromone’s attract to the male Apolygus lucorum and had strong activity. When it was added to the lures consisting of 4-oxo-(E)-2-hexenal and trans-2-hexenylbutyrate with different amounts, we could easily find that with increasing of hexylbutyrate, the number of attracted male pests decreased obviously. When the content of hexylbutyrate reaching to 10%, the sex pheromone almost turned inactive. After mating, the male bugs would inject hexylbutyrate into the female or tempted the female to produce hexylbutyrate, which would disturb other female’s orientation and prevent the second mating.
     6, Preliminary study of sex pheromone of other bug
     Using the same extraction and identification method we study the sex pheromone of Adelphocoris suturalis, Adelphocoris fasciaticollis, and Adelphocoris lineolatus. Their main components were similarly 4-oxo-(E)-2-hexenal、hexylbutyrate and trans-2-hexenylbutyrate. However, compared with Apolygus lucorum, the content of 4-oxo-(E)-2-hexenal of the above three bugs was lower. In female Adelphocoris suturalis, the main component was Hexylbutyrate and the main components in female Adelphocoris lineolatus was trans-2-hexenylbutyrate.
     This research firstly verified and analyzed the main components of sex pheromone of Apolygus lucorum and their accurate ratio. At the same time we found out the presence of anti-sex pheromone, and verified its disturbance to the mating behavior. Through EAG reaction and field attract test we got the best formulation of tempts core, which can be directly used in the field attract. This research has enriched the knowledge of sex pheromone of insects, and will offer a new non-toxic controlling way of high efficiency, non-poisons, and non-environment pollutions.
引文
1.杜家纬.昆虫性信息素及其应用.北京:中国林业出版社, 1988.
    2.杜家纬,植物-昆虫间化学通讯及其行为控制[J].植物生理学报, 2001, 27(3): 262-291.
    3.韩永林,彩万志,徐希莲.昆虫知识, 2004, 41(6): 607-610.
    4.黄勇平,沈君辉,王淑芬,昆虫性信息素变异研究的进展.中南林学院学报, 1998, 18(4): 88-95.
    5.荆小院,张金桐,触角电位技术在昆虫性信息素研究中的应用,山西农业科学2007, 35( 8) : 14-16
    6.孔祥波.气相色谱与触角电位检测器联用技术及其应用.昆虫知识, 2001, 38 (4): 304-309.
    7.李连昌,枣粘虫成虫触角扫描电镜研究.山西农业大学学报, 1989, 9(2): 1232-1251.
    8.陆宴辉,吴孔明,蔡晓明,刘仰青.利用四季豆饲养盲蝽的方法.植物保护学报. 2008, 35(3): 215-219.
    9.陆宴辉,梁革梅,吴孔明,棉盲蝽综合治理研究进展.植物保护, 2007, 33(6): 10-15.
    10.陆宴辉.盲蝽蟓生态适应性研究[D].北京:中国农业科学院植物保护研究所, 2008.
    11.陆宴辉,吴孔明,姜玉英,夏冰.棉花盲蝽的发生趋势与防控对策.植物保护, 2010,36(2): 150-153.
    12.李连昌,韩桂彪,蛾类性信息素研究及应用[M].北京:中国农业科技出版社, 1996: 302-306.
    13.刘晓砚,沈学丰,白雪婧,等.美国白蛾性信息素在园林上的应用[J].中国森林病虫, 2001(增刊): 51.
    14.陆群,张玉凤,章海波.内蒙古林业科技, 1994, 22(4): 35-37.
    15.陆群,张玉凤,王文祥,张宏世.内蒙古林业科技, 2000(2) :41-42.
    16.雷朝亮,荣秀兰.普通昆虫学.北京:中国农业出版社, 2003: 382.
    17.孟宪佐,阎晓华,韩艳,等.化学通讯与信息化学物质[J].生命科学, 1999, 11(5): 230-234
    18.苗建才.无公害杀虫剂及应用技术[M].哈尔滨:黑龙江科学技术出版社, 1999.
    19.王荫长.昆虫生物化学.北京:中国农业出版社, 2001, 448-480.
    20.温硕洋.植物保护学报, 1991, 18(2): 167-172.
    21.吴才宏.棉铃虫雄蛾触角的毛形感器对其性信息素组分及类似物的反应.昆虫学报, 1993, 36(4): 385-388.
    22.吴伟坚,高泽正,梁广文,盲蝽科昆虫性信息素研究,昆虫知识, 2004,41(4): 299-301
    23.向玉勇,杨茂发,昆虫性信息素研究应用进展.湖北农业科学, 2006, 45(2): 249-256.
    24.张岩,刘敬泽,昆虫的性信息素及其应用.生物学通报, 2003, 38(12):7-10
    25.张善干,马淑芳,马尾松毛虫雄蛾触角毛状感器的细微结构[J].昆虫学报, 1995, 38 (1): 8-11.
    26.张克斌,西北农业大学学报(增刊), 1988, 16: 78-81.
    27. Agriculture-Agricultural Research Service research on managing insect resistance to insecticides. Pest Manag. Sci, 59: 770-776.
    28. Almass T J, Mustapara H. Heliothis Virescens: Response Characteristics of Reception Neurons in Sensilla Trichodes Type I and TypeⅡ. Chemical Ecology, 1991, 17(5): 953-972.
    29. Albert R. and Wolff R. 2000. Pest control methods for the private garden. Journal of Pest Science, 73: 79–82.
    30. Aldrich J R. Annual Review of Entomology, 1988, 33(1): 211-238.
    31. Aldrich J R. Chemical ecology of insects, 1994, 2: 318-363.
    32. Aldrich J R, Zhang A, Oliver J E. Canadian Entomologist, 2000, 132(6): 915-923.
    33. Aldrich J R, Lusby W R, Kochansky J P, Hoffmann M P, Wilson L T, Zalom F G. In : Brown J M, Richter D A (ed). In Proceedings of the Beltwide Cotton Produc. Conf, Nat. Cotton Council of Amer, New Orleans, LA, 1988: 213-216.
    34. Arn, H. 1990. Pheromones: prophecies, economics, and the ground swell, pp. 717–722,
    35. Arn H, Stadler E, Rauscher S. The electroantennographic detector. A selective and sensitive tool in the gas chromato-graphic analysis of insect pheromones[J].Z Naturforseh, 1975, 30: 722-725.
    36. Astrid T G, Erna V D, Antje S, etal. Entomologia Experimentalis et Applicata, 1998, 88(3): 219-228.
    37. Ridgway R L, Silverstein R M, Inscoe M N (eds.). Behavior-modifying Chemicals for Insect Manage-ment: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.
    38. Andersson M N, Haftmann J, Stuart J J, Cambron S E, Harris M O, Foster S P, Franke S,Francke W, and Hillbur Y. 2009. Identification of sex pheromone components of the Hessian fly, Mayetiola destructor. J. Chem. Ecol. 35: 81-95.
    39. Arn H, Toth M, and Priesner E. 1992. List of sex pheromones ofLepidoptera and related attractants. International Organization 94 J Chem Ecol (2010). 36: 80–100.
    40. Battisti D S, and Naylor R L. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science. 323:240-244.
    41. Bellas T E and R J Barter Doses-response relationship for two components of the sex pheromone of light brown apple month Epipyyas postvittana. J Chem Ecol. 1983,9: 715-726
    42. Bengtsson M, Karg G, Kirsch P A, Lofqvist J, Sauer A, and Witzgall P. 1994. Mating disruption of pea moth Cydia nigricana F. (Lepidoptera: Tortricidae) by a repellent blend of sex pheromone and attraction inhibitors. J. Chem. Ecol. 20:871-887.
    43. Benton R, Vannice K S, and Vosshall L B. 2007. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 450: 289-293.
    44. Boivin G, Steward R K. Canadian Entomologist, 1982, 114 (8): 765-766.
    45. Brewer, Trumble P S, Cole R A, etal. Nature, New Biol, 1993, 12(1):321-324.
    46. Cork A, Iles M J, Kamal N Q, Choudhury J C S, Rahman M M, and Islam M. 2005b. An old pest, a new solution: commercializing rice stemborer pheromones in Bangladesh. Outlook Agric. 34:181-187.
    47. Cook S M, Khan Z R, and Pickett J A. 2007. The use of push-pull strategies in integrated pest management. Annu. Rev. Entomol. 52:375-400.
    48. De Bruyne M and Baker T C. 2008. Odor detection in insects: volatile codes. J. Chem. Ecol. 34: 882-897.
    49. Dickson B J. 2008. Wired for sex: the neurobiology of Drosophila mating decisions. Science 322:904-909.
    50. Drijfhout F P, Groot A T, Van Beek T A, Visser J H. Entomol. Experim. Appl, 2003, 106(2): 73-77.
    51. Drijfhout F P, Van Veek T A, Visser H. On-line thermal desorption-gas chromatography of intact insects for pheromone analysts, Journal of Chemical Ecology, 2000, 26(6): 1383-1392.
    52. Doppelreiter H Z, Angew. Entomol, 1979, 88(1): 56-59.
    53. Elzen G W, and Hardee D D. 2003. United States Department of OERKE, E.C. 2006. Crop losses to pests. J. Agric. Sci. 144: 31-43.
    54. Ehrlich P R, Ehrlich A H, and Daily G C. 1993. Food security, population, and environment. Popul. Develop. Rev. 19: 1-32
    55. El-Sayed A M, Byers J A, Manning M, Jurgens A, Mitchell V J, and Suckling M. 2008. Floral scent of Canada thistle and its potential as a generic insect attractant. J. Econ. Entomol.101:720–727.
    56. Fadamiro H Y and Baker T C. 2002. Pheromone puffs suppress mating by Plodia interpunctella and Sitotroga cerealella in an infested corn store. Entomol. Exp. Appl. 102: 239-251.
    57. Fitzpatrick S M, McNeil J N, Male scent in lepidopteran communication: the role of male pheromone in mating behaviour of Pseudaletia unipuncta (Haw) (Lepidoptera: Noctuidae). Memoirs of the Entomological Society of Canada, 1988, 146: 131-151
    58. Gaston L K. Technique and equipment for collection of volatile chemicals from individual, natural, or, artificial source. In: Hummel H F, Miller T A eds,Technique in Pheromone research. New York: Springer,1984.
    59. Ginzel M D, Millar J G, Hanks L M. (Z)-9-Pentacosene - contact sex pheromone of the locust borer, Megacyllene robiniae, Chemoecology, 2003, 13:135-141.
    60. Graham H M. The Southw. Entomol, 1988, 13: 31-37.
    61. G S Shakirzyanova, V S Abdukakharov, and A A Abduvakhabov, synthesis of the sex pheromone OF Lygus lineolaris (Heteroptera miridae), Chemistry of Natural Compounds, 2000, 36(6): 623-624.
    62. Gueldner R C, Parrott W L. Insect Biochemistry, 1978, 8: 389-391.
    63. Hall D R, Cork A, Phythian S J, Chittamuru S, Jayarama B K, Venkatesha M G, Sreedharan, K Vinod Kumar, P K V Seetharama, H G, and Naidu R. 2006. Identification of components of male-produced pheromone of coffee white stemborer, Xylotrechus quadripes. J Chem Eco 32: 195-219.
    64. Hall D R, Farman D I, Cross J V, Pope T W, Ando T, and Yamamoto M. 2009. (S)-2-Acetoxy-5-Undecanone, female sex pheromone of the raspberry cane midge, Resseliella theobaldi (Barnes). J. Chem. Ecol.
    35:230-242. 65. Hallett R H, Goodfellow S A, Weiss R M, and Olfert O. 2009. MidgEmerge, a new predictive tool, indicates the presence of multiple emergence phenotypes of the overwintered generation of swede midge. Entomol. Exp. Appl. 130: 81-97.
    66. Heath R R, Tumlinson J H. Technique for purifying, analyzing, and identifying Pheromones. In: Hummel H F, Miller T A eds, Technique in Pheromone research. New York: Springer, 1984, 287-323.
    67. Hedin P A, Parrott W L, Tedders W L, Reed D K J. Mississippi Acad. Sci, 1985, 30:63-66.
    68. Hillbur Y, Celander M, Baur R, Rauscher S, Haftmann J, Franke S, and Francke W 2005. Identification of the sex pheromone of the swede midge, Contarinia nasturtii. J. Chem. Ecol. 31: 1807-1828.
    69. Innocenzi P J, Hall D R, Cross J V. Attraction of male European tarnished plant bug, Lygus rugulipennis to components of the female sex pheromone in the field[ J ], Journal of Chemical Ecology, 2005, 31(6): 1401-1413
    70. Innocenzi P. J., Hall D. R., Sumathi C. Studies of the sex pheromone of the European tarnished plant bug, Lygus rugulipennis (Het. Miridae) Proc. Brighton Crop Prot. Conf., Pests, 1998, 8: 829-832
    71. Jacquin-Joly E, and Merlin C. 2004. Insect olfactory receptors: contributions of molecular biology to chemical ecology. J. Chem. Ecol. 30: 2359–2397.
    72. Jefferis G S X E, Potter C J, Chan A M, Marin E C, Rohlfing T, Maurer, Jefferson R N, Rubin R E1, Mcfor land S U , etal. Sex pheromone of noctuid moth, The external morphlogy of the antennae of Trichop lusiani, Heliothiszea, prodenia ornithogalli and Spodop teraexigua. Ann. Entomo. Soc. Am. 1970, 63(5): 1227-1238.
    73. Jefferis G S, Potter C J, Chan A M, Marin E C, Rohlfing T, Maurer CR Jr, Luo L. 2007. Comprehensive maps of Drosophila higher olfactory centers: Spatially segregated fruit and pheromone representation. Cell 128:1187–1203.
    74. Jocelyn G Millar, Pheromones of True Bugs, Topics in Current Chemistry (2005) 240: 37-84.
    75. Jardel A, Moreira and Jocelyn G. Millar, Short and simple syntheses of 4-OXO-(E)-2-Hexenal and homologs: pheromone components and defensive compounds of Hemiptera, Journal of Chemical Ecology, 2005, 31(4): 965-968.
    76. Kamimura M, Tatsuki S. Effects of photoperiodic changes on callingbehavior and pheromone production in the Oriental tobacco budworm moth, Heticoverpa assulta (Lepidoptera: Noctuidae)[J], Insect Physiol, 1994, 40(8): 731-734.
    77. Kurz W A, Dymond C C, Stinson G, Rampley G J, Neilson E T, Carroll A L, Ebata T, and Safranyik L. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452: 987-990.
    78. Leal W S. Proceedings of the 96 International Symposium on InsectPheromone, Suwon, Korea, 1996, 145-153.
    79. Mafra-Neto, A, and Baker T C. 1996. Timed, metered sprays of pheromone disrupt mating of Cadra cautella (Lepidoptera: Pyralidae). J. Agr. Entomol. 13: 149-168.
    80. McBrien H L, Millar J G, Minks A K, Hardie J, Pheromones of Non-Lepidopteran Insects Associated withAgricultural Plants. Oxford Univ. Press, London, 1999. 277-304.
    81. Miller J R, Mcghee P S, Siegert P Y, Adams C G, Huang J, Grieshop M J, and Gut L J. 2010. General principles of attraction and competitive attraction as revealed by large-cage studies of moths responding to sex pheromone. Proc. Natl. Acad Sci. USA 107:22-27.
    82. Millar J. G., Rice E. R., Sex Pheromone of the Plant Bug Phytocoris californicus (Heteroptera: Miridae), Journal of Economic Entomology, 1998, 91(1):132-137
    83. Millar J G. Topics in Current Chemistry, 2005, 240 (11): 37-84
    84. Millar J G, Richard E R and Wang Q. Sex pheromone of the mullein bug, Campylomma verbasci(Meyer)(Heteroptera: miridae), Journal of Chemical Ecology, 1997, 23(7): 1743-1754
    85. Millar G J, Rice E R. Journal of Economic Entomology, 1998, 91(1): 132-137.
    86. Mochizuki F, Fukumoto T, Noguchi H, Sugie H, Morimoto T, and Ohtani K. Resistance to a mating disruptant composed of (Z)-11-tetradecenyl acetate in the smaller tea tortrix, Adoxophyes honmai (Yasuda) (Lepidoptera: Tortricidae). Appl. Entomol. Zool. 2002, 37: 299-304.
    87. Nwilene F E, Nwanze K F, and Youdeowei A. 2008. Impact of integrated pest management on food and horticultural crops in Africa. Entomol. Exp. Appl. 128: 355-363.
    88. Pereyra, P C, and Sanchez N E. 2006. Effect of two solanaceous plants on developmental and population parameters of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 35:671-676.
    89. Peter Witzgall, Philipp Kirsch, Alan Cork, Sex Pheromones and their impact on pest management, Journal of Chemical Ecology, 2010, 36: 80-100.
    90. Pimentel D, Stachow U, Takacs D A, Brubaker H W, Dumas A R, Meaney J J, O’Neil, J A S, Onsi D E, and Corzilius D B. Conserving biological diversity in agricultural/forestry systems. BioScience 42: 354-362.
    91. Pretty J N, Morison J I L, and Hine R E. 2003. Reducing food povertyby increasing agricultural sustainability in developing countries. Agric. Ecosyst. Environm.1992, 95: 217-234.
    92. Prestwich G D, Bioorgan & Medicine Chemical, 1996, 4: 505-513.
    93. Reding M E, Brunner J F, Dunley J E. Influence of Timing and Prey Availability on Fruit Damage to Apple by Campylomma verbasci (Hemiptera: Miridae), Journal of Economic Entomology, 2001, 94(1):33-38.
    94. Sanders C J. 1996. Mechanisms of mating disruption in moths, pp. 333-346, in R T Cardé, A K Minks (eds). Insect Pheromone Research: New Directions. New York: Chapman & Hall.
    95. Schlenker W, and Roberts M J. Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sc. USA 2009, 106: 15594-15598.
    96. Schlyter F, and Birgersson G. 1999. Forest beetles, pp. 113–148, in R J Hardie and A K Minks (eds). Pheromones of NonLepidopteran Insects Associated with Agricultural Plants. CAB International, Wallingford, U.K.
    97. Shorey H H and Gerber R G. Use of puffers for disruption of sex pheromone communication of codling moths (Lepidoptera: Tortricidae) in walnut orchards. Environ. Entomol. 1996, 25: 1398-1400.
    98. Silk P J, Tan S H, Wiesner C J. Sex Pheromone chemistry of the eastern spruce budworm. Environmental Entomology, 1980, 9: 640-644.
    99. Smith R F, Pierce H D and Borden J H. Sex pheromone of the mullein bug Campylomma verbasci (MEYER)(Heteroptera: miridae), Journal of Chemical Ecology, 1991, 17(7): 1437-1447
    100. Steinbreehs R A, Functional morphology of pheromone-sensitive sensilla, in“Pheromone Biochemistry”. Prestwich G.D. and Blomquict G.J., New York. Academic press, 1987: 353-384.
    101. Suckling D M, and J R, Clearwater. Small scale trials of mating disruption of Epiphyas postvittana (Lepidoptera: Tortricidae). Environ. Entomol. 1990, 19: 1702-1709.
    102. Suckling D M and Shaw P W. Large scale trials of mating disruption of light brown apple moth. N. Z. J. Crop Hort. Sci. 1995, 23: 127-137.
    103. Svatos A, Attygalle A B, Jham G N, Frighetto R T S, Vilela E F, Saman D, and Meinwal D J. 1996. Sex pheromone of tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae). J. Chem. Ecol. 22: 787-800.
    104. Tabata J, Noguchi H, Kainoh Y, Mochizuki F, and Sugie H.Behavioral response to sex pheromone-component blends in the mating disruption-resistant strain of the smaller tea tortrix, Adoxophyes honmai Yasuda (Lepidoptera: Tortricidae), and its mode of inheritance. Appl. Entomol. Zool. 2007a.42: 675-683.
    105. Tabata J, Noguchi H, Kainoh Y, Mochizuki F, and Sugie H. Sex pheromone production and perception in the mating disruption-resistant strain of the smaller tea leafroller moth, Adoxophyes honmai. Entomol. Exp. Appl. 2007b. 122: 145-153.
    106. Thomas E P, Rasmussen L E L, Rohith. A method for collection, long-term storage and bioassay of labile volitile chemosignals. Journal of Chemical Ecology, 1996, 22(2): 207-221.
    107. Thrupp L A. Linking agricultural biodiversity and food security: the valuable role of agrobiodiversity for sustainable agriculture. International Affairs 2000, 76: 265-281.
    108. Ting D. 2009. Human Health Risk Assessment of Isomate LBAM Plus. Pesticide and Environmental Toxicology Branch, Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.
    109. Tinsworth E F. 1990. Regulation of pheromones and other semiochemicals in the United States, pp. 569–603, in R. L. Ridgway, R. M. Silverstein, and M. N. Inscoe (eds). Behavior-Modifying Chemicals for Insect Management: Applications of Pheromones and Other Attractants. New York: Marcel Dekker.
    110. Toth M, Furlan L, Xavier A, Vuts J, Toshova T, Subchev M, Szarukan I, and Yatsynin V. 2008. New sex attractant composition for the click beetle Agriotes proximus: Similarity to the pheromone of Agriotes lineatus. J. Chem. Ecol. 34: 107-111.
    111. Van Mantgem P J, Stephenson N L, Byrne J C, Daniels L D, Franklin J F, Fule P Z, Harmon M E, Larson A J, Smith J M, Taylor A H, and Veblen T T. Widespread increase of tree mortality rates in the Western United States. Science. 2009, 323: 521-524.
    112. Vernon R S and Toth M. Evaluation of pheromones and a new trap for monitoring Agriotes lineatus and Agriotes obscurus in the Fraser Valley of British Columbia. J. Chem. Ecol. 2007, 33: 345-351.
    113. Walter Soares Leal, Makoto Hasegawa, Masaaki Sawada, Mikio Ono and Shigeo Tada, Scarab beetle Anomala albopilosa albopilosa utilizes a more complex sex pheromone system than a similar species A. cuprea, Journal of Chemical Ecology, 1996a, 22(11): 2001-2010.
    114. Walter Soares Leal, Chandrika P S Yadava and Jagannath N Vijayvergia. Aggregation of the scarab beetle Holotrichia consanguinea in response to female-released pheromone suggests secondary function hypothesis for semiochemical, Journal of Chemical Ecology, 1996b, 22(8):1557-1566.
    115. Walter Soares Leal, Ana Lia Parra-Pedrazzoli, Allard A. Cossé, Yasuhiro Murata and JoséMaurício S. Bento, Identification, Synthesis, and Field Evaluation of the Sex Pheromone from the Citrus Leafminer, Phyllocnistis citrella, Journal of Chemical Ecology, 2006,22(1): 155-168.
    116. Witzgall, P, Stelinski L, Gut L, and Thomson D. Codling moth management and chemical ecology. Annu. Rev. Entomol.2008, 53: 503-522.
    117. Zhang Q H, Aldrich J R. Sex Pheromone of the Plant Bug, Phytocoris calli Knight, Journal of Chemical Ecology, 2008, 34(6): 719-724.
    118. Zhang A J, James E, Oliver K, Zhao B, Xia L. Evidence for contact sex recognition pheromone of the Asian longhorned beetle, Anoplophora glabripennis (Coleoptera: Cerambycidae), Naturwissenschaften, 2003, 90 (9): 410-413.
    119. Zhang Q H and Aldrich J R. Pheromones of milkweed bugs (Hereroptera: Lygaeidae) attract wayward plant bugs: Phytocoris mired sex pheromone, Journal of Chemical Ecology, 2003, 29(8): 1835-1851

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700