新型苝二酰亚胺衍生物的合成及其在荧光探针与Knoevenagel反应中应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
3,4:9,10-苝二酰亚胺类化合物(PBIs)基于其良好的光、化学稳定性和极高的荧光量子效率,近年来在功能性有机材料方面的应用研究日益增多。PBIs的港湾位连接上检测基团后可对金属、非金属阴阳离子及有机、无机小分子化合物进行检测。其次,酰胺位连接有机胺的PBIs衍生物易发生PET效应而导致其荧光猝灭,且可通过N的质子化阻断该分子内的PET效应并导致PBIs荧光增强,从而可利用该类化合物这一特性催化一些含活泼氢化合物的缩合反应并且跟踪研究反应机理。
     本论文首先在PBIs的港湾位通过共轭或非共轭连接基引入了N,N-二-2-吡啶甲基胺(DPA)基团,从而合成了一系列对钯离子响应的荧光化合物(2-20、2-22及2-25);在DMF及乙腈-水体系内的探针性能测试结果显示该类化合物对钯离子良好的选择性。化合物2-25的测试结果显示在1-5ppm区间内其荧光强度与钯离子浓度线性关系良好,拟合测试溶液荧光强度比(I/I0)与钯离子浓度关系曲线得到相关公式为y=-23.2437+35.3847x,相关度接近1。
     其次,通过中间体1-氨基PBIs(2-15)在PBIs的港湾位引入烯丙基基团合成了基于钯催化去烯丙基化反应的钯离子荧光探针(3-12及3-15)。在THF-H20体系中对该类探针性能进行测试后取得了良好的效果。在一定的探针性能测试条件下,PBIs化合物3-15与钯离子作用结果表明其响应机理为化合物3-15与钯离子作用后脱去烯丙基,进而脱去一分子二氧化碳并生成荧光猝灭的化合物3-16。
     在PBIs的港湾位引入硅氧烷基团合成了基于氟离子引发的硅氧键断裂的氟离子探针4-19,并在THF体系中对其进行了探针性能测试;探针分子4-19在有机溶剂中对氟离子表现出了良好的选择性且响应速度快、灵敏度高。在0-1×10-5M范围测试体系荧光强度与氟离子浓度线性关系良好;Origin拟合该浓度范围内溶液荧光强度减弱比例[(I586nm0-I586nm)/I586nm]与氟离子浓度关系曲线后得到了一次方程y=0.0088+0.84004x,相关度高达0.998。
     通过偶联、缩合等反应合成了多种港湾位功能化的PBIs衍生物,特别是通过在PBIs港湾位引入哌嗪基团得到PBIs衍生物5-42,该化合物在铜离子作用下在港湾位发生成环反应,基于这一效应可将其用于铜离子的检测;在乙腈中该化合物对铜离子表现出了良好的选择性及较高的灵敏度。在乙腈溶液中将PBIs衍生物5-42与铜离子进行反应并对该反应产物结构进行分析表征后结合文献推测出其作用机理为铜催化PBIs的港湾位C-N键偶联成环反应。再者,1-N-甲基-哌嗪)-PBIs化合物5-43)与铜离子反应的结果进一步证实了如上反应机理。
     最后,在PBIs的酰亚胺位连接有机胺后合成出PBIs衍生物6-28及6-29,继而利用二者的特性催化了氰基乙酸乙酯与芳香醛的缩合反应,并通过反应体系中氰基乙酸乙酯的浓度与反应液荧光强度关系对其反应跟踪,为进一步研究该反应的动力学奠定了基础。
3,4:9,10-perylene bisimide derivatives have been applied as functional organic dyes, such as fluorescent sensors and fluorescent solar collectors, as a result of their excellent chemical, photo stability and extraordinary photoluminescence efficiency. Meanwhile, the fluorescence of organic amine containing-PBIs is usually quenched according to the PET effect; and it can be enhanced by binding a proton to the N atom in the organic amine. Therefore, these compounds can be used as fluorescent labelling catalysts for some organic reactions.
     PBI derivatives (Compound2-20,2-22and2-25) have been synthesized by inducing the di-(2-picolyl)amine (DPA) groups into the bay positions of PBIs. These compounds have a very good response to Pd2+compared to other cations in both DMF and CH3CN-H2O systems. And the tested results also showed that there was a good linearity between the fluorescence intensity of compound2-25and the concentrations of Pd2+in the range from0to5μM. The formula y=-23.2437+35.3847x has been obtained by fitting the curve of the relationship between I/Io and [Pd2+].
     Then, sensor3-12and3-15for Pd2+detection based on the Pd-catalyzed deallylation reaction have been prepared. These compounds also showed higher sensitivity and selectivity for Pd2+detection over other cations in the THF-H2O system. By running a large scale reaction between the sensor3-15and PdCl2under the identical conditions with that has been used for chemical sensing studies, the fluorescence quenching compound3-16has been obtained.
     By addition, a novel colorimetric and fluorescent senor (sensor4-19) has been synthesized and characterized. It showed higher sensitivity and selectivity toward F-over the other halide ions due to the special cleavage of Si-O bond induced by F-. And the linearity between the fluorescence intensity of sensor4-19and concentrations of F-in the range of0-10μM is extremely good. By fitting the curve of the relationship between [(I586nm0-l586nm)/I586nm] and [F-] the formula y=0.0088+0.84004x had been obtained with a correlation nearly1.
     Trough the Suzuki coupling and condensation reactions some other PBI derivatives (especially compound5-42) have been synthesized. Compound5-42features a turn-on fluorescent response manner with high sensitivity for Cu2+in the CH3CN system. By running a large scale reaction between5-42and Cu2+in CH3CN a special cyclized product has been obtained. And we speculated that the sensing principle of compound5-42was the special C-N bond coupling reaction on the bay position of PBIs which is catalyzed by Cu2+. Result of the reaction between1-(N-methyl-piperazine)-PBI (compound5-43) and Cu2+further confirmed the principle.
     Finally, PBI derivatives6-28and6-29which contain organic amines at the imide positions have been prepared and used as fluorescent labelling catalysts to investigate the Knoevenagel reactions between ethyl cyanoacetate and aromatic aldehydes. And these reactions can be tracked by the relationship between the concentration of ethyl cyanoacetate and the fluorescence intensity of reaction solution.
引文
[1]J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Third Edition) [M], (Springer Science Business Media, LLC,2006,1-7.
    [2]A. P. Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T., Rice T. E. Rademacher, Signaling recognition events with fluorescent sensors and switches [J], Chem. Rev.1997,97:1515-1566.
    [3]M Goutam, S. L. Chang, J. K. Hyung, H. H. Ji, M. K. Hwan, and R. C. Bong, A mitochondrial-targeted two-photon probe for zinc ion. J. Am. Chem. Soc.2011,133: 5698-5700.
    [4]A. M. Leticia, D. P. Michael, Selective turn-on fluorescent probes for imaging hydrogen sulfide in living cellsw. Chem. Commun.,2012,48:4767-4769.
    [5]a) H. Chun, B. Stephen, R. M. Seth, Perylene-3,4,9,10-tetracarboxylic acid diimides:synthesis, physical properties, and use in organic electronics.. J. Org. Chem. 2011,76 (8):2386-2407; b) G. Daniel, Z. Xin, W. Frank, Molecular assemblies of perylene bisimide dyes in water. Angew. Chem. Int. Ed.2012,51:6328-6348; c) E A. John, Small-molecule, nonfullerene acceptors for polymer bulk heterojunction organic photovoltaics. Chem. Mater.2011,23:583-590; d) A J. Brooks, F. Antonio, R. W. Michael, J. M. Tobin, Tuning orbital energetic in arylene diimide semiconductor. Materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 2007,120:15259-15278; e) H.J. Niu, J. Luo, W. J. Wu, J. S. Mu, C. Wang, X. D. Bai, W. Wang, Linear and star branched perylene-containing polyimides:synthesis, characterization, and photovoltaic properties of novel donor-acceptor dyes used in solar cell. J. Appl. Polym. Sci.2012,125:200-211:f) Z. Y. Yuan, J. Li, Y. Xiao, Z. Li, X. H. Qian, Core-perfluoroalkylated perylene diimide and naphthalene diimides: versatile synthesis, solubility, electrochemistry, and optical properties. J. Org. Chem. 2010,75:3007-3016; g) Y. Zhang, Z. Xu, L. Z. Cai, G. Q. Lai, H. X. Qiu, Y. J. Shen, Highly soluble perylene tetracarboxylic diimides and tetrathiafulvalene-perylene tetracarboxylic diimide-tetrathiafulvalene triads. J. Photochem. Photobiol., A.2008, 200:334-345; h) B. Gao, C. G. Lu, J. Xu, F. S. Meng, Y. P. Cui, H. Tian, Synthesis and two-photon properties of new perylene bisimide derivatives. Chem. Lett.2006,35 (12):1416-1417; i) J. L. Hua, F. S. Meng, J. Li, F. Ding, X. Fan, H. Tian, Synthesis and characterization of new highly soluble and thermal-stable-PPV copolymers containing triphenylamine moiety. Eur. Polym. J.2006,42:2686-2694; j) B. Gao, Y. Li, H. Tian Synthesis and near-infrared characteristics of novel perylene bisimide dyes bay-functionalized with naphthalimide chromophores. Chin. Chem. Lett.2007, 18:283-286; k) B. Gao, Y. Li, J. H. Su, H. Tian Self-assembly of perylene bisimide bridging ligands to zinc phthalocyanine in solution. Suppamol. Chem.2007,19 (3): 207-210; 1) B. Liu, W. H. Zhu, W. J. Wu, K. W. Mu Ri, H. Tian, Hybridized ruthenium(Ⅱ) complexes with high molar extinction coefficient unit:effect band and adsorption on photovoltaic performances. J. Photochem. Photobiol., A.2008,194: 268-274; m) S. Suzukia, M. Kozakia, K. Nozakib, K. Okadaa. Recent progress in controlling photophysical processes of donor-acceptor arrays involving perylene diimides and boron-dipyrromethenes. J. Photochem. Photobiol. C.2011,12:269-292.
    [6]a) M. Franceschin, C. M. Lombardo, E. Pascucii, D. D'Ambrosio, E. Micheli, A. Bianco, G. Ortaggi, M. Savino. The number and distances of positive chares of polyamine side chains in a series of perylene diimides significantly influence theie ability to induce G-quadruplex structures and inhibit human telomerase. Bioorg. Med. Chem.2008,16:2292-2304; b) F. Wurthner, C. Bauer, V. Stepanenko, S. Yagai. A black perylene bisimide super gelator with an unexperted j-type absorption band. Adv. Mater.2008,20:1695-1698.
    [7]Y. Nagao, T. Naito, Y. Abe, T. Miaono. Sythesis and properties of long and branched alkyl chain substituted perylenetetracarboxylic monoanhydride monoimides. Dyes and Pigments.2006,32 (2):71-83.
    [8]H. L. Huang, Y. K. Che, L. Zang. Direct synthesis of highly pure perylene tetracaboxylic monoimide. Tetrahedron Lett.2010,51:6651-6653.
    [9]M. Queste, C. Cadiou, B. Pagoaga, L. Giraudet, N. Hoffmann. Synthesis and characterization of 1,7-disubstituted and 1,6,7,12-tetrasubstituted perylenetetracaboxy-3,4:9,10-diimide derivatives. New. J. Chem.2010,34: 2537-2545.
    [10]a) T. Ishi-I, K.I. Murakami, Y. Imai, S. Mataka. Light-harvesting and enegy-transfer system based on self-assembling perylene diimide-appended hexaazatriphenylene. Org. Lett.2005,7 (15):3175-3178; b) F. Wurthner, V. Stepanenko, Z.J. Chen, C. R. Saha-Moller, N. Kocher, D. Stalke. Preparation and characterization of regioisomerically pure 1,7-disubstituted perylene bisimide dyes. J. Org. Chem.2004,69:7933-7939; c) X. Zhang, S. F. Pang, Z. G. Zhang. X. L. Ding, S. L. Zhang, S. G. He, C. L. Zhan. Facile synthesis of 1-bromo-7-alkoxyl perylene diimide dyes:toward unsymmetrical functionalizations at the 1,7-positions. Tetrahedron Lett.2012,53:1094-1097; d) E. Kozma, F. Munno, D. Kotowski, F. Bertini, S. Luzzati, M. Catellani. Synthesis and characterization of perylene-based donor-acceptor copolymers containing triple bonds. Synthetic Metals.2010,160: 996-1001; e) E. Kozma, D. Kotowski, F. Bertini, S. Luzzati, M. Catellani. Synthesis of donor-acceptor poly(perylene diimide-altoligohiphene) copolymers as n-type materials for polymeric solar cells. Polymer.2010,51:2264-2270; f) M. J. Ahrens, M. J. Tauber, M. R. Wasielewski. Bis(n-octylamino)perylene-3,4:9,10-bis(dicabox-imide)s and their radical cations:synthesis.electrochemistry, and endor sperctroscopy. J. Org. Chem.2006,71:2107-2114; g) Y. S. Ma, C. H. Wang, Y. J. Zhao, Y. Yu, C. X. Han, X. J. Qiu, Z. Q. Shi. Perylene diimide dyes aggregates:optical properties and packing behavior in solution and solid state. Supramol. Chem.2007,19 (3):141-149.
    [11]K. Y. Chen, T. J. Chow.1,7-dinitroperylene bisimides:facile synthesis and characterization as n-type organic semiconductors. Tetrahedron Lett.2010,52: 5959-5963.
    [12]A. Fin, I. Petkova, D. A. Doval, N. Sakai, E. Vauthey, S. Matile. Naphthalene-and perylenediimides with hydroquinones, catechols, boronic esters and imines in the core. Org. Biomol. Chem.2011,9:8246-8252.
    [13]L. Perrin, P. Hudhomme. Synthesis, electrochemical and optical absorption properties of new perylene-3,4:9,10-bis(dicarboximide) and perylene-3,4:9,10-bis(benzimidazole) derivatives. Eur. J. Org. Chem.2011, 5427-5440
    [14]X. R, He. H. B. Liu, Y. L. Li, S. Wang, Y. J. Li, N. Wang, J. C. Xiao, X. H. Xu, D. B. Zhu. Gold nanoparticle-based fluorometric and colorimetric sensing of copper(Ⅱ) Ions. Adv. Mater.2005,17:2811-2815.
    [15]X. R. He, Z. F. Zhong, Y. B, Guo, J. Lv, J. L. Xu, M. Zhu, Y. L Li, H. B. Liu, S. Wang, Y. L Zhu, D. B. Zhu. Gold nanoparticle-based monitoring of the reduction of oxidized to reduced glutathione. Langmuir.2007,23:8815-8819.
    [16]Y. J Zhao, J. J. Sun, Z. Q. Shi, C. C. Pan, M. Y. Xu. Zinc(Ⅱ)-selective ratiometric fluorescent probe based on perylene bisimide derivative. Luminescence.2011,26: 214-217.
    [17]L. H. Feng, Z. B. Chen. Screening mercury (Ⅱ) with selective fluorescent chemosensor. Sens. Actuators, B.2007,122:600-604.
    [18]L. W. Yan, L. Yang, J. B. Lan, J. S. You. A new perylene diimide-based colorimetric and fluorescent sensor for selective detection of Cu2+ cation. Science in Chinese Series B:Chemistry.2009,52(4):518—522.
    [19]X. J Liu, N. Zhang, J. Zhou, T. J. Chang, C. L. Fang, D. H. Shangguan. A turn-on fluorescent sensor for zinc and cadmium ions based on perylene tetracarboxylic diimide. Analyst.2013,138:901-906.
    [20]X. Q. Chen, M. J Jou, J.Y. Yoon. An "off-on" type UTP/UDP selective fluorescent probe and its application to monitor glycosylation process. Org. Lett.2009, 11 (10):2181-2184.
    [21]L. W. Yan, Z. B.Ye, C. X. Peng, S. H. Zhang. A new perylene diimide-based fluorescent chemosensor for selective detection of ATP in aqueous solution. Tetrahedron.2012,68:2725-2727.
    [22]H. X. Wang, D. L. Wang, Q. Wang, X. Y. Li, C. A. Schalley. Nickel(II) and iron(III) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide. Org. Biomol. Chem.2010,8:1017-1026.
    [23]J. Ren, X. L. Zhao, Q. C. Wang, C. F. Kub, D. H. Qu, C. P. Chang, H. Tian. New fluoride fluorescent chemosensors based on perylene derivatives linked by urea. Dyes and Pigments.2005,64:193-200.
    [24]Z. J. Chen, L. M. Wang, G. Zou, L. Zhang, G. J. Zhang, X. F. Cai, M. S. Teng. Colorimetric and ratiometric fluorescent chemosensor for fluoride ion based on perylene diimide derivatives. Dyes and Pigments.2012,94:410-415.
    [25]N. Soh, T. Ariyoshi, T. Fukaminato, H. Nakajima, K. Nakano, T. Imato. Swallow-tailed perylene derivative:a new tool for fluorescent imaging of lipid hydroperoxides. Org. Biomol. Chem.2007,5:3762-3768.
    [26]T. Maki, N. Soh, T.Fukaminato, H. Nakajima, K. Nakano, T. Imato. Perylenebisimide-linked nitroxide for the detection of hydroxyl radicals. Analytica Chimica Acta.2009,639:78-82.
    [27]a) T. Myochin, K. Kiyose, K. Hanaoka, H. Kojima, T. Terai, T. Nagano. Rational Design of Ratiometric Near-Infrared Fluorescent pH Probes with Various pKa Values, Based on Aminocyanine. J. Am. Chem. Soc.2011,133:3401-3409. b) Y. T. Chen, H. L. Wang, L. Wan, Y. Z. Bian, J. Z. Jiang.8-hydroxyquinoline-substituted boron-dipyrromethene compounds:synthesis, structure, and off-on-off type of pH-sensing properties. J. Org. Chem.2011,76:3774-3781.
    [28]D. Aigner, S. M. Borisov, I. Klimant. New fluorescent perylene bisimide indicators-a platform for broadband pH optodes. Anal. Bioanal. Chem.2011,400: 2475-2485.
    [29]N. I. Georgiev, A. R. Sakr, V. B. Bojinov. Design and synthesis of novel fluorescence sensing perylene diimides based on photoinduced electron transfer. Dyes and Pigments.2011,91:332-339.
    [30]Y. K. Che, X. M. Yang, L. Zang. Ultraselective fluorescent sensing of Hg2+ through metal coordinationinduced molecular aggregation. Chem. Commun.2008,44: 1413-1415.
    [31]Y. B. Ruan. A. F. Li, J. S. Zhao, J. S. Shen, Y. B. Jiang. Specific Hg2+-mediated perylene bisimide aggregation for highly sensitive detection of cysteine. Chem. Commun.2010,46:4938-4940.
    [32]B. Wang, C. Yu. Fluorescence turn-on detection of a protein through the reduced aggregation of a perylene probe. Angew. Chem. Int. Ed.2010,49:1485-1488.
    [33]a) Y.Yang, W. Y. Li, H. Qi, Q. F. Zhang, J. Chen, Y. Wang, B. Wang, S. J.Wang, C. Yu. Detection of silver(I) ions based on the controlled self-assembly of a perylene fluorescence probe. Anal. Biochem.2012,430:48-52; b) B. Wang, F. Y. Wang, H. P. Jiao, X. Y. Yang, C. Yu. Label-free selective sensing of mercury(II) via reduced aggregation of the perylene fluorescent probe. Analyst.2010,135:1986-1991; c) B. Wang, Q. K. Zhu, D. L. Liao, C. Yu. Perylene probe induced gold nanoparticle aggregation. J. Mater. Chem.2011,21:4821-4826; d) B. Wang, H. P. Jiao, W. Y. Li, D. L. Liao, F. Y. Wang, C. Yu. Superquencher formation via nucleic acid induced noncovalent perylene probe self-assembly. Chem. Commun.2011,47:10269-10271.
    [34]X. L. Feng, Y. X. An, Z. Y. Yao, C. Li, G. Q. Shi. A turn-on fluorescent sensor for pyrophosphate based on the disassembly of Cu2+ -mediated perylene diimide aggregates. ACS Appl. Mater. Interfaces.2012,4:614-618.
    [35]H. Szelke, S. Schubel, J. Harenberg, and R. Kramer. A fluorescent probe for the quantification of heparin in clinical samples with minimal matrix interference. Chem. Commun.2010,46:1667-1669.
    [36]Y. K. Che, X. M. Yang, S. Loser, L. Zang. Expedient Vapor Probing of Organic Amines Using Fluorescent Nanofibers Fabricated from an n-Type Organic Semiconductor. Nano Lett.2008.8 (8):2219-2223.
    [37]a) Y. Liu, K. R. Wang, D. S. Guo, B. P. Jiang. Supramolecular assembly of perylene bisimide with b-cyclodextrin grafts as a solid-state fluorescence sensor for vapor detection. Adv. Funct. Mater.2009,19:2230-2235:b) B. P. Jiang, D. S. Guo,Y. Liu. Self-assembly of amphiphilic perylene-cyclodextrin conjugate and vapor sensing for organic amines. J. Org. Chem.2010,75:7258-7264.
    [38]H. N. Peng, L. P. Ding. T. H. Liu, X. L. Chen, L. Li. S. W. Yin, Y. Fang. An Ultrasensitive fluorescent sensing nanofilm for organic amines based on cholesterol-modified perylene bisimide. Chem. Asian. J.2012,7:1576-1582.
    [39]K. Inamoto, L. D. Campbell, T. Doi, K. Koide. A highly sensitive fluorescence method reveals the presence of palladium in a cross-coupling reaction mixture not treated with transition metals. Tetrahedron Lett.2012,53:3147-3148.
    [40]a) V. Sashuk, D. Schoeps, H. Plenio. Fluorophore tagged cross-coupling catalysts. Chem. Commun.2009,45:770-772; b) V. Sashuk, L. H. Peeck, H. Plenio. [(NHC)(NHCewg)RuCl2(CHPh)] complexes with modified NHCewg ligands for efficient ring-closing metathesis leading to tetrasubsituted oledins. Chem. Eur. J.2010, 16:3983-3993.
    [41]a) P. Carol, S. Sreejith, A. Ajayaghosh. Ratiometric and near-infrared molecular probes for the detection and imaging of zinc ions. Chem. Asian J.2007,2:338-3481; b) S. Atilgan, T. Ozdemir, E. U. Akkaya. A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl-bodipy fluorophore. Org. Lett. 2008,10 (18):4065-4067; c) X. J. Peng, Y. Q. Xu, S. G. Sun, Y. K. Wu, J. L. Fan. A ratiometric fluorescent sensor for phosphates:Zn2+-enhanced ICT and ligand competition. Org. Biomol. Chem.2007,5:226-228; d) Y. K. Wu, X. J. Peng, B. C. Guo, J. L Fan, Z. C. Zhang, J. Y. Wang, A. J. Cui, Y. L. Gao. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(Ⅱ) in living cells. Org. Biomol. Chem.2005,3:1387-1392; e) H. K. Choa, D. H. Leea, J. I. Hong. A fluorescent pyrophosphate sensor via excimer formation in water. Chem. Commun., 2005,0:1690-1692; f) L. Feng, H. Li, L. Y. Niu, Y. S. Guan, C. F. Duan, Y. F. Guan, C. H. Tung, Q. Z. Yang. A fluorometric paper-based sensor array for the discrimination of heavy-metal ions. Talanta.2013,108 (15):103-108.
    [42]K. Kiyose, H. Kojima, Y. Urano, T. Nagano. Development of a ratiometric fluorescent zinc ion probe in near-infrared region, based on tricarbocyanine chromophore. J. AM. CHEM. SOC.2006,128:6548-6549.
    [43]X. Y. Lu, W. H. Zhu, Y. S. Xie, X. Li, Y. Gao, F. Y. Li, H. Tian. Near-IR core-substituted naphthalenediimide fluorescent chemosensors for zinc ions:ligand effects on PET and ICT channels. Chem. Eur. J.2010,16:8355-8364.
    [44]Q. Q. Li, M. Peng, H. Y. Li, C. Zhong, L. Zhang, X. H. Cheng, X. N. Peng, Q. Q. Wang, J. G. Qin, Z. Li. A new "turn-on" naphthalenedimide-based chemosensor for mercury ions with high selectivity:successful utilization of the mechanism of twisted intramolecular charge transfer. near-IR fluorescence, and cell Images. Org. Lett.2012, 14 (8):2094-2097.
    [45]a) M. H. Yan, T. R. Li, Z. Y. Yang. A novel coumarin Schiff-base as a Zn(Ⅱ) ion fluorescent sensor. Inorg. Chem. Commun.2011,14 (3):463-465; b) Y. Zhou, Z. X. Li, S. Q. Zang, Y. Y. Zhu, H. Y. Zhang, H. W. Hou, T. C. W. Mak. A novel sensitive turn-on fluorescent Zn2+ chemosensor based on an easy to prepare C3-symmetric Schiff-base derivative in 100% aqueous solution. Org. Lett.2012,14 (5):1214-1217; c) C. H. Chen, D. J. Liao, C. F. Wan, A. T. Wu. A turn-on and reversible Schiff base fluorescence sensor for Al3+ ion. Analyst.2013,138:2527-2530.
    [46]Y. Hu, Q. Q. Li, H. Li, Q. N. Guo, Y. G. Lu, Z. Y. Li. A novel class of Cd(Ⅱ), Hg(Ⅱ) turn-on and Cu(Ⅱ), Zn(Ⅱ) turn-off Schiff base fluorescent probes. Dalton Trans. 2010,39:11344-11352.
    [47]M. Shellaiah, Y. H. Wu, A. Singh, M. V. R. Raju, H. C. Lin. Novel pyrene-and anthracene-based Schiff base derivatives as Cu2+ and Fe3+ fluorescence turn-on sensors and for aggregation induced emissions. J. Mater. Chem. A.2013,1: 1310-1318.
    [47]N. T. S. Phan, M. V. D. Sluys, C. W. Jones. On the nature of the active species in palladium catalyzed Mizoroki-Heck and Suzuki-Miyaura couplings-homogeneous or heterogeneous catalysis, a critical review. Adv. Synth. Catal.2006,348 (6): 609-679.
    [48]a) F. Boneta, S. Grugeona, R. H. Urbinab, K Tekaia-Elhsissena, J. M. Tarascona. In situ deposition of silver and palladium nanoparticles prepared by the polyol process, and their performance as catalytic converters of automobile exhaust gases. Solid State Sciences.2002,4 (5):665-670; b) A. N. Anthemidis, D. G. Themelis, J. A. Stratis. Selective stopped-flow injection spectrophotometric determination of palladium(Ⅱ) in hydrogenation and automobile exhaust gas converter catalysts. Analytica Chimica Acta.2000,412(1-2):161-167.
    [49]a) M. E. Jun, K. H. Ahn. Fluorogenic and chromogenic detection of palladium species through a catalytic conversion of a rhodamine B derivative. Org. Lett.2010, 12 (12):2790-2793; b) S. Mukherjee, S. Chowdhury, A. K. Paul, R. Banerjee. Selective extractionofpalladium(Ⅱ)usinghydrazoneligand:a novel fluorescent sensor. Journal of Luminescence.2011,131:2342-2346:c) Z. F. Wang, F. Liao. Fluorescent probes for Pd2+ detection by poly(o-phenylenediamine) nanospheres with fluores-cence enhancement. Synthetic Metals.2012,162:444-447; d) H.1. Li. J. L. Fan. F. L. Song, H. Zhu, J. J. Du, S. G. Sun. X. J. Peng. Fluorescent probes for Pd2+ detection by allylidene-hydrazone ligands with excellent selectivity and large fluorescence enhancement. Chem. Eur. J.2010,16:12349-12356; f) H. L. Li, J. L. Fan, J. J. Du, K. X. Guo, S. G. Sun. X. J. Liu, X. J. Peng. A fluorescent and colorimetric probe specific for palladium detection. Chem. Commun.2010,46:1079-1081; g) B. Liu, Y. Y. Bao, H. Wang, F. F. Du, J. Tian, Q. B. Li, T. S. Wang, R. K. Bai. An efficient conjugated polymer sensor based on the aggregation-induced fluorescence quenching mechanism for the specific detection of palladium and platinum ions. J. Mater. Chem.,2012,22: 3555-3561; h) B. Liu, H. G. Dai, Y. Y. Bao, F. F. Du, J. Tian, K. Bai.2,6-Substituted pyridine derivative-containing conjugated polymers:synthesis, photoluminescence and ion-sensing properties. Polym. Chem.2011,2:1699-1705; i) S. Goswami, D. Sen, N. K. Das, H. K. Fun, C. K. Quah. A new rhodamine based colorimetric'off-on' fluorescence sensor selective for Pd2+ along with the first bound X-ray crystal structure. Chem. Commun.2011,47:9101-9103.
    [50]L.P Duan, Y. F. Xu, X. H. Qian. Highly sensitive and selective Pd2+ sensor of naphthalimide derivative based on complexation with alkynes and thio-heterocycle. Chem. Commun.2008,6339-6341.
    [51]M. Santra, S. K. Ko, I. Shin, K. H. Ahn. Fluorescent detection of palladium species with an O-propargylated fluorescein. Chem. Commun.2010,46:3964-3966.
    [52]W. X. Ren, T. Pradhan, Z. G. Yang, Q. Y. Cao, J. S. Kim. Rapid responsive palladium sensor under mild condition. Sens. Actuators. B.2012,171-173: 1277-1282.
    [53]G. Wei, L. Wang, J. M. Jiao, J. L. Hou, Y. X. Cheng, C. J. Zhu. Cu2+ triggered fluorescence sensor based on fluorescein derivative for Pd2+ detection. Tetrahedron Lett.2012,53:3459-3462.
    [54]A. L. Garner, F. L. Song, K. Koide. Enhancement of a catalysis-based fluorometric detection method for palladium through rational fine-tuning of the palladium species. J. Am. Chem. Soc.2009,131:5163-5171.
    [55]J. Jiang, H. E. Jiang, W. Liu, X. L. Tang, X. Zhou, W. S. Liu, R. T. Liu. A colorimetric and ratiometric fluorescent probe for palladium. Org. Lett.2011,13 (18): 4922-4925.
    [56]a) M. E. Moragues, R. Martinez-Manez, F. Sancenon. Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the year 2009. Chem. Soc. Rev.2011,40:2593-2643:b) R. Martinez-Manez, F. Sancenon. Fluorogenic and chromogenic chemosensors and reagents for anions. Chem. Rev.2003,103:4419-4476; c) R. Martinez-Manez, F. Sancenon. new advances in fluorogenic anion chemosensors. Journal of fluorescence.2005,15 (3): 267-285.
    [57]a) K. C. Song, K. M. Lee, H. Kim, Y. S. Lee, M. H. Lee. Y. Do. Turn-on colorimetric sensing of fluoride ions by a cationic triarylborane bearing benzothiazolium. J. Organomet. Chem.2021,713:89-95; b) Y. Li. S. Xu, X. Li, K. C, Chen. H. Tian. An axial subphthalocyanine as ratiometric fluoride ion sensor. Chem. Lett.2007,36 (5):664-665; c) X. P. Chen, H. B. Wang, X. H. Jin, J. W. Feng, Y. G. Wang, P. Lu. Palladium catalyzed bicyclization of 1,8-diiodonaphthalene and tertiary propargylic alcohols to phenalenones and their applications as fluorescent chemosensor for fluoride ions. Chem. Commun.2011,47:2628-2630.
    [58]G. Ambrosi, M. Formica, V. Fusi, L. Giorgi, E. Macedi, G. Piersanti, M. Retini, M. A. Varrese, G. Zappia. New coumarin-urea based receptor for anions:a selective offeon fluorescence response to fluoride. Tetrahedron.2012,68:3768-3775.
    [59]Q. Zou, J. Y. Jin, B. Xu, L. Ding, H. Tian. New photochromic chemosensors for Hg2+ and F-. Tetrahedron.2011,67:915-921.
    [60]a) F. P. Kong, Q. J. Liu, X. Wu, Z. Wang, Q. Chen, L. S. Chen. 2-(4-Formylphenyl)phenanthroimidazole as a colorimetric and fluorometric probe for selective fluoride ion sensing. J. Fluoresc.2011,21:1331-1335; b) Z. W. Xu, J. Tang, H. Tian. A highly sensitive colorimetric and ratiometric sensor for fluoride ion. Chin. Chem. Lett.2008,19:1353-1357.
    [61]a) Y. Qu, J. L. Hua, Y. H. Jiang, H. Tian. Novel side-chain naphthalimide polyphenylacetylene as a ratiometric fluorescent chemosensor for fluoride ion. J. Polym. Sci. Pol. Chem.2009,47:1544-1552. b) Y. Qu, J. L. Hua, H. Tian. Colorimetric and ratiometric red fluorescent chemosensor for fluoride ion based on diketopyrrolopyrrole. Org. Lett.2010,12 (15):3320-3323; c) P. Zhao, J. B. Jiang, B. Leng, H. Tian. Polymer fluoride sensors synthesized by RAFT polymerization. Macromol. Rapid Commun.2009,30:1715-1718.
    [62]a) S. H. Mashraqui, S. S. Ghorpade, S. Tripathi, S. Britto. A new indole incorporated chemosensor exhibiting selective colorimetric and fluorescence ratiometric signaling of fluoride. Tetrahedron Lett.2012,53:765-768; b) X. M. Liu, Q. Zhao. W. C. Song, X. H. Bu. New highly selective colorimetric and ratiometric anion receptor for detecting fluoride ions.
    [63]T. H. Kim, T. M. Swager. A fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions. Angew. Chem. Int. Ed.2003,42:4803-4806.
    [64]M. Dong, Y. Peng, Y. M. Dong, N. Tang, Y. W. Wang. A Selective, colorimetric, and fluorescent chemodosimeter for relay recognition of fluoride and cyanide anions based on 1.10-Binaphthyl scaffold. Org. Lett.2012,14 (1):130-133.
    [65]G. H. Wei, J. X. Yin, X. Ma, S. Y. Yua. D. B. Wei, Y. G. Du. A carbohydrate modified fluoride ion sensor and its applications. Analytica Chimica Acta.2011,703: 219-225.
    [66]P. Sokkalingam, C. H. Lee. Highly sensitive fluorescence "turn-on" indicator for fluoride anion with remarkable selectivity in organic and aqueous media. J. Org. Chem.2011,76:3820-3828.
    [67]J. Cao, C. C. Zhao, W. H. Zhu. A near-infrared fluorescence chemodosimeter for fluoride via specific Si-O cleavage. Tetrahedron Lett.2012,53:2107-2110.
    [68]W. Y. Lin, L. L. Long, L. Yuan, Z. M. Cao, B. B. Chen, W. Tan. A ratiometric fluorescent probe for cysteine and homocysteine displaying a largeemission shift. Org. Lett.2008,10 (24):5577-5580.
    [69]L. P. Duan, Y. F. Xu, X. H. Qian, F. Wang, J. W. Liu, T. Y. Cheng. Highly selective fluorescent chemosensor with red shift for cysteine in buffer solution and its bioimage:symmetrical naphthalimide aldehyde. Tetrahedron Lett.2008,49: 6624-6627.
    [70]P. Wang, J. Liu, X. Lv, Y. L. Liu, Y. Zhao, W. Guo. A naphthalimide-based glyoxal hydrazone for selective fluorescence turn-on sensing of Cys andHcy. Org. Lett.2012,14 (2):520-523.
    [71]X. F. Yang, Y. X. Guo, R. M. Strongin. Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew. Chem. Int. Ed.2011,50:10690-10693.
    [72]H. L Wang, G. D. Zhou, H. W. Gai, X. Q. Chen. A fluorescein-based probe with high selectivity to cysteine over homocysteine and glutathione. Chem. Commun.2012, 48:8341-8343.
    [73]X. H Cheng, S. Li, A. S. Zhong, J. G. Qin, Z. Li. New fluorescent probes for mercury(II) with simple structure. Sens. Actuators. B.2011,157:57-63.
    [74]X. H. Cheng, S. Li, H. Z. Jia, A. S. Zhong, C. Zhong, J. Feng, J. G Qin, Z. Li. Fluorescent and colorimetric probes for mercury(II):Tunable structures of electron donor and p-conjugated bridge. Chem. Eur. J.2012,18:1691-1699.
    [75]a) J. S. Wu, I. C. Hwang, K. S. Kim, J. S. Kim. Rhodamine-based Hg2+ -selective chemodosimeter in aqueous solution:fluorescent off-on. Org. Lett.2007,9 (5): 907-910; b) S. K. Ko, Y. K. Yang, J. S. Tae, I. Shin. In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J. Am. Chem. Soc.2006, 128:14150-14155.
    [76]a) B. Liu, H. Tian. A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem. Commun.,2005,3156-3158; b) B. Leng, J. B. Jiang, H. Tian. A mesoporous silica supported Hg2+ chemodosimeter. AIChE.2010,56 (11):2957-2964; c) Z. Q. Guo, W. H. Zhu, M. M. Zhu, X. M. Wu, H. Tian. Near-infrared cell-permeable Hg2+ -selective ratiometric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines. Chem. Eur. J.2010,16: 14424-14432.
    [77]Y. S. Cho, K. H. Ahn. A 'turn-on'fluorescent probe that selectively responds to inorganic mercury species. Tetrahedron Lett.2010,51:3852-3854.
    [78]a) M. Santra, B. Roy, K. H. Ahn. A "reactive" ratiometric fluorescent probe for mercury species. Org. Lett.2011,13 (13):3422-3425; b) S. Ando, K. Koide. Development and applications of fluorogenic probes for mercury(II) based on vinyl ether oxymercuration. J. Am. Chem. Soc.2011,133:2556-2566.
    [79]I. H. Lee, Y. M. Jeon, M. S. Gong. Preparation and ionophoric properties of coronene fluoroionophores containing azacrown and calix[4]azacrown ethers. Synthetic Metals.2008,158:532-538.
    [80]Y. J. Li, Y. L Li, J. B. Li, C. L. Li, X. F. Liu, M. J. Yuan, H. B. Liu, S.Wang. Synthesis, characterization, and self-assembly of nitrogen-containing heterocoronenetetracarboxylic acid diimide analogues:photocyclization of N-heterocycle-substituted perylene Bisimides. Chem. Eur. J.2006,12:8378-8385.
    [81]K. H. Shaughnessy, P. Kim. J. F. Hartwig. A fluorescence-based assay for high-throughput screening of coupling reactions. application to Heck chemistry. J. Am. Chem. Soc.1999,121:2123-2132.
    [82]a) S. R. Stauffer, N. A. Beare, J. P. Stambuli, J. F. Hartwig. Palladium-catalyzed arylation of ethyl cyanoacetate. Fluorescence resonance energy transfer as a tool for reaction discovery. J. Am. Chem. Soc.2001,123:4641-4642; b) J. P. Stambuli, S. R. Stauffer, K. H. Shaughnessy, J. F. Hartwig. Screening of homogeneous catalysts by fluorescence resonance energy transfer. Identification of catalysts for room-temperature Heck reactions. J. Am. Chem. Soc.2001,123:2677-2678.
    [83]R. V. Rozhkov,a, V. J. Davisson, D. E. Bergstroma. Fluorogenic transformations based on formation of C-C bond catalyzed by palladium:An efficient approach for high throughput optimizations and kinetic studies. Adv. Synth. Catal.2008,350: 71-75.
    [84]T. E. Barder. S. L. Buchwald. Benchtop monitoring of reaction progress via visual recognition with a handheld UV lamp:In situ monitoring of boronic acids in the Suzuki-Miyaura reaction. Org. Lett.2007,9(1):137-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700