平面共轭大分子苝二酰亚胺/酞菁类化合物的结构修饰与聚集体性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茈二酰亚胺(Perylene tetracarboxylic acid diimide,简称PDI)类衍生物具有优异的热和光化学稳定性,对可见区的光有很强的吸收。是一种具有独特的光物理和光化学性质的有机光电材料。在太阳能转化、电致发光、以及生物荧光探针等领域有广泛的应用前景。近年来,对其光物理性质的研究愈来愈受到关注,并逐渐成为研究的热点。
     为了满足PDI化合物在不同领域的应用,通过对其结构进行化学修饰,以控制茈二酰亚胺类化合物的结构,进而获得新颖的光电性质是十分必要的,也是行之有效的方法之一。在作为半导体材料的应用中,茈二酰亚胺化合物要求具有十分优秀的自组装能力,容易形成有序的分子聚集体。但是,如何修饰一个分子才能使其具有好的组装性质和优良的光电性质,一直是困扰人们的难题也是人们关注的焦点。本论文主要以改善分子的自组装性质为目的,尝试设计合成结构新颖的平面共轭的花二酰亚胺类/酞菁类化合物,研究其自组装性质以及结构和性能间的联系。
     我们的工作主要集中在以下几个方面:
     第一章:概述了PDI类衍生物的发展历史、研究背景、基本性质、合成方法以及研究意义;含多功能团的苝二酰亚胺类/酞菁类衍生物的合成及性能为本文的创新点。
     第二章:通过花四羧酸二酐与相应的胺在高稀释的溶液中进行缩合反应,合成了一系列的以三键、苯基联接的,在湾位置具有不同长度的花二酰亚胺的二聚体。这些二聚体分别有两个三键、四个三键和两个苯基、六个三键和四个苯基链接。分别测定了这些化合物的稳态吸收和荧光光谱,计算了这些化合物的荧光量子产率。这些化合物的吸收光谱和荧光光谱随湾位置链接基长度的不同,其变化有很大不同。吸收光谱、荧光光谱以及荧光量子产率结果表明,这些化合物在溶液中发生了明显的聚集。通过X-射线衍射法(X-ray)和原子力显微镜(AFM)研究了其固态的聚集体形貌。两个三键链接的花二酰亚胺二聚体形成均匀的固体膜,另两个化合物形成纳米线。研究结果表明,三键和亚苯基能有效的扩展共轭链的长度并能增加分子间的π-π相互作用,该研究对设计新颖的纳米有机材料具有一定的指导意义。
     第三章:酞菁是一种共轭大环体系的化合物,其衍生物与其它有机半导体材料相比,具有良好的化学稳定性和热稳定性。我们设计并合成了苯环链接的共平面双酞菁铜配合物。在酞菁环的周围引入了吸电子基团,调节HOMO和LUMO能级,使之成为在空气中稳定的双极性有机半导体材料。利用在溶液中的quasi-Langmuir-Shaer (QLS)的方法,得到了非常有序的薄膜,并制作成器件,以供研究使用。测试其OFET'性质,得到了电子和空穴迁移率分别是1.7×10-1和2.3×10-4cm2V-1s-1.与单核酞菁铜配合物相比,由只能在N2中测得的单一的OFET性质转变成空气中稳定的双极性OFET。实验结果表明,通过调整分子结构,可以得到理想的双极有机半导体材料。
     第四章:通过柔性链将富电子的功能基团与花二酰亚胺相连,可以有效的提高其电导能力。将芘引入到花二酰亚胺的湾位置后的分子结构由核磁氢谱,质谱及元素分析鉴定。化合物的聚集体是通过溶剂缓慢挥发得到的。形貌特征由扫描电镜(SEM)和XRD测得。其电导率经测试后可达4.85×10-4S cm-1,有望作为有机半导体材料。
Perylene tetracarboxylic diimide (PDI) derivatives are important molecular building blocks that are currently being investigated for use in a variety of photoactive organic materials because of their low light and thermal fading rates, high luminescence efficiency, wide absorption and emission bands in visible region, and variable optoelectronic properties. They have been applied in nanoscale field-effect transistors, light-harvesting solar cells, photovoltaic devices, light emitting diodes, and as robust organic dyes that are resistant to photobleaching.
     Driven by the demands of diverse applications, the modification on molecular structure of PDI aimed at changing the photophysical properties has attracted a lot of research interest in the past decade. However, how to control the properties by modifying on the molecular structure has always been a disturbing problem. In this paper, we designed and synthesis a series of new PDI compounds aimed at modifying their self-assemble process and controlling the structure of the assembly. The structure-property relationship is discussed. The research work of this thesis includes:
     In chapter1, the research on the synthesis, properties and applications of perylene diimide derivatives have been reviewed. The topic of special photophysical properties of PDI compounds in special media is selected as the focus of this part.
     In chapter2, perylene tetracarboxylic diimides (PDIs) dimers linked with conjugated chain of different length at the bay positions, namely two alkyne groups, four alkyne groups and two phenylenes, and six alkyne groups and four phenylenes, have been synthesized. Their photophysical properties in room temperature were studied by steady state absorption and emission spectra, the fluorescence quantum yield were calculated. The UV-vis absorption and fluorescence spectra of these three compounds show different concentration-dependent behaviors, which depend on the conjugated chain of different length at the bay positions. Significant aggregation in organic solvents was revealed by the electronic absorption and emission spectra as well as the fluorescence quantum yield calculation. The aggregation behavior of these compounds in the solid state was investigated by X-ray diffraction (XRD), and the morphology of the aggregates was examined by atomic force microscopy (AFM). The aggregation of dimer1with two alkynes at the1and7positions results uniform solid film, whereas dimer2and3with more alkynes and phenylenes at the bay positions formed one-dimensional rod-like aggregates with the aspect ratio of the latter significantly larger than the former. The results of this research revealed that ethynyl and phenyls are suitable linkages to extend the effective conjugation length and enhance π-π interaction. These results will be helpful in guiding the design of new organic molecules for the self-assemble organic functional materials in molecular electronic devices.
     In chapter3, A soluble binuclear phthalocyaninato copper (Ⅱ) complex, Cu2[Pc(COOC8H17)6]2(1), with planar molecular structure and extended conjugation system, has been designed and synthesized. By fusing two phthalocyanine rings side by side and introducing electron withdrawing groups at periphery positions, the energy levels of HOMO and LUMO have been tuned successfully into the range of an air-stable ambipolar organic semiconductor required as revealed by the electrochemical studies. With the help of a solution-based quasi-Langmuir-Shaer (QLS) method, thin solid films of this compound were fabricated and organic field effect transistors (OFETs) based on these QLS thin solid films were constructed. Because of the promising electrochemical properties as well as the high ordered packing structure of the molecules in the thin solid films, the OFETs performed excellent ambipolar operating properties, with the electron and hole mobility in air as high as1.7X10-1and2.3X10-4cm2V-1s-1, respectively. For comparison purpose, mononuclear compound Cu[Pc(COOC8H17)8](2) was comparatively studied. The QLS thin solid films of this compound possess similar ordered structure with that of Cu2[Pc(COOC8H17)6]2(1), but the OFETs based on the thin solid films of this compound can only show n-type properties under nitrogen atmosphere with an extremely small electron mobility of1.6X10-4cm2V-1s-1. This result suggests that extension on the conjugation system of an aromatic compound with multiple electron withdrawing groups can tune the molecule into an air stable ambipolar organic semiconductor.
     In chapter4, One perylenetetracarboxylic diimide (PDI) derivatives (PDI1) linked with pyrene by flexible chain at the bay positions was synthesized and the molecular structure was characterized by1H NMR, MALDI-TOF mass spectra as well as elemental analysis. The molecular self-assembly were prepared from solution via a slow evaporation of solvent. The properties of these molecular aggregates were studied by electronic absorption and fluorescence spectra. The morphologies and structures were examined by scanning electronic microscopy (SEM) and X-ray diffraction (XRD) techniques. The conducting properties were evaluated by current-voltage (I-V) measurements. The results revealed highly ordered structure for these molecular self-assembly. The thin solid film fabricated from these molecular self-assembly show an electric conductivity as high as4.85×10-4S cm-1under the ambient light, which means this compound might be used as a semiconductor in nano-electronics.
引文
1. Kardos M. Ger. Pat. Appl., DE 275220A,1913
    2. Katz, H. E.; Bao, Z.; Gilat, S. L. Synthetic Chemistry for Ultrapure, Processable, and High-Mobility Organic Transistor Semiconductors, [J]. Acc. Chem. Res.2001, 34,359-369.
    3. Wurthner, F. Plastic Transistors Reach Maturity for Mass Applications in Microelectronics, [J].Angew. Chem., Int. Ed.2001,40,1037-1039.
    4. Angadi, M. A.; Gosztola, D.; Wasielewski, M. R. Organic light emitting diodes using poly (phenylenevinylene) doped with perylenediimide electron acceptors Mater, [J]. Sci. Eng. B.1999,63,191-194.
    5. Ranke, P.; Bleyl, I.; Simmerer, J.; Haarer, D.; Bacher, A.; Schmidt, H. W. Electroluminescence and electron transport in a perylene dye, [J]. Appl. Phys. Lett. 1997,71,1332-1334.
    6. Law, K. Y. Organic photoconductive materials:recent trends and developments, [J]. Chem. Rev.1993,93,449-486.
    7. Gregg, B. A.; Cormier, R. A. Doping Molecular Semiconductors:n-Type Doping of a Liquid Crystal Perylene Diimide, [J]. J. Am. Chem. Soc.2001,123,7959-7960.
    8. Breeze, A. J.; Salomon, A.; Ginley, D. S.; Gregg, B. A.; Tillmann, H.; Horhold, H. H. Polymer-perylene diimide heterojunction solar cells, [J]. Appl. Phys. Lett.2002, 81,3085-3087.
    9. Hayes, R. T.; Wasielewski, M. R.; Gosztola, D. Ultrafast Photoswitched Charge Transmission through the Bridge Molecule in a Donor-Bridge-Acceptor System, [J]. J. Am. Chem. Soc.2000,122,5563-5567.
    10. Davis, W. B.; Svec, W. A.; Ratner, M. A.; Wasielewski, M. R. Molecular-wire behaviour in p-phenylenevinylene oligomers, [J]. Nature 1998,396,60-63.
    11. Hippius, C.; Schlosser, F.; Vysotsky, M. O.; Bohmer, V.; Wurthner, F. Energy Transfer in Calixarene-Based Cofacial-Positioned Perylene Bisimide Arrays, [J]. J. Am. Chem. Soc.2006,128,3870-3871.
    12. Tornizaki, K.; Loewe, R. S.; Kirmaier, C.; Schwartz, J. K.; Retsek, J. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis and Photophysical Properties of Light-Harvesting Arrays Comprised of a Porphyrin Bearing Multiple Perylene-Monoimide Accessory Pigments, [J]. J. Org. Chem.2002,67, 6519-6534.
    13. Yukruk, F.; Dogan, A. L.; Canpinar, H.; Guc, D.; Akkaya, E. U. Water-Soluble Green Perylenediimide (PDI) Dyes as Potential Sensitizers for Photodynamic Therapy, [J]. Org. Lett.2005,7,2885-2887.
    14. Langhals, H.; Demmig, S.; Huber, H. Rotational barriers in perylene fluorescent dyes, [J]. Spectrochim. Acta 1988,44,1189-1193.
    15. Seybold, G.; Wagenblast, G. New perylene and violanthrone dyestuffs for fluorescent collectors, [J]. Dyes Pigm.1989,11,303-317.
    16. Seybold, G.; Stange, A. (BASF AG), German. Pat., DE 3545004,1987, [J] Chem. Abstr.1988,108,77134c.
    17. Rajasingh, P.; Cohen, R.; Shirman, E.; Shimon, L. J. W.; Rybtchinski, B. Selective Bromination of Perylene Diimides under Mild Conditions, [J]. J. Org. Chem.2007, 72,5973-5979.
    18. Wurthner, F. Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures, [J]. Chem. Commun.2004,1564-1579.
    19. Wasielewski, M. R. Energy Charge and Spin Transport in Molecules and Self-Assembled Nanostructures Inspired by Photosynthesis, [J]. J. Org. Chem. 2006,71,5051-5066.
    20. Bohm, A.; Arms, H.; Henning, G.; Blaschka, P.(BASF AG) German Pat., DE 19547209 Al,1997; [J] Chem. Abstr.1997,127,96569g.
    21. Wurthner, F.; Stepanenko, V.; Chen, Z.; Saha-Moller, C. R.; Kocher, N.; Stalke, D. Preparation and Characterization of Regioisomerically Pure 1,7-Disubstituted Perylene Bisimide Dyes, [J]. J. Org. Chem.2004,69,7933-7939.
    22. Feng, J. Q.; Zhang, Y. X.; Zhao, C. T.; Li, R. J.; Xu, W.; Li, X. Y.; Jiang, J. Z. Cyclophanes of Perylene Tetracarboxylic Diimide with Different Substituents at Bay Positions, [J]. Chem. Eur. J.2008,14,7000-7010.
    23. Feng, J. Q.; Liang, B. L.; Wang, D. L.; Wu, H. X.; Xue, L.; Li, X. Y. Synthesis and Aggregation Behavior of Perylenetetracarboxylic Diimide Trimers with Different Substituents at Bay Positions, [J]. Langmuir.2008,24,11209-11215.
    24. Zhao, C. T.; Li, X. Y.; Jiang, J. Z. Di(alkoxy)-andDi(alkylthio)-Substituted Perylene-3,4;9,10-tetracarboxy Diimides with Tunable Electrochemical and Photophysical Properties, [J]. J. Org. Chem.2007,72,2402-2410.
    25. Miller, M.; Lammi, R.; Prathapan, K. S.; Holten, D.; Londsey, J. S. A tightly coupled linear array of perylene bis(porphyrin), and phthalocyanine units that functions as a photoinduced energy-transfer cascade, [J]. J. Org. Chem.2000,65, 6634-6638.
    26. Tomizaki, K.; Thamyongkit, P.; Loewe, R. S.; Lindsey, J. S. Practical synthesis of perylene-monoimide building blocks that possess features appropriate for use in porphyrin-based light-harvesting arrays, [J]. Tetrahedron Lett.2003,59, 1191-1207.
    27. Muthukumaran, K.; Loewe, R. S.; Kirmaier, C.; Hindin, E.; Schwartz, J. K.; Diers, J. R.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis and Excited-State Photodynamics of A Perylene-Monoimide-Oxochlorin Dyad. A Light-Harvesting Array, [J]. J. Phys. Chem. B.2003,107,3431-3442.
    28. Flors, C.; Oesterling, I.; Schnitzler, T.; Fron, E.; Schweitzer, G.; Sliwa, M.; Herrmann, A.; Auweraer, M.; Schryver, F.; Mulllen, K.; Hofkens, J. Energy and Electron Transfer in Ethynylene Bridged Perylene Diimide Multichromophores, [J]. J. Phys. Chem. C.2007,111,4861-4870.
    29. Chen, Z.; Stepanenko, V.; Dehm, V.; Prins, P.; Siebbeles, L. D. A.; Seibt, J.; Wiirthner, F. Photoluminescence and Conductivity of Self-Assembled Jt-rc Stacks of Perylene Bisimide Dyes, [J]. Chem. Eur. J.2007,13,436-449.
    30. Addicott, C.; Oesterling, I.; Yamamoto, T.; Mullen, K.; Stang, P. J. Synthesis of a Bis(pyridyl)-Substituted Perylene Diimide Ligand and Incorporation into a Supramolecular Rhomboid and Rectangle via Coordination Driven Self-Assembly, [J]. J. Org. Chem.2005,70,797-801.
    31. Qu, J.; Pschirer, N. G.; Liu, D.; Stefan, A.; Schryver, F. C. D.; Mullen, K. Dendronized Perylenetetracarboxdiimides with Peripheral Triphenylamines for Intramolecular Energy and Electron Transfer, [J]. Chem. Eur. J.2004,10, 528-537.
    32. Jimenez, A. J.; Spalnig, F.; Rodnguez-Morgade, M. S.; Ohkubo, K.; Fukuzumi, S.; Guldi, D. M.; Torres, T. A Tightly Coupled Bis(zinc(II) phthalocyanine)-Perylenediimide Ensemble To Yield Long-Lived Radical Ion Pair States, [J]. Org. Lett.2007,13,2481-2484.
    33. Sandrai, M.; Hadel, L.; Sauers, R.; Husain, S.; Krogh-Jespersen, K.; Westbrook, J. D.; Bird, G. R. Lasing action in a family of perylene derivatives:singlet absorption and emission spectra, triplet absorption and oxygen quenching constants, and molecular mechanics and semiempirical molecular orbital calculations, [J]. J. Phys. Chem.1992,96,7988-7996.
    34. Lukas, A. S.; Zhao, Y.; Miller, S. E.; Wasielewski, M. R. Biomimetic Electron Transfer Using Low Energy Excited States:A Green Perylene-Based Analogue of Chlorophyll a, [J] J. Phys. Chem.B2002,106,1299-1306.
    35. Rademacher, A.; Markle, S.; Langhals, H. Losliche Perylen-Fluoreszenzfarbstoffe mit hoher Photostabilitat, [J]. Chem. Ber.1982,115,2927-2934.
    36. Wurthner, F.; Thalacker, C.; Diele, S.; Tschierske, C. FluorescentJ-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes, [J]. Chem. Eur. J.2001,7,2245-2253.
    37. Ulrich, G.; Ziessel, R.; Harriman, A. The Chemistry of Fluorescent Bodipy Dyes: Versatility Unsurpassed, [J].Angew. Chem., Int. Ed.2008,47,1184-1201.
    38. Feng, J.; Liang, B.; Wang, D.; Xue, L.; Li, X. Novel Fluorescent Dyes with Fused Perylene Tetracarboxlic Diimide and BODIPY Analogue Structures, [J]. Org. Lett. 2008,10,4437-4440.
    39. Zugenmaier, P.; Duff, J.; Bluhm, T. L. Crystal and Molecular Structures of Six Differently with Halogen Substituted Bis (benzylimido) perylene, [J]. Cryst. Res. Technol.2000,35,1095-1115.
    40. Dotcheva, D.; Klapper, M.; Mullen, K. Soluble polyimides containing perylene units, [J]. Macromolecular Chem. Phys.1994,195,1905-1911.
    41. Nagao, Y.; Abe, Y.; Misono, T. Synthesis and properties of N-alkylbromoperylene-3,4-dicarboximides, [J]. Dyes Pigm.1991,16,19-25.
    42. Klebe, G.; Graster, F.; Hadicke, E.; Berndt, J. Crystallochromy as a solid-state effect:correlation of molecular conformation, crystal packing and colour in perylene-3,4:9,10-bis(dicarboximide) pigments, [J]. Acta Cryst.1989, B45, 69-77.
    43. Langhals, H.; Funfschiling, J.; Glatz, D.; Zschokke-Granacher, I. Low temperature fluorescence spectra of atropisomeric perylene dyes, [J]. Spectrochim. Acta 1988,44A,311-312.
    44. Ford, W. E.; Hiratsuka, H.; Kamat, P. V. Photochemistry of 3,4,9,10-perylenetetracarboxylic dianhydride dyes.4. Spectroscopic and redox properties of oxidized and reduced forms of the bis (2,5-di-tert-butylphenyl) imide derivative, [J]. J. Phys. Chem.1989,93,6692-6696.
    45. Vichbeck, A.; Goldberg. M. J.; Kovac, C. A. Electrochemical Propetries of Polyimides and Related Imide Compound, [J]. J. Electrochem. Soc.1990,137, 1460-1466.
    46. Langhals, H.; Karolin, J.; Johansson, L. B-A Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields, [J]. J. Chem. Soc., Faraday Trans.1998,94,2919-2922
    47. Zhao, Y.; Wasielewski, M. R.3,4:9,10-Perylenebis(dicarboximide) chromophores that function as both electron donors and acceptors, [J]. Tetrahedron Lett.1999, 40,7047-7050.
    48. Lukas, A. S.; Zhao, Y.; Miller, S. E.; Wasielewski, M. R. Biomimetic Electron Transfer Using Low Energy Excited States:A Green Perylene-Based Analogue of Chlorophyll, [J]. J. Phys. Chem. B2002,106,1299-1306.
    49. Rademacher, A.; Markle, S.; Langhals, H.; Losliche Perylen-Fluoreszenzfarb stoffe mit hoher Photostabilitat, [J]. Chem. Ber.1982,115,2927-2934.
    50. Wurthner, F.; Thalacker, C. (BASF AG), German. Pat. Appl., DE 10039232 A1, 2000 (Chem. Abstr.,2002,136,185323).
    51. Lukao, I.; Lanughals, H. Synthesis and fluorescent of 2,3,4,4a,11,12,13-octahydro-1,4a,10a,14-tetraazaviolanthrone derivatives, [J]. Chem. Ber.1983,116, 3524-3528.
    52. Langhals, H. The extraordinarily high stability of cyclic carboxylic imides is reported in a review and demonstrated with the highly stable, [J]. Heterocycles 1995,40,477-500.
    53. Gvishi, R.; Reisfeld, R.; Burshtein, Z. Spectroscopy and laser action of the "red perylimide dye" in various solvents, [J]. Chem. Phys. Lett.1993,213,338-344.
    54. Ahrens, M. J.; Fuller, M. J.; Wasielewski, M. R. Cyanated Perylene-3, 4-dicarboximides and Perylene-3,4:9,10-bis(dicarboximide):Facile Chromophoric Oxidants for Organic Photonics and Electronics, [J]. Chem. Mater. 2003,15,2684-2686.
    55. Hsu, S.-Y.; Chiang, L. Y. Efficient Reduction of Aromatic Bis-Imides to Their Amine Derivatives Synthetic Communications:An International Journal for Rapid Communication of Synthetic Organic Chemistry, [J]. Synthetic Commun. 1989,19,1885-1889.
    56. Langhals, H.; Lander, J.; Kaisere, H. Synthesis of nonsymmetrically substituted perylene fluorescent dyes, [J]. Chem Ber.1991,124,529-535.
    57. Langhals, H.; Demmig, S.; Potrawa, T. The Relation between Packing Effects and Solid State Fluorescence of Dyes, [J]. J. Prakt. Chem.1991,333,733-748.
    58. Prathapan, S.; Yang, S. I.; Seth, J.; Miller, M. A.; Bocian, D. F.; Holten, D.; Lindsey, J. S. Synthesis and Excited-State Photodynamics of Perylene-Porphyrin Dyads.1. Parallel Energy and Charge Transfer via a Diphenylethyne Linker, [J]. J. Phys. Chem. B.2001,105,8237-8248.
    59. O'Neil, M. P.; Niemczyk, M. P.; Svec, W. A.; Gosztda, D.; Gaines, G. L.; Wasielewski, M. R. Picosecond Optical Switching Based on Biphotonic Excitation of an Electron Donor-Acceptor-Donor Molecule, [J]. Science 1992, 257,63-66.
    60. Wurthner, F.; Osswald, P.; Schmidt, R.; Kaiser, T. E.; Mansikkamaki, H.; Konemann, M. Synthesis and Optical and Electrochemical Properties of Core-Fluorinated Perylene Bisimides, [J]. Org. Lett.2006,8,3765-3768.
    61. Mizuguchi, J.; Tojo, K. Electronic structure of perylene pigments as viewed from the crystal structure and excitonic interactions, [J]. J. Phys. Chem B.2002,106, 767-772.
    62. Schlettwein, D.; Grant, H.; Meyer, J. P.; Oekermann, T.; Jaeger, N. I. Molecular interactions in the thin films of hesadecafluorophthalocyaninatozinc(F16PcZn) as compared to islands of N,N-dimethylperylene-biscarboximde(MePTCDI), [J]. J. Phys. Chem B.1999,103,3078-3086.
    63. Kazmaler, P. M.; Hoffmann, R. Atheoretical study of crystallochromy. Quantum interference effects in the spectra of perylene pigments, [J]. J. Am. Chem. Soc. 1994,116,9684-9691.
    64. Adachi, M.; Murata, Y.; Nakamura, S. Spectral similarity and difference of naphthalenetetracarboxylic dianhydride, perylenetetracarboxylic dianhydride, and their derivatives, [J]. J. Phys. Chem.1995,99,14240-14246.
    65. Graser, F.; Hadicke, E. Kristallstruktur und Farbe bei, Perylen-3,4:9,10-bis(dicarboximid)-Pigmenten, [J]. Liebigs. Ann. Chem.1980, 12,1994-2011.
    66. Graser, F.; Hadicke, E. Kristallstruktur und Farbe bei, Perylen-3,4:9,10-bis(dicarboximid)-Pigmenten,2 [J]. Liebigs. Ann.Chem.1984, 23,483-494.
    67 Graser, F.; Hadicke, E. Structures of eleven perylene-3,4:9,10-bis(dicarboximide) pigments, [J].Acta. Cryst.1986, C42,189-195.
    68. Zugenmaier, P.; Duff, J.; Bluhm, T. L. Crystal and Molecular Structures of Six Differently with Halogen Substituted Bis (benzylimido) perylene, [J]. Cryst. Res. Technol.2000,3,1095-1115.
    69. Herbst, W.; Hunger, K. Industrial Organic Pigments:Production, Properties, Applications [M] 2nd ed., WILEY-VCH, Weinheim,1997.
    70. Unite Nations Development Program (UNDP) world energy assessment New York, 2000.
    71.上海植物研究所,中科院北京植物研究所[M]《光合作用研究进展》,第一集.
    72. Bai, Y.; Sosnick, T. R.; Mayne, L.; Englander, S. W. proteinfolding intermediates studied by nativestate. hydrogen exchange, [J]. Science 1995,269,192-197.
    73. Deisenhoper, J.; Epp, O.; Miki, K.; Huver, R.; Michel, H. Structure of the protein subunits in the photosynthetic reaction centers of the Rhodopseudomonas viridis at 3 A resolution, [J]. Nature 1985,318,618-624.
    74.田宏健博士论文,中科院感光化学研究所,1993年,P5.
    75.葛培根《光合作用》[M]合肥:安徽人民教育出版社,1991,349
    76. Blankenship, R E. Molecular Mechanisms of Photosynthesis, [M] Blackwell Science:Oxford,2002.
    77. Ferreira, K. N.; Iverson, T. M.; Maghlaoui, K.; Barber, J.; Iwata, S. Architecture of the Photosynthetic Oxygen-Evolving Center, [J]. Science 2004,303,1831-1838.
    78. Deisenhofer, J.; Epp,O.; Miki, K.; Huber, R.; Michel, H. X-ray structure analysis of a membrane protein complex:Electron density map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis, [J]. J. Mol. Biol. 1984,180,385-398.
    79. Allen, J. P.; Feher, G.; Yeates, T. O.; Komiya, H.; Rees, D. C. Structure of the Reaction Center from Rhodobacter Sphaeroides R-26:The Cofactors, [J]. Proc. Natl. Acad. Sci.1987,84,5730-5734.
    80. Chang, C. H.; El-Kabban, O.; Tiede, D.; Norris, J.; Schiffer, M. Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides, [J]. Biochemistry 1991,30,5352-5360.
    81. Kaletasu, B. K.; Dobrawa. R.; Sautter. A.; Wurthner, F.; Zimine, M.; Cola, L. De.; Williams, R.; Photoinduced Electron and Energy Transfer Processes in a Bichromophoric Pyrene-Perylene Bisimide System, [J]. J. Phys. Chem. A 2004, 108,1900-1909.
    82. Wang, Y.; Chen, H.; Wu, H.; Li, X.; Weng, Y. Fluorescence Quenching in a Perylenetetracarboxylic Diimide Trimer, [J]. J. Am. Chem. Soc.2009,131,30-31
    83. Sugiyasu K., Fujita N., Shinkai S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. [J]. Angew. Chem. Int. Ed.2004,43, 1229-1229.
    84. Xu, W.; Chen, H. L.; Wang, Y. F.; Zhao, C. T.; Li, X. Y.; Wang, S. Q.; Weng, Y. X. Photoinduced Electron and Energy Transfer in Dyads of Porphyrin Dimer and Perylene Tetracarboxylic Diimide, [J]. ChemPhysChem 2008,9,1409-1415.
    85. Peeters, E.; van Hal, P. A.; Meskers, S. C. J.; Janssen, R. A. J.; Meijer, E. W. Photoinduced electron transfer in a mesogenic donor-acceptor-donor system, [J]. Chem. Eur. J.2002,8,4470-4474.
    86. Beckers, E. H. A.; Meskers, S. C. J.; Schenning, A. P. H. J.; Chen, Z. J.; Wurthner, F.; Marsal, P.; Beljonne, D.; Cornil, J.; Janssen, R. J. Influence of intermolecular orientation on the photoinduced charge transfer kinetics in self-assembled aggregates of donor-acceptor arrays, [J]. J. Am. Chem. Soc.2006,128,649-657.
    87. Sinks, L. E.; Rybtchinski, B.; Iimura, M.; Jones, B. A.; Goshe, A. J.; Zuo, X. B.; Tiede, D. M.; Li, X. Y.; Wasielewski, M. R. Self-assembly of photofunctional cylindrical nanostructures based on perylene-3,4:9,10-bis(dicarboximide), [J]. Chem. Mater.2005,17,6295-6303.
    88. Schenning A. P. H. J.; Herrikhuyzen J. V.; Jonkheijm P.; Chen Z.-J.; Wurthner F.; Meijer E. W.; Photoinduced electron transfer in hydrogen-bonded oligo(p-phenylene vinylene)-perylene bisimide chiral assemblies, [J]. J. Am. Chem. Soc.2002,124,10252-10253
    89. Jonkheijm P.; Stutzmann N.; Chen Z.-J; de Leeuw D. M.; Meijer E. W.; Schenning A. P. H. J.; Wurthner F.; Control of ambipolar thin film architectures by co-self-assembling oligo (p-phenylenevinylene)s and perylene bisimides, [J]. J. Am. Chem. Soc.2006,128,9535-9540
    90. Beckers E. H. A.; Chen Z.-J; Meskers S. C. J.; Jonkheijm P.; Schenning A. P. H. J.; Li X-Q, Osswald P.; Wulrthner F.; Janssen R. A. J.; The importance of nanoscopic ordering on the kinetics of photoinduced charge transfer in aggregated π-conjugated hydrogen-bonded donor-acceptor systems, [J]. J. Phys. Chem. B 2006,110,16967-16978
    91. De Feyter S.; Miura A.; Yao S.; Chen Z.-J.; Wurthner F.; Jonkheijm P.; Schenning A. P. H. J.; Meijer E. W.; De Schryver F. C.; Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures, [J]. Nano. Lett.2005,5,77-81
    92. Wurthner F.; Chen Z.; Hoeben F. J. M.; Osswald P.; You C.-C.; Jonkheijm P.; Herrikhuyzen J. v.; Schenning A. P. H. J.; van der Schoot P. P. A. M.; Meijer E. W.; Beckers E. H. A.;, Meskers S. C. J.; Janssen R. A. J.; Supramolecular p-n-heterojunctions by co-self-organization of oligo (p-phenylene vinylene) and perylene bisimide dyes, [J]. J. Am. Chem. Soc.2004,126,10611-10618.
    93. Robertson, J. M. An X-ray study of the structure of the phthalocyanines. Part 1. The metal-free, nickel, copper, and platinum compounds, [J]. J. Chem. Soc., 1935,615-622.
    94. (a) Uyeda, N. The solvent effect on crystal transformations of metal phthalocyanines in organic suspensions. Progress in Organic Coatings, Dec 1973; (b) Kobayashi, T.; Isoda, S.; Lattice Images and Molecular Images of Organic Materials, [J]. J. Mater. Chem.,1993,3,1-14
    95. Roman A. E.; Nolte, R. J. M. Helical Molecular Programming. [J] Angew. Chem. Int. Ed.,1998,37,63-68.
    96. Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chiral Architectures from Macromolecular Building Blocks. [J] Chem. Rev., 2001,101,4039-4070.
    97. Lever, A. B. P.; Leznoff, C. C. Phthalocyanine:Properties and Applications. [M] VCH:New York,1989-1996, Vols.1-4.
    98. McKeown, N. B. Phthalocyanines Materials:Synthesis, Structure and Function. [M] Cambridge University Press:New York,1998.
    99. Torre, G. de la; Bottari, G; Hahn U.; Torres, T. in Structure and Bonding: Functional Phthalocyanine Molecular Materials. [M] ed. J. Jiang, Springer, Heidelberg,2010, Vol.135, pp.1-45.
    100. Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook. [M] Academic Press:San Diego,2000-2003, Vols.1-20.
    101. Kimura, M.; Narikawa, H.; Ohta, K.; Hanabusa, K. Star-Shaped Stilbenoid Phthalocyanines, [J] Chem. Mater.,2002,14,2711-2717.
    102. Huang, X.; Zhao, F.; Li, Z.; Tang, Y.; Zhang, F.; Tung, C. Self-Assembled Nanowire Networks of Aryloxy Zinc Phthalocyanines Based on Zn-O Coordination. [J] Langmuir,2007,23,5167-5172.
    103.姜建壮,吴基培,刘伟,谢经雷,孙思修;对称的二层及三层三明治型金属酞菁配合物的研究进展;化学通报;1999,(2),1-10
    104. Ng, D. K. P.; Jiang, J.; Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. [J] Chem. Soc. Rev.; 1997; 26; 433 and the references therein.
    105. Jiang J.; Kasuga K.; Arnold D.P.; in:H.S. Nalwa (Ed.), Supramolecular Photoactive and Electroactive Materials Academic Press, New York,2001,113.
    106. Madru, M.; Guillaud, G.; Sadoun, M.; Maitrot, M.; Clarisse, C.; Contellec, M.; Le Andre, J.-J.; Simon, J. The first field effect transistor based on an intrinsic molecular semiconductor. [J] Chem. Phys. Lett.1987,142,103-105.
    107. Guillaud, G.; Simon, J. Transient properties of nickel phthalocyanine thin film t ransistors. [J] Chem Phys Lett.1994,219,123-126.
    108. Guillaud, G.; Chaabane, R.; Jouve, C. Transient behaviour of thin film transistors based on nickel phthalocyanine. [J] Thin Solid Films 1995,258,279-282.
    109. Bao, Zh.; Lovinger, A. J.; Dodabalapur, A. Organic field-effect transistors with high mobility based on copper phthalocyanine. [J] Appl. Phys. Lett.1996,69, 3066.
    110. Kudo, K.; Iizuka, M.; Kuniyoshi, S. Device characteristics of lateral and vertical type organic field effect transistors. [J] Thin Solid Films 2001,393,362-367.
    111. Yuan, J.; Zhang, J.; Wang, J. Bottom-contact organic field-effect transistors having low-dielectric layer under source and drain electrodes. [J] Appl. Phys. Lett.2003,82,3967.
    112. Wang, J.; Yan, X.; Xu, Y.; Zhang, J.; Yan, D. Organic thin-film transistors having inorganic/organic double gate insulators. [J] Appl. Phys. Lett.2004,85, 5424.
    113. Xiao, K.; Liu, Y.; Yu, G Organic field-effect transistors using copper phthalocyanine thin film. [J] Synth. Met.2003,137,991-992.
    114. Zeis, R.; Siegrist, T.; Kloc, Ch. Single-crystal field-effect transistors based on copper phthalocyanine. [J]Appl. Phys. Lett.2005,86,22103.
    115. Tang, Q.; Li, H.; He, M.; Hu, W.; Liu, C.; Chen, K.; Wang, C.; Liu Y.; Zhu, D. Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine. [J] Adv. Mater.2006, 18,65-68.
    116. Yasuda, T.; Tsutsui, T. Organic field-effect transistors based on high electron and ambipolar carrier transport properties of copper-phthalocyanine. [J] Chem. Phys. Lett.2005,402,395-398.
    117. Di, C.; Yu, G; Liu, Y. Noncoplanar organic field-effect transistor based on copper phthalocyanine. [J] Appl. Phys. Lett.2006,88,121907.
    118. Hu, W.; Liu, Y.; Xu, Y. The application of Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine, amino-tri-tert-butyl-phthalocyanine, in diodes and in all organic field-effect-transistors. [J] Synth. Met.1999,104, 19-26.
    119. Liu, Y.; Hu, W.; Qiu, W.; Xu, Y.; Zhou, S.; Zhu, D. Organic field-effect transistors based on Langmuir-Blodgett films of substituted phthalocyanines. [J] Sensor and Actuators B:Chemical,2001,80,202-207.
    120. Xiao, K.; Liu, Y.; Huang, X. Field-Effect Transistors Based on Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers. [J] J. Phys. Chem. B 2003,107,9226-9230.
    121. Bao, Z.; Lovinger, A.; Brown, J. New Air-Stable n-Channel Organic Thin Film Transistors. [J] J. Am. Chem. Soc.1998,120,207-208.
    122. Ling, M.; Bao, Z. Copper hexafluorophthalocyanine field-effect transistors with enhanced mobility by soft contact lamination. [J] Organic Electronics 2006,7, 568-575.
    123. Yoon, M.; Yan, H.; Facchetti, A. Low-Voltage Organic Field-Effect Transistors and Inverters Enabled by Ultrathin Cross-Linked Polymers as Gate Dielectrics. [J] J. Am. Chem. Soc.2005,127,10388-10395.
    124. Tang, Q.; Li, H.; Liu, Y. High-Performance Air-Stable n-Type Transistors with an Asymmetrical Device Configuration Based on Organic Single-Crystalline Submicrometer/Nanometer Ribbons. [J] J. Am. Chem. Soc.2006,128, 14634-14639.
    1. Law, K-Y; Organic photoconductive materials:recent trends and developments. [J] Chem. Rev.1993,93,449-486.
    2. Gregg, B. A.; Excitonic Solar Cells. [J] J. Phys. Chem. B.2003,107,4688-4698.
    3. Cormier, R. A.; Gregg, B. A.; Synthesis and Characterization of Liquid Crystalline Perylene Diimides. [J] Chem. Mater.1998,10,1309-1319.
    4. Gosztola, D.; Niemczyk, M. P.; Wasielewski, M. R.; Picosecond molecular switch based on bidirectional inhibition of photoinduced electron transfer using photogenerated electric fields. [J] J. Am. Chem. Soc.1998,120,5118-5119.
    5. Zhao, Y.; Wasielewski, M. R.; 3,4:9,10-Perylenebis(dicarboximide) chromo-phores that function as both electron donors and acceptors. [J] Tetrahedron Lett.1999,40, 7047-7050.
    6. Hayes, R. T.; Wasielewski, M. R.; Gosztola, D.; Ultrafast Photoswitched Charge Transmission through the Bridge Molecule in a Donor-Bridge-Acceptor System. [J] J. Am. Chem. Soc.2000,122,5563-5567.
    7. Just, E. M.; Wasielewski, M. R.; Picosecond Molecular Switch Based on the Influence of Photogenerated Electric Fields on Optical Charge Transfer Transitions. [J] Superlattices Microstruct.2000,28,317-328.
    8. Miller, S. E.; Zhao, Y.; Schaller, R.; Mulloni, V.; Just, E. M.; Johnson, R. C.; Wasielewski, M. R.; Ultrafast Electron Transfer Reactions Initiated by Excited CT States of Push-Pull Perylenes. [J] Chem. Phys.2002,275,167-183.
    9. Lukas, A. S.; Zhao, Y.; Miller, S. E.; Wasielewski, M. R.; Biomimetic Electron Transfer using Low Energy Excited States:A Green Perylene-Based Analog of Chlorophyll a. [J] J. Phys. Chem.B2002,106,1299-1306.
    10. Giaimo, J. M.; Gusev, A. V.; Wasielewski, M. R.; Excited State Symmetry Breaking in Cofacial and Linear Dimers of a Green Perylenediimide Chlorophyll Analog Leading to Ultrafast Charge Separation. [J] J. Am. Chem. Soc.2002,124, 8530-8531.8531.
    11. Van der Boom, T.; Hayes, R. T.; Zhao, Y.; Bushard, P. J.; Weiss, E. A.; Wasielewski, M. R.; Charge Transport in Photofunctional Nanoparticles Self-Assembled from Zinc 5,10,15,20-Tetrakis(perylenediimide)porphyrin Building Blocks. [J] J. Am. Chem. Soc.2002,124,9582-9590.
    12. Ahrena, M. J.; Fuller, M. J.; Wasielewski, M. R.; Cyanated Perylene-3,4-dicarboximides and Perylene-3,4:9,10-bis(dicarboximide):Facile Chromophoric Oxidants for Organic Photonics and Electronics. [J] Chem. Mater.2003,15, 2684-2686.
    13. Andersson, M.; Sinks, L. E.; Hayes, R. T.; Zhao, Y.; Wasielewski, M. R.; Bio-inspired Optically-Controlled Ultrafast Molecular AND Gate. [J] Angew. Chem., Int. Ed. 2003,42,3139-3143.
    14. Liu, S.-G.; Sui, G.; Cormier, R. A.; Leblanc, R. M.; Gregg, B. A.; Self-Organizing Liquid Crystal Perylene Diimide Thin Films:Spectroscopy, Crystallinity, and Molecular Orientation. [J] J. Phys. Chem.B2002,106,1307-1315.
    15. Struijk, C. W.; Sieval, A. B.; Dakhorst, J. E. J.; van Dijk, M.; Kimkes, P.; Koehorst, R. B. M.; Donker, H.; Schaafsma, T. J.; Picken, S. J.; van de Craats, A. M.; Warman, J. M.; Zuilhof, H.; Sudholter, E. J. R.; Liquid Crystalline Perylene Diimides:Architecture and Charge Carrier Mobilities. [J] J. Am. Chem. Soc. 2000,122,11057-11066.
    16. Wang, W.; Han, J. J.; Wang, L.-Q.; Li, L.-S.; Shaw, W. J.; Li, A. D. Q.; Dynamic π-π Stacked Molecular Assemblies Emit from Green to Red Colors. [J] Nano Lett.2003,3,455-458.
    17. Wang, W.; Li, L.-S.; Helms, G.; Zhou, H.-H.; Li, A. D. Q.; To Fold or to Assemble? [J] J. Am. Chem. Soc.2003,125,1120-1121.
    18. Wurthner, F.; Thalacker, C.; Sautter, A.; Schartl, W.; Ibach, W.; Hollricher, O.; Hierarchical Self-Organization of Perylene Bisimide-Melamine Assemblies to Fluorescent Mesoscopic Superstructures. [J] Chem. Eur. J.2000,6,3871-3886.
    19. Wurthner, F.; Thalacker, C.; Diele, S.; Tschierske, C.; Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes. [J] Chem. Eur. J.2001,7,2245-2253.
    20. Wurthner, F.; Chen, Z.; Hoeben, F. J. M.; Osswald, P.; You, C.-C.; Jonkheijm, P.; Herrikhuyzen, J. V.; Schenning, A. P. H. J.; van der Schoot, P. P. A. M.; Meijer, E. W.; Beckers, E. H. A.; Meskers, S. C. J.; Janssen, R. A. J.; Supramolecular p-n-Heterojunctions by Co-Self-Organization of Oligo(p-phenylene Vinylene) and Perylene Bisimide Dyes. [J] J. Am. Chem. Soc.2004,126,10611-10618.
    21. Wurthner, F.; Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. [J] Chem. Commun.2004,1564-1579.
    22. Iverson, I. K.; Casey, S. M.; Seo, W.; Tam-Chang, S.-W.; Pindzola, B. A.; Controlling Molecular Orientation in Solid Films via Self-Organization in the Liquid-Crystalline Phase. [J] Langmuir 2002,18,3510-3516.
    23. Neuteboom, E. E.; Meskers, S. C. J.; Meijer, E. W.; Janssen, R. A.; Photoluminescence of self-organized perylene bisimide polymers. [J] J. Macromol. Chem. Phys.2004,205,217-222.
    24. Ahrens, M. J.; Sinks, L. E.; Rybtchinski, B.; Liu, W.; Jones, B. A.; Giaimo, J. M.; Gusev, A. V.; Goshe, A. J.; Tiede, D. M.; Wasielewski, M. R.; Self-Assembly of Supramolecular Light-Harvesting Arrays from Covalent Multi-Chromophore Perylene-3,4:9,10-bis(dicarboximide) Building Blocks. [J] J. Am. Chem. Soc. 2004,126,8284-8294.
    25. Hernando, J.; de Witte, P. A. J.; van Dijk, E. M. H. P.; Korterik, J.; Nolte, R. J. M.; Rowan, A. E.; Garcia-Parajo, M. F.; van Hulst, N. F.; Investigation of Perylene Photonic Wires by Combined Single-Molecule Fluorescence and Atomic Force Microscopy. [J] Angew. Chem., Int. Ed. 2004,43,4045-4049.
    26. Van Gorp, J. J.; Vekemans, J. A. J. M.; Meijer, E. W.; C3-Symmetrical Supramolecular Architectures:Fibers and Organic Gels from Discotic Trisamides and Trisureas. [J] J. Am. Chem. Soc.2002,124,14759-14769.
    27. Wang, Y.; Chen, Y.; Li, R.; Wang, S.; Su, W; Ma, P.; Wasielewski, M. R.; Li, X.; Jiang, J.; Amphiphilic Perylenetetracarboxyl Diimide Dimer and Its Application in Field Effect Transistor. [J] Langmuir 2007,23,5836-5842.
    28. Wiirthner, F.; Stepanenko, V.; Chen, Z.-J.; Saha-Moller, C. R.; Kocher, N.; Stalke, D.; Preparation and Characterization of Regioisomerically Pure 1,7-Disubstituted Perylene Bisimide Dyes. [J] J. Org. Chem.2004,69,7933-7939.
    29. Jonkheijm, P.; Stutzmann, N.; Chen, Z.-J.; de Leeuw, D. M.; Meijer, E. W.; Schenning, A. P. H. J.; Wurthner, F.; Control of Ambipolar Thin Film Architectures by Co-Self-Assembling Oligo(p-phenylenevinylene)s and Perylene Bisimides. [J] J. Am. Chem. Soc.2006,128,9535-9540.
    30. Chen, Z.-J.; Baumeister, U.; Tschierske; C.; Wurthner, F. Effect of Core Twisting on Self-Assembly and Optical Properties of Perylene Bisimide Dyes in Solution and Columnar Liquid Crystalline Phases. [J] Chem. Eur. J.2007,13,450-465.
    31. Yagai, S.; Seki, T.; Karatsu, T.; Kitamura, A.; Wurthner, F.; Transformation from H-to J-Aggregated Perylene Bisimide Dyes by Complexation with Cyanurates. [J] Angew. Chem. Int. Ed.2008,47,3367-3371.
    32. Kaiser, T. E.; Wang, H.; Stepanenko, V.; Wurthner, F.; Transformation from H-to J-Aggregated Perylene Bisimide Dyes by Complexation with Cyanurates. [J] Angew. Chem. Int. Ed.2007,119,5637-5640
    33. Che Y.; Datar, A.; Balakrishnan, K.; and Zang, L.; Ultralong Nanobelts Self-Assembled from an Asymmetric Perylene Tetracarboxylic Diimide. [J] J. Am. Chem. Soc.2007,129,7234-7235
    34. Dehm, V.; Chen, Z.-J.; Baumeiste, U.; Prins, P.; Siebbeles, L. D. A.; Wurthner, F.; Helical Growth of Semiconducting Columnar Dye Assemblies Based on Chiral Perylene Bisimides. [J] Org. Lett.,2007,9,1085-1088.
    35. Wasielewski, M. R.; Energy, Charge, and Spin Transport in Molecules and Self-Assembled Nanostructures Inspired by Photosynthesis. [J] J. Org. Chem. 2006,71:5051-5066.
    36. Li, X.; Sinks, L. E.; Rybtchinski, B.; Wasielewski, M. R.; Ultrafast Aggregate-to-Aggregate Energy Transfer within Self-assembled Light-Harvesting Columns of Zinc Phthalocyanine Tetrakis(perylenediimide). [J] J. Am. Chem. Soc.2004,126,10810-10811.
    37. Yan, P; Chowdhury, A.; Holman, M. W.; Adams, D. M.; Self-Organized Perylene Diimide Nanofibers. [J] J. Phys. Chem. B 2005,109,724-730.
    38. Rybtchinski, B.; Sinks, L.E.; Wasielewski, M.R.; Photoinduced Electron Transfer in Self-Assembled Dimers of 3-Fold Symmetric Donor-Acceptor Molecules Based on Perylene-3,4:9,10-bis(dicarboximide). [J] J. Phys. Chem. A.2004, 108,7497-7505.
    39. Feng, J-Q; Liang, B-L; Wang, D-L Wu, H; Xue, L; Li X.; Synthesis and Aggregation Behavior of Perylenetetracarboxylic Diimide Trimers with Different Substituents at Bay Positions. [J] Langmuir 2008,24,11209-11215.
    40. Ishi-I, T.; Murakami, K.; Imai, Y.; Mataka, Y. S.; Light-Harvesting and Energy-Transfer System Based on Self-Assembling Perylene Diimide-Appended Hexaazatriphenylene. [J] Org. Lett.2005,7,3175-3178.
    41. Yan, Q.; Zhao, D.; Conjugated Dimeric and Trimeric Perylenediimide Oligomers. [J] Org. Lett.2009,11 (15),3426-3429.
    42. Golubkov, G.; Weissman, H.; Shirman, E.; Wolf, G.S.; Pinkas, I.; Rybtchinski, B.; Economical Design in Noncovalent Nanoscale Synthesis:Diverse Photofunctional Nanostructures Based on a Single Covalent Building Block. [J] Angew. Chem. Int. Ed 2009,48,926-930.
    43. Perrin, D.D.; Armarego, W.L.F.; Perrin, D.R.; Purification of Laboratory Chemicals, Pergamon, Oxford,1980.
    44. Wang, D.; Shi, Y.; Zhao, C.; Liang, B.; Li, X.; Synthesis and quantum chemical study of PDI derivatives with phenylalkynyl groups at the bay position. [J] J. Mol. Struct.2009,938,245-253.
    45. Wurthner, F.; Perylene bisimide dyes as versatile building blocks for functional supramolecular architectures. [J] Chem. Commun.2004,1564-1579.
    46. Horn, D.; Rieger, J.; Organic Nanoparticles in the Aqueous Phase-Theory, Experiment, and Use. [J] Angew. Chem. Int. Ed.2001,113,4330-4361.
    47. Giaimo, J. M.; Lockard, J. V.; Sinks, L. E.; Scott, A. M.; Wilson, T. M.; Wasielewski, M. R.; Excited Singlet States of Covalently Bound, Cofacial Dimers and Trimers of Perylene-3,4:9,10-bis(dicarboximide)s. [J] J. Phys. Chem. A 2008,112,2322-2330.
    48. Kazmaier, P. M.; Hoffmann, R. A.; Theoretical Study of Crystallochromy. Quantum Interference Effects in the Spectra of Perylene Pigments. [J] J. Am. Chem. Soc.1994,116,9684-9691.
    49. Ahrens M. J., Sinks L. E., Rybtchinski B., Liu W., Jones B. A., Giaimo J. M., Gusev A. V., Goshe A. J., Tiede D. M., Wasielewski M. R.; Self-assembly of supramolecular light-harvesting arrays from covalent multi-chromophore peryiene-3,4,9,10-bis(dicarboximide) building blocks. [J] J. Am. Chem. Soc. 2004,126,8284-8394.
    50. Clark, A. E.; Qin, C.; Li, A. D. Q.; Beyond Exciton Theory:A Time-Dependent DFT and Franck-Condon Study of Perylene Diimide and Its Chromophoric Dimer. [J] J. Am. Chem. Soc.2007,129,7586-7595.
    51. Xue, L.; Wu, H.; Shi, Y.; Liu, H.; Chen, Y.; Li, X.; Supramolecular organogels based on perylenetetracarboxylic diimide dimer or hexamer. [J] Soft Matter. 2011,7,6213-6221.
    1. C.D. Dimitrakopoulos, P.R.L. Malenfant, Organic Thin Film Transistors for Large Area Electronics, [J]Adv. Mater.2002,14,99-117.
    2. H. Sirringhaus, Device Physics of Solution-Processed Organic Field-Effect Transistors, [J] Adv. Mater.2005,17,2411-2425.
    3. R. Li, W. Hu, Y. Liu, D. Zhu, Micro-and Nanocrystals of Organic Semiconductors, [J] Acc. Chem. Res.2010,43,529-540.
    4. H. Usta, A. Facchetti, T.J. Marks,n-Channel Semiconductor Materials Design for Organic Complementary Circuits, [J] Acc. Chem. Res.2011,44,501-510.
    5. W. Wu, Y. Liu, D. Zhu, π-Conjugated molecules with fused rings for organic field-effect transistors:design, synthesis and applications, [J] Chem. Soc. Rev.2010, 39,1489-1502.
    6. R.P. Ortiz, A. Facchetti, T.J. Marks, High-κ Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors, [J] Chem. Rev.2010, 110,205-239.
    7. S. Liu, W. Wang, A.L. Briseno, S.C.B. Mannsfeld, Z. Bao, Controlled Deposition of Crystalline Organic Semiconductors for Field-Effect-Transistor Applications, [J] Adv. Mater. 2009,21,1217-1232.
    8. Y. Wang, Y. Chen, R. Li, S. Wang, X. Li, J. Jiang, Amphiphilic Perylenetretracarboxyl Diimide Dimer and Its Application in Field Effect Transistor, [J] Langmuir 2007,23,5836-5842.
    9. C.R. Newman, C.D. Frisbie, D.A. da Silva, J.L. Bredas, P.C. Ewbank, K.R. Mann, Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors, [J] Chem. Mater.2004,16,4436-4451.
    10. J. Zaumseil, H. Sirringhaus, Electron and Ambipolar Transport in Organic Field-Effect Transistors, [J] Chem. Rev.2007,107,1296-1323.
    11. A. Facchetti, Semiconductors for organic transistors, [J] Mater. Today 2007,10, 28-37.
    12. Z. Chen, Y. Zheng, H. Yan, A. Facchetti, Naphthalenedicarboximide-vs Perylenedicarboximide-Based Copolymers. Synthesis and Semiconducting Properties in Bottom-Gate N-Channel Organic Transistors, [J] J. Am. Chem. Soc. 2009,131,8-9.
    13. H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn, F. Dotz, M. Kastler, A. Facchetti, A high-mobility electron-transporting polymer for printed transistors, [J] Nature 2009,457,679-686.
    14. (a) M.M. Durban, P.D. Kazarinoff, C.K. Luscombe, Synthesis and Characterization of Thiophene-Containing Naphthalene Diimide n-Type Copolymers for OFET Applications, [J] Macromolecules 2010,43,6348-6352; (b) R. Madru, G Guillaud, M. Al Saduon, M. Maitrot, C. Clarisse, C. Le Contellec, J-J. Andre, J. Simon, The first field effect transistor based on an intrinsic molecular semiconductor, [J] Chem. Phys. Lett.1981,142,103-105.
    15. L.L. Chua, J. Zaumseil, J.F. Chang, E.C.-W. Ou, P.K.-H. Ho, H. Sirringhaus, R.H. Friend, General observation of n-type field-effect behaviour in organic semiconductors, [J] Nature 2005,434,194-199.
    16. F.S. Kim, E. Ahmed, S. Subramaniyan, S.A. Jenekhe, Air-Stable Ambipolar Field-Effect Transistors and Complementary Logic Circuits from Solution-Processed n/p Polymer Heterojunctions, [J] ACS Appl. Mater. Interface 2010,2,2974-2977.
    17. K. Walzer, B. Maennig, M. Pfeiffer, K. Leo, Highly Efficient Organic Devices Based on Electrically Doped Transport Layers, [J] Chem. Rev.2007,107, 1233-1271.
    18. (a) M.A. Baldo, M.E. Thompson, S.R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer, [J] Nature 2000, 403,750-753; (b) M.A. Baldo, D.F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, [J] Nature 1998,395,151-154.
    19. (a) Y. Zhang, X. Cai, Y. Bian, J. Jiang, Organic semiconductors of phthalocyanine compounds for field effect transistors (FETs), [J] Struct. Bond.2010,135,275-322; (b) Y. Sun, Y. Liu, D. Zhu, Advances in organic field-effect transistors, [J] J. Mater. Chem.2005,15,53-65.
    20. (a) Z. Bao, A.J. Lovinger, A. Dodabalapur, Organic field-effect transistors with high mobility based on copper phthalocyanine, [J] Appl. Phys. Lett.1996,69, 3066-3068; (b) K. Xiao, Y. Liu, G. Yu, D. Zhu, Influence of the substrate temperature during deposition on film characteristics of copper phthalocyanine and field-effect transistor properties, [J] Appl. Phys. A 2003,77,367-370; (c) K. Xiao, Y. Liu, G Yu, D. Zhu, Organic field-effect transistors using copper phthalocyanine thin film, [J] Synth. Met.2003,137,991-992; (d) J. Yuan, J. Zhang, J. Wang, X. Yan, D. Yan, W. Xu, Bottom-contact organic field-effect transistors having low-dielectric layer under source and drain electrodes, [J] Appl. Phys. Lett.2003, 82,3967-3969; (e) J. Wang, X. Yan, Y. Xu, J. Zhang, D. Yan, Organic thin-film transistors having inorganic/organic double gate insulators, [J] Appl. Phys. Lett. 2004,85,5424-5426; (f) K. Xiao, Y. Liu, Y. Guo, G Yu, L. Wan, D. Zhu, Influence of self-assembly monolayers on the characteristics of copper phthalacyanine thin film transistor, [J] Appl. Phys. A 2005,80,1541-1545; (g) X. Yan, H. Wang, D. Yan, An investigation on air stability of copper phthalocyanine-based organic thin-film transistors and device encapsulation, [J] Thin Solid Films 2006,515,2655-2658; (h) Z. Bao, A.J. Lovinger, A. Dodabalapur, Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors, [J] Adv. Mater.1997, 9,42-44; (i) R. Zeis, T. Siegrist, C. Kloc, Single-Crystal Field-Effect Transistors Based on Copper Phthalocyanine, [J] Appl. Phys. Lett.2005,86,22103-22106; (j) Q. Tang, H. Li, M. He, W. Hu, C. Liu, K. Chen, C. Wang, Y. Liu, D. Zhu, Low Threshold Voltage Transistors Based on Individual Single-Crystalline Submicrometer-Sized Ribbons of Copper Phthalocyanine, [J] Adv. Mater.2006,18,65-68.
    21. W. Hu, Y. Liu, Y. Xu, S. Liu, S. Zhou, D. Zhu, The application of Langmuir-Blodgett films of a new asymmetrically substituted phthalocyanine, amino-tri-tert-butyl-phthalocyanine, in diodes and in all organic field-effect-transistors, [J] Synth. Met.1999,104,19-26.
    22. K. Xiao, Y. Liu, X. Huang, Y. Xu, G. Yu, D. Zhu, Field-Effect Transistors Based on Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers, [J] J. Phys. Chem. B 2003,107,9226-9230.
    23. (a) Y. Chen, W. Su, M. Bai, J. Jiang, X. Li, Y. Liu, L. Wang, S. Wang, High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes, [J] J. Am. Chem. Soc. 2005,127,15700-15701; (b) W. Su, J. Jiang, K. Xiao, Y. Chen, Q. Zhao, G Yu, Y. Liu, Thin-Film Transistors Based on Langmuir-Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes, [J] Langmuir 2005,21,6527-6531; (c) R. Li, P. Ma, S. Dong, X. Zhang, Y. Chen, X. Li, J. Jiang, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents, [J] Inorg. Chem.2007,46,11397-11404; (d) Y. Chen, R. Li, R. Wang, P. Ma, S. Dong, Y. Gao, X. Li, J. Jiang, Effect of Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalocyaninato) Europium Triple-Decker Complexes, [J] Langmuir 2007,23,12549-12554; (e) Y. Gao, P. Ma, Y. Chen, Y. Zhang, Y. Bian, X. Li, J. Jiang, C. Ma, Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes. The Effect of Crown Ether Hydrophilic Substituents, [J] Inorg. Chem. 2009,48,45-54.
    24. (a) C.R. Newman, C.D. Frisbie, D.A. da Silva Filho, J.-L. Bredas, P.C. Ewbank, K.R. Mann, Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors, [J] Chem. Mater.2004,16,4436-4451; (b) G Guillaud, M. Al Saduon, M. Maitrot, J. Simon, M. Bouvet, Field-effect transistors based on intrinsic molecular semiconductors, [J] Chem. Phys. Lett.1990,167, 503-506.
    25. Z. Bao, A.J. Lovinger, J. Brown, New Air-Stable n-Channel Organic Thin Film Transistors, [J] J. Am. Chem. Soc.1998,120,207-208.
    26. D.G de Oteyza, E. Barrena, J.O. Osso, H. Dosch, S. Meyer, J. Pflaum, Controlled enhancement of the electron field-effect mobility of F16CuPc bin-film transistors by use of functionalized SiO2 substrates, [J] Appl. Phys. Lett.2005,87, 183504183507.
    27. Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, Y. Fukai, Y. Inoue, F. Sato, S. Tokito, Perfluoropentacene:High-Performance p-n Junctions and Complementary Circuits with Pentacene, [J] J. Am. Chem. Soc.2004,126,8138-8140.
    28. Q. Tang, H. Li, Y. Liu, W. Hu, High-Performance Air-Stable n-Type Transistors with an Asymmetrical Device Configuration Based on Organic Single-Crystalline Submicrometer/Nanometer Ribbons, [J] J. Am. Chem. Soc.2006,128, 14634-14639.
    29. (a) P. Ma, J. Kan, Y. Zhang, C. Hang, Y. Bian, Y. Chen, N. Kobayshi, J. Jiang, The first solution-processable n-type phthalocyaninato copper semiconductor:tuning the semiconducting nature via peripheral electron-withdrawing octyloxycarbonyl substituents, [J] J. Mater. Chem.2011,21,18552-18559; (b) J. Kan, Y. Chen, D. Qi, Y. Liu, J. Jiang, High-Performance Air-Stable Ambipolar Organic Field-Effect Transistor Based on Tris(phthalocyaninato) Europium(Ⅲ), [J] Adv. Mater.2012,24,1755-1758; (c) J. Kan, Y. Chen, J. Gao, L. Wan, T. Lei, P. Ma, J. Jiang, Synthesis, self-assembly, and semiconducting properties of phenanthroline-fused phthalocyanine derivatives, [J] J. Mater. Chem.2012,22,15695-15701; (d) D. Li, H. Wang, J. Kan, W. Lu, Y. Chen, J. Jiang,H-aggregation mode in triple-decker phthalocyaninato-europium semiconductors. Materials design for high-performance air-stable ambipolar organic thin film transistors, [J] Org. Electron.2013,14,2582-2589.
    30. H. Usta, C. Risko, Z. Wang, H. Huang, M.K. Deliomeroglu, A. Zhukhovitskiy, A. Facchetti, T.J. Marks, Design, Synthesis, and Characterization of Ladder-Type Molecules and Polymers. Air-Stable, Solution-Processable n-Channel and Ambipolar Semiconductors for Thin-Film Transistors via Experiment and Theory, [J] J. Am. Chem. Soc.2009,131,5586-5608.
    31. (a) Y. Guo, G Yu, Y. Liu, Functional Organic Field-Effect Transistors, [J] Adv. Mater. 2010,22,4427-4447; (b) P. Sonar, S.P. Singh, Y. Li, M.S. Soh, A. Dodabalapur, A Low-Bandgap Diketopyrrolopyrrole-Benzothiadiazole-Based Copolymer for High-Mobility Ambipolar Organic Thin-Film Transistors, [J] Adv. Mater.2010,22,5409-5413.
    32. B.A. Jones, A. Facchetti, M.R. Wasielewski, T.J. Marks, Tuning Orbital Energetics in Arylene Diimide Semiconductors. Materials Design for Ambient Stability of n-Type Charge Transport, [J] J. Am. Chem. Soc.2007,129, 15259-15278.
    33. M.L. Tang, J.H. Oh, A.D. Reichardt, Z. Bao, Chlorination:A General Route toward Electron Transport in Organic Semiconductors, [J] J. Am. Chem. Soc.2009, 131,3733-3740.
    34. X. Guo, R.P. Ortiz, Y. Zheng, Y. Hu, Y.-Y. Noh, K.-J. Baeg, A. Facchetti, T.J. Marks, Bithiophene-Imide-Based Polymeric Semiconductors for Field-Effect Transistors:Synthesis, Structure-Property Correlations, Charge Carrier Polarity, and Device Stability, [J] J. Am. Chem. Soc.2011,133,1405-1418.
    35. A. Facchetti, M. Mushrush, H.E. Katz, T.J. Marks, n-Type Building Blocks for Organic Electronics:A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with High Carrier Mobility, [J] Adv. Mater.2003,15,33-38.
    36. Y. Chen, M. Bouvet, T. Sizun, Y. Gao, C. Plassard, E. Lesniewska, J. Jiang, Facile approaches to build ordered amphiphilic tris(phthalocyaninato) europium triple-decker complex thin films and their comparative performances in ozone sensing, [J] Phys. Chem. Chem. Phys.2010,12,12851-12861.
    37. S. E. Maree, T. Nyokong, Syntheses and photochemical properties of octasubstituted phthalocyaninato zinc complexes, [J] J. Porphyrins Phthalocyanines 2001,5,782-792.
    38. B.N. Achar, GG. Fohlen, J.A. Parker, Phthalocyanine polymers. Ⅱ.Synthesis and characterizeation of some metal phthalocyanine sheet oligomers. [J] J. Polym. Sci. Polym. Chem.1982,20,1785-1790.
    39. (a) N.Kobayashi, F. Takamitsu, D. Lelievre, Band Deconvolution Analysis of the Absorption and Magnetic Circular Dichroism Spectral Data of a Planar Phthalocyanine Dimer, [J] Inorg. Chem.2000,39,3632-3637; (b) S. G Makarov, O. N. Suvorovaa, D. Wohrle, Conjugated di-and trinuclear phthalocyanines and their analogs, [J] J. Porphrins Phthaiocyanines 2011,15,791-808.
    40. M. Yoon, S.A. DiBenedetto, M.T. Russell, A. Facchetti, T.J. Marks, High-Performance n-Channel Carbonyl-Functionalized Quaterthiophene Semiconductors:Thin-Film Transistor Response and Majority Carrier Type Inversion via Simple Chemical Protection/Deprotection, [J] Chem. Mater.2007,19, 4864-4881.
    41. M. Kasha, H.R. Rawls, M.A. El-Bayoumi, The exciton model in molecular spectroscopy, [J] Pure Appl. Chem.1965,11,371-393.
    42. N. An, Y. Shi, J. Feng, D. Li, J. Gao, Y. Chen, X. Li, N-channel organic thin-film transistors based on a soluble cyclized perylene tetracarboxylic diimide dimer, Org. Electron.2013,14,1197-1203.
    43. Y. Qiao, Y. Guo, C. Yu, F. Zhang, W. Xu, Y. Liu, D. Zhu, Diketopyrrolopyrrole-Containing Quinoidal Small Molecules for High-Performance, Air-Stable, and Solution-Processable n-Channel Organic Field-Effect Transistors, [J] J. Am. Chem. Soc.2012,134,4084-4087.
    44. W. Chen, W. Ko, Y. Chen, C. Cheng, C. Chan, K. Lin, Growth of Copper Phthalocyanine Rods on Au Plasmon Electrodes through Micelle Disruption Methods, [J] Langmuir 2010,26,2191-2195.
    45. M. Wojdyla, B. Derkowska, M. Rebarz, A. Bratkowski, W. Bala, Stationary and modulated absorption spectroscopy of copper phthalocyanine (CuPc) layers grown on transparent substrate, [J].J.Opt. A:Pure Appl. Opt.2005,7,463.
    46. B.M. Hassan, H. Li, N.B. McKeown, The control of molecular self-association in spin-coated films of substituted phthalocyanines, [J] J. Mater. Chem.2000,10, 39-45.
    47. (a) Y. Chen, S. Zhao, X. Li, J. Jiang, Tuning the arrangement of mono-crown ether-substituted phthalocyanines in Langmuir-Blodgett films by the length of alkyl chains and the cation in subphase, [J] J. Colloid Interface Sci.2005,289, 200-205; (b) Y. Chen, M. Bouvet, T. Sizun, G. Barochi, J. Rossignol, E. Lesniewska, Enhanced chemosensing of ammonia based on the novel molecular semiconductor-doped insulator (MSDI) heterojunctions, [J] Sensor Actuat. B-Chem. 2011,155,165-173.
    48. J.E. Anthony, J.S. Brooks, D.L. Eaton, S.R. Parkin, Functionalized Pentacene: Improved Electronic Properties from Control of Solid-State Order, [J] J. Am. Chem. Soc.2001,123,9482-9483.
    49. J. Locklin, K. Shinbo, K. Onishi, F. Kaneko, Z. Bao, R.C. Advincula, Ambipolar Organic Thin Film Transistor-like Behavior of Cationic and Anionic Phthalocyanines Fabricated Using Layer-by-Layer Deposition from Aqueous Solution, [J] Chem. Mater.2003,15,1404-1412.
    50. A.J. Bard, R. Parsons, J. Jordan, Standard Potentials in Aqueous Solution, (eds.), Marcel Dekker, New York,1985,38,127.
    51. SCE energy level is -4.44 eV below the vacuum level. A.J. Bard, L.R. Faulkner, in: Electrochemical methods-fundamentals and applications, Wiley, New York,1984.
    52. K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L.. Zang, Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules:Morphology Control, [J]J.Am. Chem. Soc.2006,128,7390-7398.
    53. (a) F. Wurthner, C. Thalacker, S. Diele, C. Tschierske, Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes, [J] Chem. Eur. J.2001,7,2245-2253; (b) H. Wu, L. Xue, Y. Shi, Y. Chen, X. Li, Organogels Based on J-and H-Type Aggregates of Amphiphilic Perylenetetracarboxylic Diimides, [J] Langmuir 2011,27,3074-3082.
    54. J.H. Oh, S. Liu, Z. Bao, R. Schmidt, F. Wurthner, Air-stable-channel organic thin-film transistors with high field-effect mobility based on N,N'-bis(heptafluorobutyl)-3,4:9,10-perylene diimide, [J]Appl. Phys. Lett.2007,91, 212107-212110.
    55. S.M. Sze, Physics of Semiconductor Devices, second ed., John Wiley & Sons, New York,1981.
    1. X. Li, L.E. Sinks, B. Rybtchinski, M.R. Wasielewski, Ultrafast Aggregate-to-Aggregate Energy Transfer within Self-assembled Light-Harvesting Columns of Zinc Phthalocyanine Tetrakis(Perylenediimide), [J] J. Am. Chem. Soc. 2004,126,10810-10811.
    2. Y. Chen, L. Chen, G. Qi, H. Wu, Y. Zhang, L. Xue, P. Zhu, P. Ma, X. Li, Self-Assembled Organic-Inorganic Hybrid Nanocomposite of a Perylenetetracarboxylic Diimide Derivative and CdS, [J] Langmuir 2010,26, 12473-12478.
    3. L.E. Sinks, B. Rybtchinski, M. Iimura, B.A. Jones, A.J. Goshe, X. Zuo, D.M. Tiede, X. Li, M.R. Wasielewski, Self-Assembly of Photofunctional Cylindrical Nanostructures Based on Perylene-3,4:9,10-bis(dicarboximide), [J] Chem. Mater. 2005,17,6295-6303.
    4. L. Xue, H. Wu, Y, Shi, H. Liu, Y. Chen, Xi. Li, Supramolecular Organogels Based on Perylenetetracarboylic Diimide Dimer or Hexamer, [J] Soft. Matt.2011,7, 6213-6221.
    5. T. M. Figueira-Duarte, K. Mullen, Pyrene-Based Materials for Organic Electronics, [J] Chem. Rev.2011,111,7260-7314.
    6. B. K. Kaletas, R. Dobrawa, A. Sautter, F. Wurthner, M. Zimine, L. De Cola, W. Rene M, Photoinduced Electron and Energy Transfer Processes in a Bichromophoric Pyrene-Perylene Bisimide System, [J] J. Phys. Chem. A 2004,108, 1900-1909.
    7. Y. Chen, M. Bouvet, T. Sizun, Y. Gao, C. Plassard, E. Lesniewska, J. Jiang, Facile approaches to build ordered amphiphilic tris(phthalocyaninato) europium triple-decker complex thin films and their comparative performances in ozone sensing, [J] Phys. Chem. Chem. Phys.2010,12,12851-12861.
    8. Y. Chen, Y. Feng, J. Gao, M. Bouvet, Self-assembled aggregates of amphiphilic perylene diimide-based semiconductor molecules:Effect of morphology on conductivity, [J] J. Colloid Interface Sci.2012,368,387-394.
    9. S. Vajiravelu, L. Ramunas, G.J. Vidas, G. Valentas, J. Vygintas, S. Valiyaveettil, Effect of substituents on the transport properties of bay substituted perylene diimide derivatives, [J] J. Mater. Chem.2009,19,4268-4275.
    10. F. Wurthner, C. Thalacker, S. Diele, C. Tschierske, Fluorescent J-type Aggregates and Thermotropic Columnar Mesophases of Perylene Bisimide Dyes, [J] Chem. Eur. J.2001,7,2245-2253.
    11. D. Schlettwein, H. Graaf, J.-P. Meyer, T. Oekermann, N.I. Jaeger, Molecular Interactions in Thin Films of Hexadecafluorophthalocyaninatozinc (F16PcZn) as Compared to Islands of N,N'-Dimethylperylene-3,4,9,10-biscarboximide (MePTCDI) [J] J. Phys. Chem. B 1999,103,3078-3086.
    12. Z. Chen, V. Stepanenko, V. Dehm, P. Prins, L. D. A. Siebbeles, J. Seibt, P. Marquetand, V. Engel, F. Wurthner, Photoluminescence and Conductivity of Self-Assembled π-π Stacks of Perylene Bisimide Dyes, [J] Chem. Eur. J.2007,13, 436-439.
    13. A. Babel, S.A. Jenekhe, High Electron Mobility in Ladder Polymer Field-Effect Transistors, [J] J. Am. Chem. Soc.2003,125,13656-13657.
    14. Y. Che, X. Yang, G. Liu, C. Yu, H. Ji, J. Zuo, J. Zhao, L. Zang, Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives, [J] J. Am. Chem. Soc.2010,132, 5743-5750.
    15. Z. Wang, C.J. Medforth, J.A. Shelnutt, Porphyrin Nanotubes by Ionic Self-Assembly, [J] J. Am. Chem. Soc.2004,126,15954-14955.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700