光功能苝二酰亚胺类衍生物的合成、可控自组装及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从Cram和Lehn提出超分子化学的概念以来,通过调节离子或分子间的非共价作用(如氢键作用,π-π堆积,亲疏溶剂作用以及表面效应)使其自组装成超分子结构以制备纳米材料,令器件的微型化的研究获得了重大的突破。在此基础上,引入多刺激响应的基团作为组装基元制备的能响应外部刺激的智能超分子材料,在传感器、分子电路、分子导线、数据存储及处理等领域具有巨大的潜在应用价值。
     基于此,本论文以传感、电导、存储与转换等功能为导向,利用具有优异的光和热化学稳定性的花二酰亚胺衍生物的刚性平面大π共轭结构及典型的n型半导体特性,以其为主体,分别在花环湾位置和端位置修饰上具有光刺激响应的光致变色基团——偶氮苯或二噻吩乙烯,通过特定波长的光的照射改变其分子结构,研究了其分子的动态自组装行为及其对光刺激的响应,从而实现了对其自组装过程有效的光调控,并在此基础上研究了其纳米超分子聚集体及微晶在电导光开关、荧光开关、高导电性材料等方面的应用。下面是具体的研究工作:
     1.偶氮苯取代的苝二酰亚胺类化合物由纳米带到纳米球的光控自组装及电导性能研究
     将具有光开关特性的偶氮苯基团(AZO)修饰到了典型的n-型有机半导体化合物花二酰亚胺(PDI)的湾位置.通过紫外可见吸收光谱(UV/vis spectroscopy)、扫描电镜(SEM)、透射电镜(TEM)、X-射线衍射(XRD)、原子力显微镜(AFM)等测试研究了其光控自组装行为及偶氮苯取代基的异构对其自组装纳米结构的影响。通过365nm紫外光的辐照诱导偶氮苯基团的异构化,成功实现了其自组装纳米结构由带到球的可控的形貌演变。所形成的纳米带具有高度有序的一维分子排列,而在纳米球中由于光异构化诱导的顺式分子构型的弯曲,纳米带的一维有序堆积被打乱,形成了排列相对疏松无序的三维球状纳米结构。在此基础上,我们研究了单根纳米带的导电性能。由于花二酰亚胺核(PDI)的一维长程有序的π-π堆积,纳米带表现出良好的半导体性质其在空气中的电导率约为2×10-5S·m-1。进一步地,其电导随紫外光的照射时间的增加明显降低。我们认为这主要是由其纳米结构中光诱导的无序结构的增加导致的。由此,得到了一种新颖的光诱导电导开关超分子体系。
     2.基于偶氮苯取代的苝二酰亚胺类化合物的高电导率一维单晶微米带
     在研究了AZO-PDI化合物在聚集态下相关性质的基础上,我们又通过溶液法生长得到了一种新型的基于化合物Azo-PDIs的单晶微米带,对其晶体结构和导电性质进行了深入研究。由于其独特的“H”型π-π紧密堆积,其中花核共轭基团最近的垂直距离为3.29A,单晶微米带表现出了很高的电导率即在0.04-0.5S·m-1数量级。另外,通过电导率的各向异性测试,初步研究了其晶体中优化的分子堆积与高电导率性质的关系,以期为具有优良性能的半导体材料的设计与合成提供有效的理论指导。
     3.二芳稀取代的苝二酰亚胺化合物的光致变色纳米结构
     设计合成了二芳烯取代的苝二酰亚胺光致变色化合物BTE-PDI,并通过再沉淀法研究了其自组装行为及其相应聚集体的纳米结构。由扫描电镜SEM与透射电镜图像TEM表征了其先自组装为零维纳米球而后进一步生长为一维纳米管结构。无论是纳米球还是纳米管都具有高度有序的壳层结构,表明在其自组装过程中存在分级组装现象。纳米球的荧光可通过紫外光的照射进行调控,表现出了这种聚集体的优良的光致变色开关性能。这些发现提供了一种简便的制备动态智能的纳米器件的方法即将具有多刺激响应的基团引入到构筑基元中而后通过自组装得到所需的纳米材料。这种先进的组装生长过程也为人工模拟自然界中某些生物的特征生长开辟了一条新途径。
Since Cram and Lehn promulgated the concept of supramolecular chemistry, adjusting the non-covalent interactions between the ions or molecules (such as hydrogen bonding, π-π stacking, hydrophilic-hydrophobic interaction and surface effect) to self-assemble molecules to supramolecular nanomaterials has made miniaturization of device a significant breakthrough. Moreover, the fabrication of smart supramolecular materials that are responsive to external stimuli by the introduction of stimuli-responsive groups into building blocks is believed to have significant potential applications in the field of sensors, molecular circuits, data storage and processing etc.
     Aiming at the functionality such as sensor, conductivity, storage and conversion etc, we developed perylene diimide derivatives with excellent thermal and photochemical stability, π conjugated rigid plane and the typical n-type semiconductor characteristics as the backbone, and modified with photoresponsive photochromic groups---azobenzene or dithienyl ethylene at the bay position or end position of perylene diimide respectively. Through changing molecular structure by irradiation with specific lignt, we have investigated the dynamics of the molecular self-assembly behavior and its response to light stimulation and realized effective light modulation of its self-assembly process initially. In addition, the applications of nano-supramolecular aggregates and microcrystals as the light-induced conductive switch, fluorescent switch, high conductivity materials have been studied. The detailed research work in this paper is as follows:
     1. Light-controlled self-assembly and conductance:from nanoribbons to nanospheres based on azobenzene substituted perylene diimide
     Photoswitchable azobenzene (AZO) chromophores were introduced to the bay-position of the traditional n-type perylene diimide (PDI). Photocontrolled self-assembly behaviours and the influence of the azobenzene substitution on the assembly structure were investigated by UV/vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and atomic force microscopy (AFM). Controlled morphological evolution of the nanostructures from ribbons to spheres was facilely realized by driving the azobenzene switching unit with365nm light irradiation. The nanoribbons demonstrated highly ordered structures while the order of the molecular arrangement was destroyed in the nanospheres, as a result of the curved molecular conformation induced by photoisomerization. In addition, the conductivity of the single nanoribbon was investigated. Thanks to the one-dimensional long-range ordered π-π stacking of the PDI cores, the nanoribbon showed good semiconducting properties with a conductance in the range of2×10-5Sm-1in air. Furthermore, the conductivity decreased with UV light irradiation, mainly due to the increased randomness within the nanostructures, representing the light-induced switching of conductance in the supramolecular systems that is extremely interesting for molecular devices.
     2. Highly conductive organic single-crystal micro-ribbons formed by a solution process based on azobenzene substituted perylene diimide
     A novel single-crystal microribbon of Azo-PDIs formed through a solution process as a n-channel semiconductor has been achieved and characterized. Due to the distinctive "H" like close π-π stacking with the shortest vertical contact distance of3.29A, high conductance is determined in the range of0.04-0.5S·m-1. Furthermore, based on the results of conductivity anisotropy, a direct relationship between the maximized conductivity and the optimized molecular stacking is primarily discussed. And it will provide significant guidance on the design of new semiconductor materials with excellent performance.
     3. Photochromic nanostructures based on diarylethenes with perylene diimide
     A bisthienylethene-functionalized perylene diimide (BTE-PDI) photochromic dye was synthesized for self-assembly into1-D nanotubes by a reprecipitation method. SEM and TEM observations showed that the nanotubes were formed from their0-D precursors of hollow nanospheres. HR-TEM images revealed that both the nanospheres and the nanotubes have highly ordered lamellar structure, indicating the hierarchical process during assembly. The IR and XRD results revealed that DAE-PDI molecules were connected through intermolecular hydrogen bonds to form building blocks that self-assembled into nanostructures. Electronic absorption and fluorescence spectroscopic results indicated the H-aggregate nature of the self-assembled nanostructures. Competition and cooperation between the dipole-dipole interaction, intermolecular π-π stacking, and hydrophilic/hydrophobic interaction are suggested to result in nanostructures. Reconstruction was found to happen during the morphology transition progress from the0-D nanospheres to the1-D nanotubes, which was driven by donor-acceptor dipole-dipole interactions. Green emission at520nm originating from the DAE subunit was observed for the aggregates of vesicles and nanotubes, which could be regulated by photoirradiation with365nm light, suggesting the nanoaggregates to be photochromic switches.
引文
[1]王结良;朱光明;梁国正;赵雯;吕生华,自组装制备纳米材料的研究现状.[J]材料导报,2003,17(7),67-69.
    [2]Lehn, J. M., Perspectives in supramolecular chemistry:From molecular recognition towards self-organization. In Current Challenges on Large Supramolecular Assemblies, [M] Tsoucaris, G, Ed.1999; 519,417-417.
    [3]Vogtle, F., Supramolekulare Chemie. [M] Stuttgart:Teubner,1991.
    [4]Cram, D. J., The design of molecular hosts, guests, and their complexes. [J] Science (New York, N.Y.),1988,240 (4853),760-767.
    [5]Lehn, J. M., Supramolecular Chemistry—Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. [J] Angew. Chem. Int. Ed.,1988,27 (1), 89-112.
    [6]吴世康,超分子化学导论.[M]科学出版社,北京,2005.
    [7]Lehn, J. M., Programmed chemical systems:Multiple subprograms and multiple processing/expression of molecular information. [J] Chem. Eur. J.,2000,6 (12), 2097-2102.
    [8]Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F., Artificial molecular machines. [J] Angew.Chem. Int. Ed.,2000,39 (19),3349-3391.
    [9]刘育;尤长城;张衡益,超分子化学—合成受体的分子识别与组装[M]南开大学出版社:天津,2001.
    [10]Kardos, M., Ger. Pat. Appl., DE 275220A,1913.
    [11]Geissler, G.; Remy, H.; Ger. Pat. Appl., DE 1130099,1959.
    [12]Serin, J. M.; Brousmiche, D. W.; Frechet, J. M. J., Cascade energy transfer in a conformationally mobile multichromophoric dendrimer. [J] Chem. Commun.,2002, (22),2605-2607.
    [13]Hofkens, J.; Vosch, T.; Maus, M.; Kohn, F.; Cotlet, M.; Weil, T.; Herrmann, A.; Mullen, K.; De Schryver, F. C., Conformational rearrangements in and twisting of a single molecule. [J] Chem. Phys. Lett.,2001,333 (3-4),255-263.
    [14]Liao, S.-H.; Shiu, J.-R.; Liu, S.-W.; Yeh, S.-J.; Chen, Y.-H.; Chen, C.-T.; Chow, T. J.; Wu, C.-I., Hydroxynaphthyridine-Derived Group Ⅲ Metal Chelates:Wide Band Gap and Deep Blue Analogues of Green Alq(3) (Tris(8-hydroxyquinolate)aluminum) and Their Versatile Applications for Organic Light-Emitting Diodes. [J] J. Am. Chem. Soc.,2009,131 (2),763-777.
    [15]Linsen, L.; Min, G.; Guohua, C.; Yiyang, L.; Yiping, Z., Highly efficient and stable organic light-emitting diodes employing MoO 3-doped perylene-3,4, 9,10-tetracarboxylic dianhydride as hole injection layer. [J] Applied Physics A: Materials Science & Processing,2010,99 (1),251-254.
    [16]Effertz, C.; Lahme, S.; Schulz, P.; Segger, I.; Wuttig, M.; Classen, A.; Bolm, C., Design of Novel Dielectric Surface Modifications for Perylene Thin-Film Transistors. [J] Adv. Funct. Mater.,2012,22 (2),415-420.
    [17]Liscio, F.; Milita, S.; Albonetti, C.; D'Angelo, P.; Guagliardi, A.; Masciocchi, N.; Della Valle, R. G.; Venuti, E.; Brillante, A.; Biscarini, F., Structure and Morphology of PDI8-CN2 for n-Type Thin-Film Transistors. [J] Adv. Funct. Mater.,2012,22 (5),943-953.
    [18]Savage, R. C.; Orgiu, E.; Mativetsky, J. M.; Pisula, W.; Schnitzler, T.; Eversloh, C. L.; Li, C.; Muellen, K.; Samori, P., Charge transport in fibre-based perylene-diimide transistors:effect of the alkyl substitution and processing technique. [J] Nanoscale,2012,4 (7),2387-2393.
    [19]Bai, R.; Ouyang, M.; Zhou, R.-J.; Shi, M.-M.; Wang, M.; Chen, H.-Z., Well-defined nanoarrays from an n-type organic perylene-diimide derivative for photoconductive devices. [J] Nanotechnology,2008,19 (5),055604.
    [20]Li, C.; Schoeneboom, J.; Liu, Z.; Pschirer, N. G.; Erk, P.; Herrmann, A.; Muellen, K., Rainbow Perylene Monoimides:Easy Control of Optical Properties. [J] Chemistry-a European Journal,2009,15 (4),878-884.
    [21]Remon, P.; Hammarson, M.; Li, S.; Kahnt, A.; Pischel, U.; Andreasson, J., Molecular Implementation of Sequential and Reversible Logic Through Photochromic Energy Transfer Switching. [J] Chemistry-a European Journal, 2011,17 (23),6492-6500.
    [22]Miura, T.; Wasielewski, M. R., Manipulating Photogenerated Radical Ion Pair Lifetimes in Wirelike Molecules Using Microwave Pulses:Molecular Spintronic Gates. [J] J. Am. Chem. Soc.,2011,133 (9),2844-2847.
    [23]Alamiry, M. A. H.; Hagon, J. P.; Harriman, A.; Bura, T.; Ziessel, R., Resolving the contribution due to Forster-type intramolecular electronic energy transfer in closely coupled molecular dyads. [J] Chemical Science,2012,3 (4),1041-1048.
    [24]Wonneberger, H.; Pschirer, N.; Bruder, I.; Schoeneboom, J.; Ma, C.-Q.; Erk, P.; Li, C.; Baeuerle, P.; Muellen, K., Double Donor-Thiophene Dendron-Perylene Monoimide:Efficient Light-Harvesting Metal-Free Chromophore for Solid-State Dye-Sensitized Solar Cells. [J] Chemistry-an Asian Journal,2011,6 (7), 1744-1747.
    [25]Wang, F.; Tang, J.; Liu, J.; Wang, Y.; Wang, R.; Niu, L.; Huang, L.; Huang, Z., Synthesis and photoinduced electron transfer characteristic of a bis (zinc porphyrin)-perylene bisimide array. [J] J. Phys. Org. Chem.,2011,24 (11), 1101-1109.
    [26]Perrin, L.; Hudhomme, P., Synthesis, Electrochemical and Optical Absorption Properties of New Perylene-3,4:9,10-bis(dicarboximide) and Perylene-3,4:9,10-bis(benzimidazole) Derivatives. [J] Eur. J. Org. Chem.,2011, (28),5427-5440.
    [27]Li, C.; Wonneberger, H., Perylene Imides for Organic Photovoltaics:Yesterday, Today, and Tomorrow. [J] Adv. Mater.,2012,24 (5),613-636.
    [28]Ramanan, C.; Smeigh, A. L.; Anthony, J. E.; Marks, T. J.; Wasielewski, M. R., Competition between Singlet Fission and Charge Separation in Solution-Processed Blend Films of 6,13-Bis(triisopropylsilylethynyl)pentacene with Sterically-Encumbered Perylene-3,4:9,10-bis(dicarboximide)s. [J] J. Am. Chem. Soc.,2012,134(1),386-397.
    [29]Soh, N.; Ueda, T., Perylene bisimide as a versatile fluorescent tool for environmental and biological analysis:A review. [J] Talanta,2011,85 (3), 1233-1237.
    [30]Suzuki, S.; Kozaki, M.; Nozaki, K.; Okada, K., Recent progress in controlling photophysical processes of donor-acceptor arrays involving perylene diimides and boron-dipyrromethenes. [J] Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2011,12 (4),269-292.
    [31]Chen, Z. J.; Debije, M. G.; Debaerdemaeker, T.; Osswald, P.; Wurthner, F., Tetrachloro-substituted perylene bisimide dyes as promising n-type organic semiconductors:Studies on structural, electrochemical and charge transport properties. [J] Chemphyschem,2004,5 (1),137-140.
    [32]Zang, L.; Che, Y.; Moore, J. S., One-Dimensional Self-Assembly of Planar pi-Conjugated Molecules:Adaptable Building Blocks for Organic Nanodevices. [J] Acc. Chem. Res.,2008,41 (12),1596-1608.
    [33]Wu, J.; Pisula, W.; Muellen, K., Graphenes as potential material for electronics. [J] Chem. Rev.,2007,107(3),718-747.
    [34]Schenning, A.; Meijer, E. W., Supramolecular electronics; nanowires from self-assembled pi-conjugated systems. [J] Chem. Commun.,2005, (26),3245-3258.
    [35]Nguyen, T. Q.; Martel, R.; Avouris, P.; Bushey, M. L.; Brus, L.; Nuckolls, C., Molecular interactions in one-dimensional organic nanostructures. [J] J. Am. Chem. Soc.,2004,126(16),5234-5242.
    [36]Hill, J. P.; Jin, W. S.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T., Self-assembled Hexa-peri-hexa-benzocoronene graphitic nanotube. [J] Science,2004,304 (5676),1481-1483.
    [37]Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J. M.; Zang, L., Nanobelt self-assembly from an organic n-type semiconductor:Propoxyethyl-PTCDI. [J] J. Am. Chem. Soc.,2005,127(30),10496-10497.
    [38]Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J. L.; Oitker, R.; Yen, M.; Zhao, J. C.; Zang, L., Effect of side-chain substituents on self-assembly of perylene diimide molecules:Morphology control. [J] J. Am. Chem, Soc.,2006,128 (22),7390-7398.
    [39]Che, Y.; Yang, X.; Loser, S.; Zang, L., Expedient vapor probing of organic amines using fluorescent nanofibers fabricated from an n-type organic semiconductor. [J] Nano Lett.,2008,8 (8),2219-2223.
    [40]Yan, P.; Chowdhury, A.; Holman, M. W.; Adams, D. M., Self-organized perylene diimide nanofibers. [J] J. Phys. Chem. B,2005,109 (2),724-730
    [41]Fuller, M. J.; Sinks, L. E.; Rybtehinski, B.; Giaimo, J. M.; Li, X. Y.; Wasielewski, M. R., Ultrafast photoinduced charge separation resulting from self-assembly of a green perylene-based dye into pi-stacked arrays. [J] J. Phys. Chem. A,2005,109 (6),970-975.
    [42]Sautter, A.; Kaletas, B. K.; Schmid, D. G.; Dobrawa, R.; Zimine, M.; Jung, G.; van Stokkum, I. H. M.; De Cola, L.; Williams, R. M.; Wurthner, F., Ultrafast energy-electron transfer cascade in a multichromophoric light-harvesting molecular square. [J] J. Am. Chem. Soc.,2005,127 (18),6719-6729
    [43]You, C. C.; Wurthner, F., Self-assembly of ferrocene-functionalized perylene bisimide bridging ligands with Pt(Ⅱ) corner to electrochemically active molecular squares. [J] J. Am. Chem. Soc.,2003,125 (32),9716-9725.
    [44]Dobrawa, R.; Lysetska, M.; Ballester, P.; Grune, M.; Wurthner, F., Fluorescent supramolecular polymers:Metal directed self-assembly of perylene bisimide building blocks. [J] Macromolecules,2005,38 (4),1315-1325.
    [45]De Feyter, S.; Miura, A.; Yao, S.; Chen, Z.; Wurthner, F.; Jonkheijm, P.; Schenning, A.; Meijer, E. W.; De Schryver, F. C., Two-dimensional self-assembly into multicomponent hydrogen-bonded nano structures. [J] Nano Lett.,2005, 5 (1), 77-81.
    [46]Wurthner, F.; Chen, Z. J.; Hoeben, F. J. M.; Osswald, P.; You, C. C.; Jonkheijm, P.; von Herrikhuyzen, J.; Schenning, A.; van der Schoot, P.; Meijer, E. W.; Beckers, E. H. A.; Meskers, S. C. J.; Janssen, R. A. J., Supramolecular p-n-heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes. [J] J. Am. Chem. Soc.,2004,126 (34),10611-10618.
    [47]Wurthner, F.; Hanke, B.; Lysetska, M.; Lambright, G.; Harms, G. S., Gelation of a highly fluorescent urea-functionalized perylene bisimide dye. [J] Org. Lett.,2005, 7 (6),967-970.
    [48]Sinks, L. E.; Rybtchinski, B.; Iimura, M.; Jones, B. A.; Goshe, A. J.; Zuo, X. B.; Tiede, D. M.; Li, X. Y.; Wasielewski, M. R., Self-assembly of photofunctional cylindrical nanostructures based on perylene-3,4:9,10-bis(dicarboximide). [J] Chemistry of Materials,2005,17(25),6295-6303.
    [49]Liu, Y.; Xiao, S. Q.; Li, H. M.; Li, Y. L.; Liu, H. B.; Lu, F. S.; Zhuang, J. P.; Zhu, D. B., Self-assembly and characterization of a novel hydrogen-bonded nanostructure. [J] J. Phys. Chem. B,2004,108 (20),6256-6260.
    [50]Liu, Y.; Li, Y. J.; Jiang, L.; Gan, H. Y.; Liu, H. B.; Li, Y. L.; Zhuang, J. P.; Lu, F. S.; Zhu, D. B., Assembly and characterization of novel hydrogen-bond-induced nanoscale rods. [J] J. Org. Chem.,2004,69 (26),9049-9054.
    [51]Tang, T. J.; Qu, J. Q.; Mullen, K.; Webber, S. E., Molecular layer-by-layer self-assembly of water-soluble perylene diimides through pi-pi and electrostatic interactions. [J] Langmuir,2006,22 (1),26-28.
    [52]Guan, Y.; Yu, S. H.; Antonietti, M.; Bottcher, C.; Faul, C. F. J., Synthesis of supramolecular polymers by ionic self-assembly of oppositely charged dyes. [J] Chemistry-a European Journal,2005,11 (4),1305-1311.
    [53]Tam-Chang, S. W.; Iverson, I. K.; Helbley, J., Study of the chromonic liquid-crystalline phases of bis-(N,N-diethylaminoethyl)-perylene -3,4,9,10 tetracarboxylic diimide dihydrochloride by polarized optical microscopy and 2H NMR spectroscopy. [J] Langmuir,2004,20 (2),342-347.
    [54]Xie, A. F.; Liu, B.; Hall, J. E.; Barron, S. L.; Higgins, D. A., Self-assembled photoactive polyelectrolyte/perylene-diimide composites. [J] Langmuir,2005,21 (9),4149-4155.
    [55]Ball, P. G., L., Science at the atomic scale. [J] Nature 1992,355 (6363),761-766.
    [56]Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P., Melting in semiconductor nanocrystals. [J] Science (New York, N.Y.),1992,256(5062),1425-1427.
    [57]Reed, M. A.; Frensley, W. R.; Matyi, R. J.; Randall, J. N.; Seabaugh, A. C., Realization of a three-terminal resonant tunneling device:the bipolar quantum resonant tunneling transistor. [J] Appl. Phys. Lett.,1989,54 (11).
    [58]Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K., Ultrahigh strength and high electrical conductivity in copper. [J] Science,2004,304 (5669),422-426.
    [59]Alivisatos, A. P.; Barbara, P. F.; Castleman, A. W.; Chang, J.; Dixon, D. A.; Klein, M. L.; McLendon, G. L.; Miller, J. S.; Ratner, M. A.; Rossky, P. J.; Stupp, S. I.; Thompson, M. E., From molecules to materials:Current trends and future directions. [J] Adv. Mater.,1998,10 (16),1297-1336.
    [60]Edelstein, A. S. C. R. C., Nanomaterials:synthesis, properties and applications. [M] IOP Publishing:Bristol, UK,1996.
    [611 Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Semiconductor nanocrystals as fluorescent biological labels. [J] Science,1998,281 (5385), 2013-2016.
    [62]Gu, Y.; Kuskovsky, I. L.; Yin, M.; O'Brien, S.; Neumark, G. F., Quantum confinement in ZnO nanorods. [J] Appl. Phys. Lett.,2004,85 (17),3833-3835.
    [63]Corma, A., From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. [J] Chem. Rev.,1997,97 (6),2373-2419.
    [64]Chan, W. C. W.; Nie, S. M., Quantum dot bioconjugates for ultrasensitive nonisotopic detection. [J] Science,1998,281 (5385),2016-2018
    [65]Parala, H.; Winkler, H.; Kolbe, M.; Wohlfart, A.; Fischer, R. A.; Schmechel, R.; von Seggern, H., Confinement of CdSe nanoparticles inside MCM-41. [J] Adv. Mater.,2000,12 (14),1050-1055.
    [66]Mueller, A. H.; Petruska, M. A.; Achermann, M.; Werder, D. J.; Akhadov, E. A.; Koleske, D. D.; Hoffbauer, M. A.; Klimov, V. I., Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. [J] Nano Lett.,2005,5 (6),1039-1044.
    [67]Ghosh, S.; Sood, A. K.; Kumar, N., Carbon nanotube flow sensors. [J] Science, 2003,299 (5609),1042-1044.
    [68]Lian, S.-L.; Liu, C.-L.; Chen, W.-C., Conjugated Fluorene Based Rod-Coil Block Copolymers and Their PCBM Composites for Resistive Memory Switching Devices. [J] Acs Applied Materials & Interfaces,2011,3(11),4504-4511.
    [69]Yoon, J.; Hong, W.-K.; Jo, M.; Jo, G.; Choe, M.; Park, W.; Sohn, J. I.; Nedic, S.; Hwang, H.; Welland, M. E.; Lee, T., Nonvolatile Memory Functionality of ZnO Nanowire Transistors Controlled by Mobile Protons. [J] Acs Nano,2011,5 (1), 558-564.
    [70]Periyayya, U.; Kang, J. H.; Ryu, J. H.; Hong, C.-H., Synthesis and improved luminescence properties of OLED/ZnO hybrid materials. [J] Vacuum,2011,86 (3), 254-260.
    [71]Hu, Z.; Pantos, G. D.; Kuganathan, N.; Arrowsmith, R. L.; Jacobs, R. M. J.; Kociok-Koehn, G.; O'Byrne, J.; Jurkschat, K.; Burgos, P.; Tyrrell, R. M.; Botchway, S. W.; Sanders, J. K. M.; Pascu, S. I., Interactions Between Amino Acid-Tagged Naphthalenediimide and Single Walled Carbon Nanotubes for the Design and Construction of New Bioimaging Probes. [J] Adv. Funct. Mater.,2012, 22(3),503-518.
    [72]Tang, H.; Yan, F.; Lin, P.; Xu, J.; Chan, H. L. W., Highly Sensitive Glucose Biosensors Based on Organic Electrochemical Transistors Using Platinum Gate Electrodes Modified with Enzyme and Nanomaterials. [J] Adv. Funct. Mater.,2011, 21(12),2264-2272.
    [73]Chandrasekaran, J.; Nithyaprakash, D.; Ajjan, K. B.; Maruthamuthu, S.; Manoharan, D.; Kumar, S., Hybrid solar cell based on blending of organic and inorganic materials-An overview. [J] Renewable & Sustainable Energy Reviews, 2011,15(2),1228-1238.
    [74]Hu, Z.; Pantos, G. D.; Kuganathan, N.; Arrowsmith, R. L.; Jacobs, R. M. J.; Kociok-Koehn, G.; O'Byrne, J.; Jurkschat, K.; Burgos, P.; Tyrrell, R. M.; Botchway, S. W.; Sanders, J. K. M.; Pascu, S. I., Interactions Between Amino Acid-Tagged Naphthalenediimide and Single Walled Carbon Nanotubes for the Design and Construction of New Bioimaging Probes. [J] Adv. Funct. Mater.,2012, 22(3),503-518.
    [75]Briseno, A. L.; Mannsfeld, S. C. B.; Reese, C.; Hancock, J. M.; Xiong, Y.; Jenekhe, S. A.; Bao, Z.; Xia, Y., Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters. [J] Nano Lett.,2007,7 (9), 2847-2853.
    [76]Che, Y.; Yang, X.; Liu, G.; Yu, C.; Ji, H.; Zuo, J.; Zhao, J.; Zang, L., Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives. [J] J. Am. Chem. Soc.,2010,132 (16), 5743-5750.
    [77]Sukul, P. K.; Asthana, D.; Mukhopadhyay, P.; Summa, D.; Muccioli, L.; Zannoni, C.; Beljonne, D.; Rowan, A. E.; Malik, S., Assemblies of perylene diimide derivatives with melamine into luminescent hydrogels. [J] Chem. Commun.,2011, 47(43),11858-11860.
    [78]Che, Y.; Huang, H.; Xu, M.; Zhang, C.; Bunes, B. R.; Yang, X.; Zang, L., Interfacial Engineering of Organic Nanofibril Heterojunctions into Highly Photoconductive Materials. [J] J. Am. Chem. Soc.,2011,133 (4),1087-1091.
    [79]Eigler, D. M.; Lutz, C. P.; Rudge, W. E., An atomic switch realized with the scanning tunnelling microscope. [J] Nature,1991,352 (6336)
    [80]Irie, M., Diarylethenes for memories and switches. [J] Chem. Rev.,2000,100 (5), 1685-1716.
    [81]Hirshberg, Y.; Fischer, E., Low-temperature photochromism and its relation to thermochromism. [J] J. Chem. Soc,1953,629-636.
    [82]Heiligman-Rim, R.; Hirshberg, Y.; Fische, E., Photochromism in some spiropyrans. Part III. The extent of photo transformation. [J] J. Chem. Soc.,1961,156-163.
    [83]Fischer, E.; Hirshberg, Y., Formation of colouerd forms of spiorpyrans by low-temperature irradiation. [J] J. Chem. Soc.,1952,4522-4524.
    [84]Diirr, H.; Bouas-Laurent, H., Photochromism:molecules and systems. [M] Elsevier. Amsterdam,1990.
    [85]冯晓强;陈烽;候洵,光致变色的研究进展.[J]应用光学,2000,21(3),1-6.
    [86]樊美公,光化学基本原理与光子材料.[M]科学出版社:北京,2001.
    [87]Lehn, J. M., Toward self-organization and complex matter. [J] Science,2002,295 (5564),2400-2403.
    [88]Svenson, S., Controlling surfactant self-assembly. [J] Current Opinion in Colloid & Interface Science,2004,9 (3-4),201-212.
    [89]Shimizu, T.; Masuda, M.; Minamikawa, H., Supramolecular nanotube architectures based on amphiphilic molecules. [J] Chem. Rev.,2005,105 (4),1401-1443.
    [90]Kakizawa, Y.; Sakai, H.; Yamaguchi, A.; Kondo, Y.; Yoshino, N.; Abe, M., Electrochemical control of vesicle formation with a double-tailed cationic surfactant bearing ferrocenyl moieties. [J] Langmuir,2001,17 (26),8044-8048.
    [91]Tsuchiya, K.; Orihara, Y.; Kondo, Y.; Yoshino, N.; Ohkubo, T.; Sakai, H.; Abe, M., Control of viscoelasticity using redox reaction. [J] J. Am. Chem. Soc.,2004,126 (39),12282-12283.
    [92]Davies, T. S.; Ketner, A. M.; Raghavan, S. R., Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. [J] J. Am. Chem. Soc.,2006,128 (20),6669-6675.
    [93]Yin, H. Q.; Zhou, Z. K.; Huang, J. B.; Zheng, R.; Zhang, Y. Y., Temperature-induced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system. [J] Angewandte Chemie-International Edition,2003,42 (19),2188-2191.
    [94]Lin, Y.; Qiao, Y.; Yan, Y.; Huang, J., Thermo-responsive viscoelastic wormlike micelle to elastic hydrogel transition in dual-component systems. [J] Soft Matter, 2009,5(16),3047-3053.
    [95]Paulusse, J. M. J.; Sijbesma, R. P., Reversible mechanochemistry of a Pd-II coordination polymer. [J] Angewandte Chemie-International Edition,2004,43 (34), 4460-4462.
    [96]Naota, T.; Koori, H., Molecules that assemble by sound:An application to the instant gelation of stable organic fluids. [J] J. Am. Chem. Soc.,2005,127 (26), 9324-9325.
    [97]Ghosh, S.; Irvin, K.; Thayumanavan, S., Tunable disassembly of micelles using a redox trigger. [J] Langmuir,2007,23 (15),7916-7919.
    [98]Johnsson, M.; Wagenaar, A.; Engberts, J., Sugar-based gemini surfactant with a vesicle-to-micelle transition at acidic pH and a reversible vesicle flocculation near neutral pH. [J] J. Am. Chem. Soc.,2003,125 (3),757-760.
    [99]Lin, Y.; Han, X.; Cheng, X.; Huang, J.; Liang, D.; Yu, C., pH-Regulated Molecular Self-Assemblies in a Cationic-Anionic Surfactant System:From a "1-2" Surfactant Pair to a "1-1" Surfactant Pair. [J] Langmuir,2008,24 (24),13918-13924.
    [100]Kohler, K.; Meister, A.; Forster, G.; Dobner, B.; Drescher, S.; Ziethe, F.; Richter, W.; Steiniger, F.; Drechsler, M.; Hause, G.; Blume, A., Conformational and thermal behavior of a pH-sensitive bolaform hydrogelator. [J] Soft Matter,2006,2 (1),77-86.
    [101]Verma, G.; Aswal, V. K.; Hassan, P., pH-Responsive self-assembly in an aqueous mixture of surfactant and hydrophobic amino acid mimic. [J] Soft Matter,2009,5 (15),2919-2927.
    [102]Vesperinas, A.; Eastoe, J.; Wyatt, P.; Grillo, I.; Heenan, R. K.; Richards, J. M.; Bell, G. A., Photoinduced phase separation. [J] J. Am. Chem. Soc.,2006,128 (5), 1468-1469.
    [103]Eastoe, J.; Wyatt, P.; Sanchez-Dominguez, M.; Vesperinas, A.; Paul, A.; Heenan, R. K.; Grillo, I., Photo-stabilised microemulsions. [J] Chem. Commun.,2005, (22),2785-2786.
    [104]Tabor, R. F.; Oakley, R. J.; Eastoe, J.; Faul, C. F. J.; Grillo, I.; Heenan, R. K., Reversible light-induced critical separation. [J] Soft Matter,2009,5 (1),78-80.
    [105]Kumar, R.; Raghavan, S. R., Photogelling fluids based on light-activated growth of zwitterionic wormlike micelles. [J] Soft Matter,2009,5 (4),797-803.
    [106]Wang, Y.; Ma, N.; Wang, Z.; Zhang, X., Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant with alpha-cyclodextrin. [J] Angewandte Chemie-International Edition,2007,46 (16), 2823-2826.
    [107]Lin, Y.; Cheng, X.; Qiao, Y.; Yu, C.; Li, Z.; Yan, Y.; Huang, J., Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. [J] Soft Matter,2010,6 (5),902-908.
    [108]Dugave, C.; Demange, L., Cis-trans isomerization of organic molecules and biomolecules:Implications and applications. [J] Chem. Rev.,2003,103 (7), 2475-2532.
    [109]Lucas, L. N.; van Esch, J.; Kellogg, R. M.; Feringa, B. L., Photocontrolled self-assembly of molecular switches. [J] Chem. Commun.,2001,759-760.
    [110]Rakotondradany, F.; Whitehead, A.; Lebuis, A. M.; Sleiman, H. F., Photoresponsive supramolecular systems Self-assembly of azodibenzoic acid linear tapes and cyclic tetramers. [J] Chem. Eur. J.,2003,9 (19),4771-4780.
    [111]Saiki, Y.; Sugiura, H.; Nakamura, K.; Yamaguchi, M.; Hoshi, T.; Anzai, J.,3+3 Cycloalkyne dimers linked by an azo group:A stable cis-azo compound forms polymeric aggregates by nonplanar pi-pi interactions. [J] J. Am. Chem. Soc.,2003, 125(31),9268-9269.
    [112]Matsuzawa, Y.; Ueki, K.; Yoshida, M.; Tamaoki, N.; Nakamura, T.; Sakai, H.; Abe, M., Assembly and photoinduced organization of mono- and oligopeptide molecules containing an azobenzene moiety. [J] Adv. Furtct. Mater.,2007,17 (9), 1507-1514.
    [113]Lin,Y.;Cheng,X.;Qiao,Y.;Yu,C.;Li,Z.;Yan,Y.;Huang,J.,Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch.[J]Soft Matter,2010,6(5),902-908.
    [1]Meng, X.; Natansohn, A.; Rochon, P., Azo polymers for reversible optical storage. poly{4,4'-(1-methylethylidene)bisphenylene 3-4-(4-nitrophenylazo)phenyl-3-aza -pentanedioate}. [J] Journal of Polymer Science, Part B (Polymer Physics), 1996,34(8).
    [2]Meng, X.; Natansohn, A.; Rochon, P., Azo polymers for reversible optical storage. Photoorientation of rigid side groups containing two azo bonds. [J] Polymer,1997, 35(11).
    [3]Yang, Q.; Wei, Z.; Sun, G.; Li, F.; Wang, G.; Li, M.; Wang, L., Study on optical storage and modulation proper ties of a zobenzene organic films. [J] Journal of Optoelectronics Laser,2001,12 (9),913-916.
    [4]Wang, X. G.; Yang, K.; Kumar, J.; Tripathy, S. K.; Chittibabu, K. G.; Li, L.; Lindsay, G., Heteroaromatic chromophore functionalized epoxy-based nonlinear optical polymers. [J] Macromolecules,1998, 31(13),4126-4134.
    [5]Motschmann, H. R.; Penner, T. L.; Armstrong, N. J.; Ezenyilimba, M. C., Additive second-order nonlinear susceptibilities in Langmuir-Blodgett multibilayers:testing the oriented gas model. [J] J. Phys. Chem.,1993,97 (16).
    [6]Ikeda, T., Photomodulation of liquid crystal orientations for photonic applications. [J] J. Mater. Chem.,2003,13 (9),2037-2057.
    [7]Xiong, G.-R.; Han, G.-Z.; Sun, C.; Xu, H.; Wei, H.-m.; Gu, Z.-Z., Phototunable Microlens Array Based on Polymer Dispersed Liquid Crystals. [J] Adv. Funct. Mater.,2009,19 (7),1082-1086.
    [8]Xie, Z.-Y.; Sun, L.-G.; Han, G.-Z.; Gu, Z.-Z., Optical Switching of a Birefringent Photonic Crystal. [J] Adv. Mater.,2008,20 (19),3601-3604.
    [9]Natansohn, A.; Rochon, P., Photoinduced motions in azo-containing polymers. [J] Chem. Rev.,2002,102 (11),4139-4175.
    [10]Wu, Y. L.; Demachi, Y.; Tsutsumi, O.; Kanazawa, A.; Shiono, T.; Ikeda, T. Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain.1. Effect of light intensity on alignment behavior. [J] Macromolecules,1998,31 (2),349-354.
    [11]Wu, Y. L.; Zhang, Q. J.; Kanazawa, A.; Shiono, T.; Ikeda, T.; Nagase, Y., Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain.5. Effect of the azo contents on alignment behavior and enhanced response. [J] Macromolecules,1999,32 (12),3951-3956.
    [12]Mativetsky, J. M.; Pace, G.; Elbing, M.; Rampi, M. A.; Mayor, M.; Samori, P., Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions. [J] J. Am. Chem. Soc.,2008,130(29),9192-9193.
    [13]Ferri, V.; Elbing, M.; Pace, G.; Dickey, M. D.; Zharnikov, M.; Samori, P.; Mayor, M.; Rampi, M. A., Light-powered electrical switch based on cargo-lifting azobenzene monolayers. [J] Angew.Chem. Int. Ed.,2008,47 (18),3407-3409.
    [14]Zacharias, P.; Gather, M. C.; Koehnen, A.; Rehmann, N.; Meerholz, K., Photoprogrammable Organic Light-Emitting Diodes. [J] Angew.Chem. Int. Ed., 2009,48 (22),4038-4041.
    [15]Yurke, B.; Turberfield, A. J.; Mills, A. P.; Simmel, F. C.; Neumann, J. L., A DNA-fuelled molecular machine made of DNA. [J] Nature,2000,406 (6796), 605-608.
    [16]Liang, X.; Nishioka, H.; Takenaka, N.; Asanuma, H., A DNA nanomachine powered by light irradiation. [J] Chembiochem,2008,9 (5),702-705.
    [17]Liu, D.; Xie, Y.; Shao, H.; Jiang, X., Using Azobenzene-Embedded Self-Assembled Monolayers To Photochemically Control Cell Adhesion Reversibly. [J] Angew.Chem. Int. Ed.,2009,48 (24),4406-4408.
    [18]Russew, M.-M.; Hecht, S., Photoswitches:From Molecules to Materials. [J] Adv. Mater.,2010,22 (31),3348-3360.
    [19]冯君茜,博士学位论文,山东大学,2009.
    [20]Wurthner, F.; Stepanenko, V.; Chen, Z. J.; Saha-Moller, C. R.; Kocher, N.; Stalke, D., Preparation and characterization of regioisomerically pure 1,7-disubstituted perylene bisimide dyes. [J] J. Org. Chem.,2004,69 (23),7933-7939.
    [21]Ahrens, M. J.; Tauber, M. J.; Waslelewski, M. R., Bis(n-octylamino)perylene-3,4: 9,10-bis(dicarboximide)s and their radical cations:Synthesis, electrochemistry, and ENDOR spectroscopy. [J] J. Org. Chem.,2006,71 (5),2107-2114.
    [22]Che, Y.; Yang, X.; Liu, G.; Yu, C.; Ji, H.; Zuo, J.; Zhao, J.; Zang, L., Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives. [J] J. Am. Chem. Soc.,2010,132 (16), 5743-5750.
    [23]Feng, Y.; Feng, W., Photo-responsive perylene diimid-azobenzene dyad: Photochemistry and its morphology control by self-assembly. [J] Opt. Mater.,2008, 30 (6),876-880.
    [24]Irie, M., Photochromism of diarylethene molecules and crystals. [J] Proceedings of the Japan Academy Series B-Physical and Biological Sciences,2010,86 (5), 472-483.
    [25]Fukaminato, T., Single-molecule fluorescence photoswitching:Design and synthesis of photoswitchable fluorescent molecules. [J] Journal of Photochemistry andPhotobiology C-Photochemistry Reviews,2011,12(3),177-208.
    [26]Luo, Q.; Cheng, H.; Tian, H., Recent progress on photochromic diarylethene polymers. [J] Polymer Chemistry,2011,2 (11),2435-2443.
    [27]罗千福,博士毕业论文,华东理工大学,2004.
    [28]Irie, M.; Mohri, M., Thermally Irreversible photochromic systems:Reversible photocyclization of diarylethene derivatives. [J] J. Org. Chem.,1988,53,803-808.
    [29]Wurthner, F.; Sautter, A.; Schilling, J., Synthesis of diazadibenzoperylenes and characterization of their structural, optical, redox, and coordination properties. [J] J. Org. Chem.,2002,67 (9),3037-3044.
    [30]Wurthner, F.; Thalacker, C.; Sautter, A., Hierarchical organization of functional perylene chromophores to mesoscopic superstructures by hydrogen bonding and pi-pi interactions. [J] Adv. Mater.,1999,11 (9),754-758.
    [1]Carroll, R. L.; Gorman, C. B., The genesis of molecular electronics. [J] Angew.Chem. Int. Ed.,2002,41 (23),4379-4400.
    [2]Joachim, C.; Gimzewski, J. K.; Aviram, A., Electronics using hybrid-molecular and mono-molecular devices. [J] Nature,2000,408 (6812),541-548.
    [3]Green, J. E.; Choi, J. W.; Boukai, A.; Bunimovich, Y.; Johnston-Halperin, E.; Delonno, E.; Luo, Y.; Sheriff, B. A.; Xu, K.; Shin, Y. S.; Tseng, H.-R.; Stoddart, J. F.; Heath, J. R., A 160-kilobit molecular electronic memory patterned at 10(11) bits per square centimetre. [J] Nature,2007,445 (7126),414-417.
    [4]Yagai, S.; Karatsu, T.; Kitamura, A., Photocontrollable self-assembly. [J] Chem. Eur. J.,2005,11 (14),4054-4063.
    [5]Russew, M.-M.; Hecht, S., Photoswitches:From Molecules to Materials. [J] Adv. Mater.,2010,22 (31),3348-3360.
    [6]Barrett, C. J.; Mamiya, J.-i.; Yager, K. G.; Ikeda, T., Photo-mechanical effects in azobenzene-containing soft materials. [J] Soft Matter,2007,3 (10),1249-1261.
    [7]Lucas, L. N.; van Esch, J.; Kellogg, R. M.; Feringa, B. L., Photocontrolled self-assembly of molecular switches. [J] Chem. Commun.,2001,759-760.
    [8]Beckers, E. H. A.; Meskers, S. C. J.; Schenning, A.; Chen, Z. J.; Wurthner, F.; Marsal, P.; Beljonne, D.; Cornil, J.; Janssen, R. A. J., Influence of intermolecular orientation on the photoinduced charge transfer kinetics in self-assembled aggregates of donor-acceptor arrays. [J] J. Am. Chem. Soc.,2006,128 (2), 649-657.
    [9]Wang, C.; Chen, Q.; Xu, H.; Wang, Z.; Zhang, X., Photoresponsive Supramolecular Amphiphiles for Controlled Self-Assembly of Nanofibers and Vesicles. [J] Adv. Mater.,2010,22 (23),2553-2555.
    [10]Ma, L.; Wang, Q.; Lu, G.; Chen, R.; Sun, X., Photochromic Nanostructures Based on Diarylethenes with Perylene Diimide. [J] Langmuir,2010,26 (9),6702-6707.
    [11]Feng, Y.; Feng, W., Photo-responsive perylene diimid-azobenzene dyad: Photochemistry and its morphology control by self-assembly. [J] Opt. Mater.,2008, 30 (6),876-880.
    [12]Lin, Y.; Cheng, X.; Qiao, Y.; Yu, C.; Li, Z.; Yan, Y.; Huang, J., Creation of photo-modulated multi-state and multi-scale molecular assemblies via binary-state molecular switch. [J] Soft Matter,2010,6 (5),902-908.
    [13]Staykov, A.; Areephong, J.; Browne, W. R.; Feringa, B. L.; Yoshizawa, K., Electrochemical and Photochemical Cyclization and Cycloreversion of Diarylethenes and Diarylethene-Capped Sexithiophene Wires. [J] Acs Nano,2011, 5(2),1165-1178.
    [14]Zhang, X.; Jie, J.; Zhang, W.; Zhang, C.; Luo, L.; He, Z.; Zhang, X.; Zhang, W.; Lee, C.; Lee, S., Photoconductivity of a single small-molecule organic nanowire. [J] Adv. Mater.,2008,20 (12),2427-2432.
    [15]Mativetsky, J. M.; Pace, G.; Elbing, M.; Rampi, M. A.; Mayor, M.; Samori, P., Azobenzenes as light-controlled molecular electronic switches in nanoscale metal-molecule-metal junctions. [J]J. Am. Chem. Soc.,2008, 130(29),9192-9193.
    [16]Das, S.; Varghese, S.; Kumar, N. S. S., Butadiene-Based Photoresponsive Soft Materials. [J] Langmuir,2010,26 (3),1598-1609.
    [17]Cao, H.; Jiang, J.; Zhu, X.; Duan, P.; Liu, M., Hierarchical co-assembly of chiral lipid nanotubes with an azobenzene derivative:optical and chiroptical switching. [J] Soft Matter,2011,7 (10),4654-4660.
    [18]Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J. L.; Oitker, R.; Yen, M.; Zhao, J. C.; Zang, L., Effect of side-chain substituents on self-assembly of perylene diimide molecules:Morphology control. [J] J. Am. Chem. Soc.,2006,128 (22),7390-7398.
    [19]Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J. M.; Zang, L., Nanobelt self-assembly from an organic n-type semiconductor:Propoxyethyl-PTCDI. [J] J. Am. Chem. Soc.,2005,127(30),10496-10497.
    [20]R. A. Cox, Gaussian 09, Gaussian, Inc., Wallingford CT,2009.
    [21]Matsuzawa, Y.; Ueki, K.; Yoshida, M.; Tamaoki, N.; Nakamura, T.; Sakai, H.; Abe, M., Assembly and photoinduced organization of mono-and oligopeptide molecules containing an azobenzene moiety. [J] Adv. Funct. Mater.,2007,17 (9), 1507-1514.
    [22]Wang, C.; Chen, Q.; Sun, F.; Zhang, D.; Zhang, G.; Huang, Y.; Zhao, R.; Zhu, D., Multistimuli Responsive Organogels Based on a New Gelator Featuring Tetrathiafulvalene and Azobenzene Groups:Reversible Tuning of the Gel-Sol Transition by Redox Reactions and Light Irradiation. [J] J. Am. Chem. Soc.,2010, 132 (9),3092-3096.
    [23]Chen, Z.; Baumeister, U.; Tschierske, C.; Wuerthner, F., Effect of core twisting on self-assembly and optical properties of perylene bisimide dyes in solution and columnar liquid crystalline phases. [J] Chem. Eur. J.,2007,13 (2),450-465.
    [24]Ghosh, S.; Li, X.-Q.; Stepanenko, V.; Wuerthner, F., Control of H- and J-Type pi Stacking by Peripheral Alkyl Chains and Self-Sorting Phenomena in Perylene Bisimide Homo-and Heteroaggregates. [J] Chem. Eur. J.,2008,14 (36), 11343-11357.
    [25]Ariga, K.; Lvov, Y.; Kunitake, T., Assembling Alternate Dye-Polyion Molecular Films by Electrostatic Layer-by-Layer Adsorption. [J] J. Am. Chem. Soc.,1997, 119 (9),2224-2231.
    [26]Maiti, N. C.; Mazumdar, S.; Periasamy, N., J-and H-aggregates of porphyrin-surfactant complexes:Time-resolved fluorescence and other spectroscopic studies. [J] J. Phys. Chem. B,1998,102(9),1528-1538.
    [27]Fujii, T.; Kashida, H.; Asanuma, H., Analysis of Coherent Heteroclustering of Different Dyes by Use of Threoninol Nucleotides for Comparison with the Molecular Exciton Theory. [J] Chem. Eur. J.,2009,15 (39),10092-10102.
    [28]Kumar, K. S.; Patnaik, A., Solvent-Polarity-Tunable Dimeric Association of a Fullerene (C(60))-N,N-Dimethylaminoazobenzene Dyad:Modulated Electronic Coupling of the Azo Chromophore with a Substituted 3D Fullerene. [J] Chem. Eur. J.,2011,17(19),5327-5343.
    [29]McRae, E. G.; Kasha, M., Enhancement of Phosphorescence Ability upon Aggregation of Dye Molecules. [J] J. Chem. Phys.,1958,28,721-722.
    [30]Zang, L.; Che, Y.; Moore, J. S., One-Dimensional Self-Assembly of Planar pi-Conjugated Molecules:Adaptable Building Blocks for Organic Nanodevices. [J] Acc. Chem. Res.,2008,41 (12),1596-1608.
    [31]Wurthner, F., Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. [J] Chem. Commun.,2004,1564-1579.
    [32]Li, D.-M.; Zheng, Y.-S., Single-Hole Hollow Nanospheres from Enantioselective Self-Assembly of Chiral AIE Carboxylic Acid and Amine. [J] J. Org. Chem.,2011, 76(4),1100-1108.
    [33]Wang, Y.; Han, P.; Xu, H.; Wang, Z.; Zhang, X.; Kabanov, A. V., Photocontrolled Self-Assembly and Disassembly of Block Ionomer Complex Vesicles:A Facile Approach toward Supramolecular Polymer Nanocontainers. [J] Langmuir,2010, 26(2),709-715.
    [34]Liu, Y.; Ding, J.; Shi, D.; Sun, J., Time-dependent density functional theory study on electronically excited states of coumarin 102 chromophore in aniline solvent: Reconsideration of the electronic excited-state hydrogen-bonding dynamics. [J] J. Phys. Chem. A,2008,112 (28),6244-6248.
    [35]Kobayashi, K.; Sato, A.; Sakamoto, S.; Yamaguchi, K., Solvent-induced polymorphism of three-dimensional hydrogen-bonded networks of hexakis(4-carbamoylphenyl)benzene. [J] J. Am. Chem. Soc.,2003,125 (10), 3035-3045.
    [36]De Feyter, S.; Miura, A.; Yao, S.; Chen, Z.; Wurthner, F.; Jonkheijm, P.; Schenning, A.; Meijer, E. W.; De Schryver, F. C., Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures. [J] Nano Lett.,2005,5 (1), 77-81.
    [37]Struijk, C. W.; Sieval, A. B.; Dakhorst, J. E. J.; van Dijk, M.; Kimkes, P.; Koehorst, R. B. M.; Donker, H.; Schaafsma, T. J.; Picken, S. J.; van de Craats, A. M.; Warman, J. M.; Zuilhof, H.; Sudholter, E. J. R., Liquid crystalline perylene diimides:Architecture and charge carrier mobilities. [J] J. Am. Chem. Soc.,2000, 122(45),11057-11066.
    [38]Che, Y.; Datar, A.; Balakrishnan, K.; Zang, L., Ultralong nanobelts self-assembled from an asymmetric perylene tetracarboxylic diimide. [J] J. Am. Chem. Soc.,2007, 129 (23),7234-7235.
    [39]Che, Y.; Yang, X.; Liu, G.; Yu, C.; Ji, H.; Zuo, J.; Zhao, J.; Zang, L., Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives. [J] J. Am. Chem. Soc.,2010,132 (16), 5743-5750.
    [40]Irie, M.; Kobatake, S.; Horichi, M., Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. [J] Science,2001, 291(5509),1769-1772.
    [41]Briseno, A. L.; Mannsfeld, S. C. B.; Reese, C.; Hancock, J. M.; Xiong, Y.; Jenekhe, S. A.; Bao, Z.; Xia, Y., Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters. [J] Nano Lett.,2007,7 (9), 2847-2853.
    [1]刘会军,博士学位论文,山东大学,2007.
    [2]赵耀鹏;孙震,超分子化学.[M]化学工业出版社:北京,2006.
    [3]Sharma, C. V. K., Crystal engineering-where do we go from here? [J] Cryst. Growth Des.,2002,2 (6),465-474.
    [4]Desiraju, G. R.; Gavezzotti, A., From molecular to crystal structure; Polynuclear aromatic hydrocarbons. [J] Chem. Commun.621-623,1989,621-623.
    [5]Desiraju, G. R., Crystal engineering. From molecules materials. [J] J. Mol. Struct., 2003,656(1-3),5-15.
    [6]辛倩,博士学位论文,山东大学,2008.
    [7]袁春雪,博士学位论文,山东大学,2009.
    [8]Shelderik, G. M., SHELXL-97; Program for Crystal Structure Refinement, University of Gottingen:Gottingen, Germany,1997.
    [9]Delgado, M. C. R.; Kim, E.-G.; da Silva Filho, D. A.; Bredas, J.-L., Tuning the Charge-Transport Parameters of Perylene Diimide Single Crystals via End and/or Core Functionalization:A Density Functional Theory Investigation. [J] J. Am. Chem. Soc.,2010,132 (10),3375-3387.
    [10]Junqian, F.; Delou, W.; Hailong, W.; Daopeng, Z.; Liangliang, Z.; Xiyou, L., Structural and property comparison between the di-piperidinyl- and di-pyrrolidinyl-substituted perylene tetracarboxylic diimides. [J] J. Phys. Org. Chem.,2011,24 (8),621-629.
    [11]Lin, M.-J.; Fimmel, B.; Radacki, K.; Wuerthner, F., Halochromic Phenolate Perylene Bisimides with Unprecedented NIR Spectroscopic Properties. [J] Angew.Chem. Int. Ed.,2011,50 (46),10847-10850.
    [12]Wurthner, F.; Stepanenko, V.; Chen, Z. J.; Saha-Moller, C. R.; Kocher, N.; Stalke, D., Preparation and characterization of regioisomerically pure 1,7-disubstituted perylene bisimide dyes. [J] J. Org. Chem.,2004,69 (23),7933-7939.
    [13]Forrest, S. R.; Kaplan, M. L.; Schmidt, P. H., Organic-on-inorganic semiconductor contact barrier diodes. I. Theory with applications to organic thin films and prototype devices. [J] J. Appl. Phys.,1984,55,1492-1507.
    [14]Klebe, G.; Graser, F.; Hadicke, E.; Berndt, J., Crystallochromy as a solid-state effect:correlation of molecular conformation, crystal packing and colour in perylene-3,4:9,10-bis(dicarboximide) pigments. [J] Acta Cryst. B,1989,45 69-77.
    [15]Gsaenger, M.; Oh, J. H.; Koenemann, M.; Hoeffken, H. W.; Krause, A.-M.; Bao, Z.; Wuerthner, F., A Crystal-Engineered Hydrogen-Bonded Octachloroperylene Diimide with a Twisted Core:An n-Channel Organic Semiconductor. [J] Angew.Chem. Int. Ed.,2010,49 (4),740-743.
    [16]Guillon, D., Columnar Order in Thermotropic Mesophases. [J] Struct. Bonding, 1999,95,41-82.
    [17]Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A., About supramolecular assemblies of pi-conjugated systems. [J] Chem. Rev.,2005,105 (4), 1491-1546.
    [18]Grimsdale, A. C.; Mullen, K., The chemistry of organic nanomaterials. [J] Angew.Chem. Int. Ed.,2005,44 (35),5592-5629.
    [19]Serway, R. A., Principles of Physics,2nd ed. [M] Saunders College:Fort Worth, TX:London,1998,602.
    [20]Che, Y.; Datar, A.; Yang, X.; Naddo, T.; Zhao, J.; Zang, L., Enhancing one-dimensional charge transport through intermolecular pi-electron delocalization: Conductivity improvement for organic nanobelts. [J] J. Am. Chem. Soc.,2007,129 (20),6354-6355.
    [1]Percec, V.; Dulcey, A. E.; Balagurusamy, V. S. K.; Miura, Y.; Smidrkal, J.; Peterca, M.; Nummelin, S.; Edlund, U.; Hudson, S. D.; Heiney, P. A.; Hu, D. A.; Magonov, S. N.; Vinogradov, S. A., Self-assembly of amphiphilic dendritic dipeptides into helical pores. [J] Nature,2004,430 (7001),764-768.
    [2]Antonietti, M.; Forster, S., Vesicles and liposomes:A self-assembly principle beyond lipids.[J] Adv. Mater,2003,15 (16),1323-1333.
    [3]Hill, J. P.; Jin, W. S.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T., Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube. [J] Science,2004,304 (5676),1481-1483.
    [4]Hartgerink, J. D.; Beniash, E.; Stupp, S. I., Self-assembly and mineralization of peptide-amphiphile nanofibers. [J] Science,2001,294 (5547),1684-1688.
    [5]Uzun, O.; Sanyal, A.; Nakade, H.; Thibault, R. J.; Rotello, V. M., Recognition-induced transformation of microspheres into vesicles:Morphology and size control. [J] J. Am. Chem. Soc.,2004,126(45),14773-14777.
    [6]Arnt, L.; Tew, G. N., New poly(phenyleneethynylene)s with cationic, facially amphiphilic structures. [J] J. Am. Chem. Soc.,2002,124 (26),7664-7665.
    [7]Percec, V.; Ahn, C. H.; Ungar, G.; Yeardley, D. J. P.; Moller, M.; Sheiko, S. S., Controlling polymer shape through the self-assembly of dendritic side-groups. [J] Nature,1998,391 (6663),161-164.
    [8]Murata, K.; Aoki, M.; Nishi, T.; Ikeda, A.; Shinkai, S., New cholesterol-based gelators with light- and metal-responsive functions. [J] J. Chem. Soc., Chem. Commun.,1991,1715-1717.
    [9]Murata, K.; Aoki, M.; Suzuki, T.; Harada, T.; Kawabata, H.; Komori, T.; Ohseto, F.; Ueda, K.; Shinkai, S., Thermal and Light Control of the Sol-Gel Phase Transition in Cholesterol-Based Organic Gels. Novel Helical Aggregation Modes As Detected by Circular Dichroism and Electron Microscopic Observation. [J] J. Am. Chem. Soc.,1994,116 (15),6664-6676.
    [10]Loos, M. D.; Esch, J. V.; Kellogg, R. M.; Feringa, B. L., Chiral recognition in bis-urea-based aggregates and organogels through cooperative interactions. [J] Angew.Chem. Int. Ed.,2001,40 (3),613-616.
    [11]Laan, S. V. D.; Feringa, B. L.; Kellogg, R. M.; Esch, J., Remarkable polymorphism in gels of new azobenzene bis-urea gelators. [J] Langmuir,2002,18 (19), 7136-7140.
    [12]Li, Y. L.; Kinloch, I. A.; Windle, A. H., Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. [J] Science,2004,304 (5668),276-278.
    [13]Hirose, T.; Matsuda, K.; Irie, M., Self-assembly of photochromic diarylethenes with amphiphilic side chains:reversible thermal and photochemical control. [J] J. Org. Chem.,2006,71 (20),7499-7508.
    [14]Fukaminato, T.; Irie, M., Reversible fluorescence wavelength shift based on photoinduced aggregate formation. [J] Adv. Mater.,2006,18 (24),3225-3228.
    [15]Wurthner, F.; Thalacker, C.; Diele, S.; Tschierske, C., Fluorescent J-type aggregates and thermotropic columnar mesophases of perylene bisimide dyes. [J] Chem. Eur. J.,2001,7(10),2245-2253.
    [16]Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J., Morphology controlled self-assembled nanostructures of sandwich mixed (phthalocyaninato)(porphyrinato) europium triple-deckers. Effect of hydrogen bonding on tuning the intermolecular interaction. [J] J. Am. Chem. Soc.,2008,130 (35),11623-11630.
    [17]Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N., Fibrous assemblies made of amphiphilic metallophthalocyanines. [J] Langmuir,2000,16 (5),2078-2082.
    [18]Kimura, M.; Kuroda, T.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N., Self-organization of hydrogen-bonded optically active phthalocyanine dimers. [J] Langmuir,2003,19 (11),4825-4830.
    [19]Xu, J.; Liu, X.; Lv, J.; Zhu, M.; Huang, C.; Zhou, W.; Yin, X.; Liu, H.; Li, Y.; Ye, H., Morphology transition and aggregation-induced emission of an intramolecular charge-transfer compound. [J] Langmuir,2008,24 (8),4231-4237.
    [20]Yan, D. Y.; Zhou, Y. F.; Hou, J., Supramolecular self-assembly of macroscopic tubes. [J] Science,2004,303 (5654),65-67.
    [21]Li, Y.-Y.; Cheng, H.; Zhu, J.-L.; Yuan, L.; Dai, Y.; Cheng, S.-X.; Zhang, X.-Z.; Zhuo, R.-X., Temperature-and pH-Sensitive Multicolored Micellar Complexes. [J] Adv. Mater.,2009,21 (23),2402-2406.
    [22]Xu, J.; Wen, L.; Zhou, W.; Lv, J.; Guo, Y.; Zhu, M.; Liu, H.; Li, Y.; Jiang, L Asymmetric and Symmetric Dipole-Dipole Interactions Drive Distinct Aggregation and Emission Behavior of Intramolecular Charge-Transfer Molecules. [J] J. Phys. Chem. C,2009,113 (15),5924-5932.
    [23]Zhang, X.; Zhang, X.; Shi, W.; Meng, X.; Lee, C.; Lee, S., Single-crystal organic microtubes with a rectangular cross section. [J] Angew.Chem. Int. Ed.,2007,46 (9), 1525-1528.
    [24]Zhang, X.; Zhang, X.; Zou, K.; Lee, C.-S.; Lee, S.-T., Single-crystal nanoribbons, nanotubes, and nanowires from intramolecular charge-transfer organic molecules. [J] J. Am. Chem. Soc.,2007,129 (12),3527-3532.
    [25]Zhang, C.; Zhang, X.; Zhang, X.; Fan, X.; Jie, J.; Chang, J. C.; Lee, C.-S.; Zhang, W.; Lee, S.-T., Facile one-step growth and patterning of aligned squaraine nanowires via evaporation-induced self-assembly. [J] Adv. Mater,2008,20 (9), 1716-1720.
    [26]Yamamoto, Y.; Fukushima, T.; Suna, Y.; Ishii, N.; Saeki, A.; Seki, S.; Tagawa, S.; Taniguchi, M.; Kawai, T.; Aida, T., Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. [J] Science,2006,314 (5806),1761-1764.
    [27]Saita, K.; Kobatake, S.; Fukaminato, T.; Nanbu, S.; Irie, M.; Sekiya, H., Raman spectroscopic study on isomers of photochromic 1,2-bis(2,5-dimethyl-3-thienyl) perfluorocyclopentene in crystal and stability of the closed-ring forms in the open-ring forms. [J] Chem. Phys. Lett.,2008,454 (1-3),42-48.
    [28]Liu, S. G.; Sui, G. D.; Cormier, R. A.; Leblanc, R. M.; Gregg, B. A., Self-organizing liquid crystal perylene diimide thin films:Spectroscopy, crystallinity, and molecular orientation. [J]J. Phys. Chem. B,2002,106(6),1307-1315.
    [29]Yan, P.; Chowdhury, A.; Holman, M. W.; Adams, D. M., Self-organized perylene diimide nanofibers. [J] J. Phys. Chem. B,2005,109 (2),724-730.
    [30]Zhang, X.; Chen, Z.; Wuerthner, F., Morphology control of fluorescent nanoaggregates by co-self-assembly of wedge- and dumbbell-shaped amphiphilic perylene bisimides. [J] J. Am. Chem. Soc.,2007,129 (16),4886-4887.
    [31]Schneider, M.; Hagen, J.; Haarer, D.; Mullen, K., Novel electroluminescent devices based on perylene-doped sol-gel layers. [J] Adv. Mater.,2000,12 (5),351-354.
    [32]Tang, T. J.; Qu, J. Q.; Mullen, K.; Webber, S. E., Molecular layer-by-layer self-assembly of water-soluble perylene diimides through pi-pi and electrostatic interactions. [J] Langmuir,2006,22 (1),26-28.
    [33]Gregg, B. A., Excitonic solar cells. [J] J. Phys. Chem. B,2003,107 (20), 4688-4698.
    [34]Irie, M.; Sayo, K., Solvent effects on the photochromic reactions of diarylethene derivatives. [J] J. Phys. Chem.,1992,96 (19),7671-7674.
    [35]Kasatani, K.; Kambe, S.; Irie, M., Photochromic reaction and fluorescence of dithienylethenes in the solid state. [J] J. Photochem. Photobiol., A,1999,122 (1), 11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700