用户名: 密码: 验证码:
金属掺杂改性TiO_2催化臭氧氧化水中有机污染物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的迅速发展,人类面临的水资源危机越来越严重,传统的水处理工艺难以去除水中有毒有害有机物。高级氧化工艺具有反应迅速、适用范围广、高稳定难降解有机物去除效率高等优点,得到研究者的广泛研究。TiO2除了作为光催化剂外,在臭氧催化氧化领域也表现出良好的催化活性。本论文中利用溶胶凝胶法制备了纳米级的金红石型TiO2并对TiO2进行了金属掺杂改性研究。分别以硝基苯和草酸作为目标物,筛选出掺杂效果最好的催化剂并优化了制备条件。本研究对催化剂的表面性质进行了表征,推测了臭氧催化氧化机理。
     本文采用溶胶凝胶法制备了纳米级的TiO2,以硝基苯为目标物进行臭氧催化氧化试验。结果表明,不同晶型的TiO2具有不同的催化性能,锐钛矿型的TiO2几乎没有催化臭氧的能力,金红石型TiO2具有良好的催化性能。在金红石型TiO2催化臭氧的反应中,随着催化剂投量、臭氧浓度、反应温度提高,硝基苯去除率也随之增加;随着溶液pH升高,硝基苯的去除率也随之升高,在溶液pH值为10时具有最高的去除率,随后降低;不同的水质本底对硝基苯去除率的基本没有影响。金红石型TiO2催化臭氧工艺中羟基自由基的形成是主导的反应机理,该工艺过程中有机物降解生成的中间产物与单独臭氧工艺也基本相同:羧酸类、醛酮类、酚类。
     选择了钴、铁、镍、锰及锌五种过渡态的金属离子对TiO2进行掺杂改性研究。制备的Mn/TiO2、Ni/TiO2、Co/TiO2、Fe/TiO2、Zn/TiO2这五种催化剂相对单独臭氧氧化工艺均大幅地提高了硝基苯的去除率,但与金红石型的纯TiO2催化效果相差并不大,掺杂并没有能提高臭氧催化分解硝基苯的效果。监测结果表明,在臭氧催化氧化过程中有微量金属离子溶出,但均远远低于国家标准。
     Mn/TiO2和Co/TiO2这两种掺杂催化剂能够大幅度地提高体系中TOC的去除率,通过对中间产物的分析,Mn/TiO2和Co/TiO2能够进一步催化臭氧氧化硝基苯的中间产物,比如难以被臭氧分子直接氧化的草酸。
     以草酸作为目标物,分别研究了各催化剂对臭氧催化氧化的活性。结果发现,Mn/TiO2和Co/TiO2具有良好的催化能力,可以明显提高臭氧去除草酸的效率,TiO2、Ni/TiO2、Fe/TiO2、Zn/TiO2催化臭氧氧化过程中对草酸的去除率不高。分别对催化剂煅烧温度和金属离子掺杂比例的制备条件进行了优化,改变煅烧温度和离子掺杂比例对Ni/TiO2、Fe/TiO2、Zn/TiO2催化臭氧分解草酸效率的提高基本没有效果;Mn/TiO2最优的煅烧温度为500℃,锰和钛的最佳摩尔掺杂比例1/20,为锐钛矿和金红石相的混合晶相;Co/TiO2最优的煅烧温度为500℃,钴和钛的最佳摩尔掺杂比例为1/30,锐钛矿和金红石混合晶相。
     分别研究了Mn/TiO2和Co/TiO2催化臭氧分解草酸过程的影响因素:在本实验所考察的臭氧流量范围内,臭氧投量的变化对草酸去除率基本没有影响;随草酸初始浓度的升高,草酸的去除率降低;随着催化剂投量、水体温度升高,草酸去除率也随之升高,但反应30min后不同反应条件下的草酸均已基本被去除;在反应温度为10℃条件下草酸的去除率远低于在20℃、30℃、40℃反应温度下的去除率;pH值影响着Mn/TiO2表面所带的电荷正负性和草酸的电离程度,溶液pH值对草酸去除率影响显著,在较低初始pH值条件下,臭氧催化氧化对草酸具有更好的去除效果。
     通过XRD表征发现,锰和钴的掺杂使得TiO2锐钛矿向金红石结构的相变温度升高,并且粉末的粒径增大。对实验制备的Mn/TiO2和Co/TiO2进行XRF、XPS表征,发现锰和钴元素在催化剂表面的比例高于内部比例,分别以MnO2和TiCoO3的形式存在。锰和钴的掺杂使得催化剂表面的钛出现正三价,导致出现氧空位,造成了TiO2晶格缺陷,在催化剂表面Ti主要以正四价的形式存在,约占70%。在利用Mn/TiO2和Co/TiO2催化臭氧分解草酸过程中草酸直接矿化为二氧化碳和水没有中间产物的生成。通过投加叔丁醇和利用ESR试验证明了在这两种反应体系中有羟基自由基生成并参与了草酸的氧化反应,但羟基自由基并不是唯一的氧化剂。推测草酸首先被吸附或者络合于催化剂表面,然后被羟基自由基和臭氧分子氧化,草酸的吸附是整个反应的制约步骤。
With the rapid development of industry, the human being are facing ever increasing problem of water crisis. The traditional water treatment process is difficult to remove toxic organic compounds from water. Having many advantages, such as: quick response, high efficiency for the degardation of stabel organic pollutants, advanced oxidation processes are widely investigated. In addition to being used as a photocatalyst, TiO2 also showed good catalytic activity in the field of catalytic ozonation. In this paper, nanosized rutile TiO2 and metal doped TiO2 were prepared by sol-gel method, and investigated for their effectiveness in degrading organic pollutants in catalytic ozonation.
     The best way of catalyst doping were selected and the preparation conditions were optimized, using nitrobenzene and oxalic acid as the target respectively. The surface properties of the catalysts were characterized. The mechanism of catalytic ozonation was speculated.
     In this paper, nano-sized TiO2 was propared by sol-gel method, and nitrobenzene was used as the target for catalytic ozonation experiment. Different crystal structure of TiO2 have different catalytic properties. Anatase TiO2 almost has no ability for catalytic ozonation, while rutile TiO2 has good catalytic properties. In the rutile-type TiO2 catalytic ozonation reaction, the nitrobenzene removal rate increases respectively with the increase in the amount of catalyst, ozone concentration, reaction temperature. The removal rate of nitrobenzene increases with the increase of solution pH. When the solution pH value is 10, the degradation rate of nitobenzene is highest. In different water background, the removal rate of nitrobenzene were almost the same. Rutile TiO2 catalyzed ozonation is the dominant reaction mechanism of hydroxyl radical. Degradation intermediates of nitrobenenze generated during catalytic ozonation is basically the same with those generated in ozonation alone: That is: carboxylic acids, aldehydes and ketones, phenols.
     Cobalt, iron, nickel, manganese and zinc were chosen for doping TiO2. The presence of Mn/TiO2、Ni/TiO2、Co/TiO2、Fe/TiO2、Zn/TiO2 are significantly increased the removal rate of nitrobenzene by ozonation comparing with the case of ozone oxidation alone. Rutile TiO2 catalytic effect is not significantly different from the five types of catalyst. Doping is not able to increase the effect of catalytic ozonation of nitrobenzene. Trace metal ion was released from the catalyst, but the concentrations of metal ion dissolved are far below the national standards.
     The presence of Mn/TiO2 and Co/TiO2 significantly improved the removal rate of TOC. By the analysis of intermediate products, Mn/TiO2 and Co/TiO2 can further oxidize nitrobenzene intermediates, such as oxalic acid which is difficult to be directly oxidized by ozone molecules.
     Using oxalic acid as a target, the catalytic activity of catalysts were examined. Mn/TiO2 and Co/TiO2 have good catalytic ability, and can significantly enhance the ability of ozone to remove oxalic acid. TiO2、Ni/TiO2、Fe/TiO2、Zn/TiO2 have poor capacity to remove oxalic acid by catalytic ozonation. The calcination temperature and ratio of metal ion doping were optimized. Changing the calcination temperature and doping ratio almost had no effect on Ni/TiO2、Fe/TiO2、Zn/TiO2 for improving the catalytic activity. The optimal calcination temperature of Mn/TiO2 is 500℃, with a mixed phase of anatase and rutile. The best molar doping ratio of Mn/TiO2 is 1/20. The optimal calcination temperature of Co/TiO2 is 500℃, with a mixed phase of anatase and rutile. The best molar doping ratio of Co/TiO2 is 1/30.
     The influencing factors on the degradation of oxalic acid in catalytic ozonation process were studied respectively with Mn/TiO2 and Co/TiO2 as the catalyst. Within the ozone flux in this experiment, the changing of ozone flux almost had no effect on oxalic acid removal rate. Oxalic acid removal rate decreased with the increase of initial concentration of oxalic acid. Oxalic acid removal rate increased with the increase of the amount of catalyst used and the water temperature respectively, and almost reached completely removal. The removal rate of oxalic acid reacting at 10℃, was much lower than those achieved at 20℃, 30℃, 40℃. The charge of positive and negative values of Mn/TiO2 surface is affected by pH value, and the ionization degree of oxalic acid and by pH values. The pH value significantly affected the removal rate of oxalic acid. At lower initial pH values, oxalic acid removal rate is faster.
     Measured by XRD, the doping of Mn and Co make the transition temperature of anatase to rutile phase increase, and the size of catalyst increases. Obeserved by means of XRF and XPS, the proportion of Mn and Co on the catalyst surface is higher than the proportion of internal side of the catalyst. Mn and Co were combined with the titanium and went into the TiO2 lattice. Mn and Co in the catalyst were in the form of MnO2 and TiCoO3. There were Ti3+ in the surface of the catalyst, and oxygen vacancy and lattice defects were formed. In the catalyst surface, Ti mainly exists in the form of Ti4+. In the catalytic ozonation, oxalic acid was mineralizad and converted directly into CO2 and H2O. Tert-butyl alcohol addition and ESR experiments showed the generation of hydroxyl radical in catalytic ozonation. Hydroxyl radical is the oxidant formed in this reaction, but not the only oxidant. It is speculated that oxalic acid was absorbed or complexed in the catalyst surface in the first step. Oxalic acid in the surface of catalyst was oxidized by hydroxyl radical and ozone molecule. The adsorption of oxalic acid is the control steps in the whole reaction.
引文
1. 2008年中国环境公报.国家环保总局. 2008
    2. 2004年黄河水资源公报.国家环保总局. 2004
    3.刘锐平.高锰酸钾及其复合药剂氧化吸附集成化除污染效能与机制.哈尔滨工业大学博士学位论文. 2005: 2~3
    4.余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题.环境保护. 2000, 4: 37-39
    5. SM. Dow, B Barbeau, U von Gunten, et al. The impact of selected water qualityparameters on the inactivation of Bacillus subtilis spores by monochloramine and ozone, Wat. Res. 2006, 40:345~346
    6.徐亚军,刘衡川,谷素英等.高浓度臭氧水稳定性及杀菌效果的试验观察. .中国消毒学杂志, 2007, 24(1): 29~32
    7.马运明,王华然,王福玉等.臭氧灭活水中f2噬菌体的效果研究.环境与健康杂志.2009, 6(12): 1107~1108
    8. V. Camel, A. Bermond. The Use of Ozone and Associated Oxidation Processes in Drinking Water Treatment. Water Research, 1998, 32(11): 3208~3222
    9. R. Andreozzi, V. Caprio, A. Insola, et al. Advanced Oxoidation Processes (AOP) for Water Purification and Recovery. Catalysis Today, 1999, 53(1):51~59
    10. B. N. Badriyha. Advanced Oxoidation Processes, Carbon Adsorption, and Biofilm Degradation of Synthetic Organiv Chemicals in Drinking Water. Doctoral Dissertation of University of Southern California,1996
    11. Jun Ma, Nigel J. D. Graham. Degradation of Atrazine by Manganese-Catalysed Ozonation-influence of Radical Scavengers. Water Res. 2000, 34(15): 3822~3828
    12. A David. Pines, A David. Reckhow. Effect of dissolved cobalt (II) on the ozonation of oxalic acid. Environ. Sci. & Technol. 2002, 36, 4046~4051
    13. J Fernando. J Beltrán, Francisco. Rivas, Ramón Montero-de-Espinosa. Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 1. Homogeneous Catalytic Ozonation. Ind. Eng. Chem. Res. 2003, 42(14): 3210~3217
    14. C.G. Hewes, R.R. Davinson, Renovation of Waste Water by Ozonation, WaterAIChE Symposium Series 1973, 69: 71
    15. T. J. Hardwick. The Free Radical Mechanism in the Reactions of Hydrogen Peroxide. Chemosphere, 1957, 35(3): 428~434
    16. E. Piera, J. C. Calpe, E. Brillas, et al. 2, 4-Dichlorophenoxyacetic Acid Degradation by Catalyzed Ozonation: TiO2/UVA/O3 and Fe (II)/UVA/O3 Systems. Appl.Catal.B, 2000, 27(3): 169~177
    17. R. Sauleda, E.Brillas. Mineralization of Aniline and 4-chlorophenol in Acidic Solution by Ozonation Catalyzed with Fe2+ and UVA light. Applied Catalysis B: Environmental, 2001, 29(2): 135~145
    18. S. Cortés, J.Sarasa, P. Ormad, et al. Comparative Efficiency of the Systems O sub (3)/High pH And O3/catalyst for the Oxidation of Chlorobenzenes in Water. Ozone Sci. Eng, 2000, 22(4): 415~426
    19. R. Gracia, J.L. Aragües, S.Cortés, et al. in proceedings of the 12th World Congress of the International Ozone Association, Lille, France, 15-18 May 1995, p:75
    20. J. Ma, N. J. D. Graham. Degradation of Atrazine by Manganese-Catalysed Ozonation: Influence of Humic Substances. Wat. Res., 1999, 33(3): 785~793
    21. U.Jans, J.Hoigné. Activated Carbon and Carbon Black Catalyzed Transformati- on of Aqueous Ozone into OH-radicals. Ozone Sci. Eng. 1998, 20(1): 67~90
    22. J. Rivera-Utrilla, M. Sánchez-Polo. Ozonation of 1, 3, 6-naphthalenetrisulpho- nic Acid Catalysed by Activated Carbon in Aqueous phase. Applied Catalysis B: Environmental, 2002, 39(4), 319~329
    23. M. Sánchez-Polo, J.Rivera-Utrilla. Effect of the ozone–carbon reaction on the catalytic activity of activated carbon during the degradation of 1,3,6-naphthalenetrisulphonic acid with ozone. Carbon, 2003, 41(2): 303~307
    24. R. Andreozzi, A.Insola, V.Caprio, et al. The use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic Acid Ozonation in Aqueous Solution. Applied Catalysis A: General, 1996, 138(1): 75~81
    25. R. Andreozzi, V. Caprio, A. Insola, et al. The Ozonation of Pyruvic Acid in Aqueous Solutions Catalyzed by Suspended and Dissolved Manganese. Wat Res, 1998, 32(5): 1492~1496
    26. Shao-ping Tong, Wei-ping Liu, Wen-hua Leng, et al. Charcteristics of MnO2 Catalytic Ozonation of Sulfosalicylic Acid and Propionic Acid in Water. Chemosphere, 2003, 50(10): 1359-1364
    27. Yuming Dong, Hongxiao Yang, Kun He, et al. MnO2 Nanowires: A NovelOzonation Catalyst for Water Treatment. Applied Catalysis B: Environmental, 2009, 85(3-4), 155~161
    28. Jun Ma, Minghao Sui, Tao Zhang, et al. Effect of pH on MnOx/GAC Catalyzed Ozonation for Degradation of Nitrobenzene. Water. Res.2005, 39(5): 779~786
    29. Shengtao Xing, Chun Hu, Jiuhui Qu,et al. Characterization and Reactivity of MnOx Supported on Mesoporous Zirconia for Herbicide 2,4-D Mineralization with Ozone. Environ. Sci. Technol. 2008, 42(9): 3363~3368
    30. Li Yang, Chun Hu, Yulun Nie, el al. Catalytic Ozonation of Selected Pharmaceuticals over Mesoporous Alumina-Supported Manganese Oxide. Environ. Sci. Technol. 2009, 43(7): 2525~25
    31. N. Al Hayek, B. Legube, M. Dore. Catalytic Ozonation (FeIII/Al2O3) of Phenol and its Ozonation by–Products. Environ. Technol. Lett. 1989, 10: 415
    32. N. Nilesh. Bhat, Miratd.Gurol. Oxidation of Chlorobenzene by Ozone and Heterogeneous Catalytic Ozonation. Hazardous and Industrial Wastes; Proceedings of the Twenty-seventh Mil-Atlantic Industrial Wastes Conference. 1995: 371~382
    33. Haeryong Jung, Hosik Park, Jun Kim, et al. Preparation of Biotic and Abiotic Iron Oxide Nanoparticles (IOnPs) and Their Properties and Applications in Heterogeneous Catalytic Oxidation. Environ. Sci. Technol. 2007, 41(13): 4741~4747
    34. Haeryong Jung, Jung-Woo Kim, Heechul Choi, et al. Synthesis of Nanosized Biogenic Magnetite and Comparison of its Catalytic Activity in Ozonation. Applied Catalysis B: Environmental. 2008, 83(3-4): 208~213
    35. T.S. Ping, L.W. Hua, Z. J. Qing, et al. Catalytic Ozonation of Sulfosalicylic Acid. Ozone Sci. Eng. 2002, 24(2): 117~122
    36. Fernando J. Beltran, Francisco J. Rivas, R. Montero-de-Espinosa. Iron Type Catalysts for the Ozonation of Oxalic Acid in Water. Water. Res. 2005, 39(15): 3553~3564
    37. Thammanoon Sreethawong, Sumaeth Chavadej. Color Removal of Distillery Wastewater by Ozonation in the Absence and Presence of Immobilized Iron Oxide Catalyst. J. of Hazardous Materials. 2008,155(3): 486–493
    38. Jong-Sup Park, Heechul Choi, Jaewon Cho. Kinetic Decomposition of Ozone and Para-chlorobenzoic Acid (pCBA) during Catalytic Ozonation. Water Res. 2004, 38(9): 2285~2292
    39. Jong-Sup Park, Heechul Choi, Kyu-Hong Ahn, et al. Removal Mechanism ofNatural Organic Matter and Organic Acid by Ozone in the Presence of Goethite. Ozone: Sci.& Eng.2004, 26(2): 141~151
    40. Tao Zhang, Chunjuan Li , Jun Ma,et al. Surface Hydroxyl Groups of Syntheticα-FeOOH in Promoting OH·Generation from Aqueous Ozone: Property and Activity Relationship. Applied Catalysis B: Environmental. 2008, 82(1-2): 131–137
    41. Tao Zhang, Jinfeng Lu, Jun Ma, Zhimin Qiang. Comparative Study of Ozonation and Synthetic Goethite-catalyzed Ozonation of Individual NOM Fractions isolated and Fractionated from Afiltered River Water. Water Res. 2008, 42(6-7): 1563~1570
    42. M. Muruganandham, J. J. Wu. Granularα-FeOOH–A Stable and Efficient Catalyst for the Decomposition of Dissolved Ozone in Water. Catal. communications. 2007, 8(4): 668~672
    43. Sorin Marius Avramescu, Corina Bradu, Ion Udrea, Nicoleta Mihalache, et al. Degradation of Oxalic Acid from Aqueous Solutions by Ozonation in Presence of Ni/Al2O3 Catalysts. Catalysis Communications. 2008, 9(14): 2386~2391
    44. Zhou Yunrui, Zhu Wanpeng, Liu Fudong, et al. Catalytic activity of Ru/Al2O3 for Ozonation of Dimethyl Phthalate in Aqueous Solution. Chemosphere. 2007, 66(1): 145~150
    45. B. Kasprzyk-Hordern, U. Raczyk-Stanis?awiak, J. Swietlik, et al. Catalytic Ozonation of Natural Organic Matter on Alumina. Applied Catalysis B: Environmental. 2006, 62(3-4): 345~358
    46. Mathias Ernst, Franck Lurot, Jean-Christophe Schrotter. Catalytic Ozonation of Refractory Organic Model Compounds in Aqueous Solution by Aluminum Oxide. Applied Catalysis B: Environmental. 2004, 47(1), 15~25
    47. Fei Qi, Bingbing Xu, Zhonglin Chen, et al. Influence of Aluminum Oxides Surface Properties on Catalyzed Ozonation of 2, 4, 6-trichloroanisole. Separation & Purification Technol, 2009, 66(2): 405~410
    48. P. M. Alvarez, F.J. Beltran, J.P. Pocostales, et al. Preparation and Structural Characterization of Co/Al2O3 Catalysts for the Ozonation of Pyruvic Acid. Applied Catalysis B: Environmental. 2007, 72(3-4): 322~330
    49. ZhenZhen Xu, ZhongLin Chen, Cynthia Joll , et al. Catalytic Efficiency and Stability of Cobalt Hydroxide for Decomposition of Ozone and p-chloronitrobenzene in Water. Catal. Communications, 2009, 10(8): 1221~ 1225
    50. Chun Hu, Shengtao Xing, Jiuhui Qu, et al. Catalytic Ozonation of Herbicide 2,4-D over Cobalt Oxide Supported on Mesoporous Zirconia. J. Phys. Chem. C 2008, 112(15): 5978~5983
    51. Haeryong Jung, Heechul Choi. Catalytic Decomposition of Ozone and Para-Chlorobenzoic Acid (pCBA) in the Presence of Nanosized ZnO. Applied Catalysis B: Environmental. 2006, 66(3-4), 288~294
    52. M. Muruganandham, J.J. Wu. Synthesis, Characterization and Catalytic Activity of Easily Recyclable Zinc oxide Nanobundles. Catalysis B: Environmental. 2008, 80(1-2): 32~41
    53. Winn-Jung Huang, Guor-Cheng Fang, Chun-Chen Wang. A Nanometer-ZnO Catalyst to Enhance the Ozonation of 2, 4, 6-trichlorophenol in Water. Colloids & Surf. A: Physicochem. Eng. Aspects. 2005, 260(1-3): 45~51
    54. Fujishima A, Honda K. Electrochemical Photolysis of water at a Semicnductor Electrode. Nature. 1972, 238(5358):37~38.
    55. H. Prengle, J. William. Experimental Rate Constant and Reactor Considerations for the Destruction of Micropollutants and Trihalomethane Precursors by Ozone with UV Radiations. Water Science and Technology, 1983, 17(4): 743~751
    56. R. W. Mattews. Photooxidation of Organic Material in Aqueous Suspentions of Titanium Dioxide. Water Research, 1990, 24(5): 653~670
    57. Oswami D Y. A Review of Engineering Developments of Aqueous Phase Solar Photocataltic Detoxification and Disinfection Processes. Journal of Solar Energy Engineering, 1997, 119(3):101~107
    58.贾素云,王建民. Ni2O3/ TiO2复合体系光催化氧化处理蓖酸甲酯裂解废水.应用基础与工程科学学报. 2001, 9: 158-163
    59.陈逸,谷科成,张恒等.活性炭纤维负载TiO2的光催化性能.后勤工程学院学报, 2010, 26(1): 71~82
    60.毛传峰,童少平,刘维屏. O3/UV, O3/TiO2/UV, O3/VO2/TiO2降解磺基水杨酸.工业水处理. 2003, 9(23): 52~54
    61.白红伟,邵嘉慧,张西旺等. TiO2光催化对微滤去除腐殖酸的膜污染控制研究.环境工程学报. 2010, 4(1): 128~132
    62.蒋玉龙,王智宇,唐培松等.量子尺寸纳米TiO2的水热制备及光催化性能.浙江大学学报,2005,39(3):440~444
    63.蒲玉英,方建章,彭峰等.微乳法制备纳米TiO2/SiO2的结构及光催化研究.无机化学学报, 2007, 23(6): 1046~1050
    64. C. Volk, P. Roche, J.C. Joret, et al. Comparison of the Effect of Ozone, Ozone-hydrogen peroxide System and Catalytic Ozone on the Biodegradable Organic Matter of a Fulvic Acid Solution. Wat. Res. 1997, 31(3): 650~656
    65. J. Fernando Beltrán, Francisco J. Rivas, Ramón Montero-de-Espinosa. Catalytic Ozonation of Oxalic acid in an Aqueous TiO2 Slurry Reactor. Applied Catalysis B: Environmental, 2002, 39(3): 221~231
    66. Fernando J. Beltrán, Francisco J. Rivas, Ramón Montero-de-Espinosa. A TiO2/Al2O3 Catalyst to Improve the Ozonation of Oxalic Acid in Water. Applied Catalysis B: Environmental, 2004, 47(2): 101~109
    67. H. Paillard, M. Doré, M. Bourbigot. Application of Catalytic Ozonation in Drinking Water Treatment [A]. In: Proceedings of the 10th Ozone World Congress. Monaco, 19-21 March 1991, pp313-329
    68. H. Paillard, E. Carbonnier, P.Roche. in: Proceedings of the Conference ACS on Emerging Technologies for Hazardous Waste Management, Atlanta, 1-3 October 1991
    69. C. Cooper, R. Burch. An Investigation of Catalytic Ozonation for the Oxidation of Halocarbons in Drinking Water Preparation. Wat. Res. 1999, 33(18): 3695~3700.
    70. J. Lin, T. Nakajima, T. Jomoto, et al. Effective Catalysts for Wet Oxidation Of Formic Acid by Oxygen and Ozone. Ozone Sci. Eng. 2000, 22(3): 241~247.
    71. R. Gracia, S. Cortes, J. Sarasa, et al. TiO2-catalysed Ozonation of Raw Ebro River Water. Wat. Res. 2000, 34(5): 1525-1532.
    72. Yixin Yang, Jun Ma, Qingdong Qin, et al. Degradation of Nitrobenzene by Nano-TiO2 Catalyzed Ozonation. J. of Molecular Catal. A: Chem., 2007. 267(1-2): 41~48
    73. R. Rosal, A. Rodrguez, M.S. Gonzalo. Catalytic Ozonation of Naproxen and Carbamazepine on Titanium Dioxide. Applied Catalysis B: Environmental, 2008, 84(1-2): 48~57
    74. Roberto Rosal, María S. Gonzalo,et al. Ozonation of Clofibric acid Catalyzed by Titanium Dioxide. J. of Hazardous Materials,2009, 169(1-3): 411~418
    75. Fernando J. Beltran, Francisco J. Rivas, Ramon Montero-de-Espinosa. Catalytic Ozonation of Oxalic Acid in an Aqueous TiO2 Slurry Reactor.Applied Catalysis B: Environmental. 2002, 39(3): 221~231
    76. K. M Bulanin, J. C Lavalley, A. A Tsyganeneko. Infrared Study of Ozone Adsorption on TiO2 (anatase). J. Phys. Chem. 1995, 99(25): 10294~10298
    77.岳林海,徐铸德.半导体的表面修饰与其光电化学应用.化学通报. 1998, 9:28~31
    78. Kamat P V. Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces. Chem.Rev.1993, 93(1): 267~300
    79. FoxMA, Dulay MT. Heterogeneous photocatalysis. Chem.Rev. 1993, 93(1): 341~357.
    80.符小荣,张校刚,宋世庚等. TiO2/Pt/glass纳米薄膜的制备及对可溶形燃料的光催化降解.应用化学, 1997, 14(4): 77
    81.席北斗,孔欣,刘纯新等.加铂修饰型催化剂光催化氧化五氯酚.环境化学, 2001, 20: 27
    82.李慧泉,陈伟凡,崔玉民等. La2O3/TiO2/SO42-纳米光催化剂的制备和性能.石油化工, 2006, 35(4): 374~378
    83.解庆范,陈延民,张素丽等.复合光催化剂Er2O3/TiO2的制备及其性能的研究.中国稀土学报, 2006, 24(3): 371~375
    84.江宏富,周作兴,刘杏芹等. LiF掺杂TiO2的制备及其光催化性能.催化学报, 2007, 28(4): 377~382
    85.颜秀茹,李晓红,霍明亮等.纳米SnO2-TiO2的制备及其光催化性能.物理化学学报, 2001, 17(1): 23.
    86.李晓佩,陈锋,张金龙.酞菁改性的介孔TiO2的制备及其可见光光催化活性. 2006年全国太阳能光化学与光催化学术会议, 2007, 28(3): 229~233
    87.赵凤伟,尚静,李佳.苝二酰亚胺敏化TiO2可见光光催化降解罗丹明B.北京大学学报(自然科学版), 2009, 3: 128~132
    88.付宁,吕功煊.杂多蓝在可见光照射下对TiO2的光敏作用研究.化学学报, 2007, 65(l4): 1325~1332
    89.刘秀华.金属离子掺杂二氧化钛光催化剂的改性研究.北京:中国工程物理研究院,2007: 36~65.
    90. W. Choi., A. Termin., Hoffmann. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. Phys.Chem.1994, 98(51):13669~13679.
    91.陆城,杨平,杜玉扣等. Fe3+/V5+/TiO2复合纳米微粒光催化性能的研究.化学研究与应用, 2002, 14(3): 265.
    92.张宗伟,樊君. Tb掺杂对纳米TiO2光催化活性的影响.石油化工, 2007, 36(9): 965~960
    93.石建稳,郑经堂,胡燕等. Ho掺杂对纳米TiO2晶体结构和光催化性能的影响.硅酸盐学报, 2007, 35(2): 182~186
    94.梁瑞生,王德煌,程虎民等.北京大学学报(自然科学版). 2000,36(5):634~63
    95.李芳柏,古国榜,黎永津.环境科学. 1999, 20(4): 75~78
    96. Zhi-Hao Yuan, Jun-Hui Jia, Li-De Zhang, et al. Influence of co-doping of Zn(II)+Fe(III) on the photocatalytic activity of TiO2 for phenol degradation. Materials Chemistry and Physics, 2002, 73(2~3): 323~326
    97. Ping Yang, Cheng Lu, Nanping Hua et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Materials Letters, 2002, 57(4): 794~801
    98.冯良荣,吕绍洁,邱发礼.过渡金属离子掺杂对纳米光催化剂的影响.化学学报, 2002, 60(3): 463~467
    99.卢平,姚明明,张颖等.掺杂离子对TiO2光催化活性的影响及催化剂性能表征.感光科学与光化学, 2002, 20(3): 185~190
    100.曹振娟,董帆,赵伟荣等.锌掺杂纳米TiO2光催化剂制备条件研究.电子元件与材料, 2007, 26(8): 20~23
    101. N. Karpel Vel Leitner, B. Delouane, B. Legube,et al. Effects Of Catalysts During Ozonation Of Salicylic Acid, Peptides And Humic Substances In Aqueous Solution. Ozone Sci. & Eng. 1999, 21(3): 261~276
    102.孙明,魏锡文,胡小华.铁掺杂TiO2纳米粉的制备、表征及其光催化活性.材料导报, 2007, 21(z1): 153~155
    103.何春萍.钕掺杂纳米二氧化钛光催化活性研究.吉林化工学院学报, 2007, 24(3): 27~29
    104. R Rodr?guez-Talaveraa, S Vargas, R Arroyo-Murillo, et al. Modification of the Phase Transition Temperatures in Titania Doped with Various Cations. J. Mater. Res., 1997, 12: 439~442
    105.马明远,李佑稷.铁离子掺杂对TiO2的晶粒生长及晶化过程的影响.硅酸盐学报, 2010, 38(1): 137~142
    106.朱启安,王树峰,陈万平等. Li+掺杂纳米TiO2的制备及其光催化性能研究.感光科学与光化学, 2007, 25(5): 340~349
    107. J. Hoigné, H. Bader. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water. PartⅠ. Non-dissociating Organic Compounds. Water Res. 1983, 17(2): 173~184
    108. J. Hoigné, H. Bader. The Role of Hydroxyl Radical Reaction in Ozonation Processes in Aqueous Solution. Water Res. 1976, 10(5): 377~386
    109. J. Hoigné, H. Bader. Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water. PartⅡ. Non-dissociating Organic Compounds. Water Res. 1983, 17(2): 185~194
    110.美国公共卫生协会编著.水和废水标准检验法.宋仁元,张亚杰,王唯一等译.第15版.中国建筑工业出版社, 1985: 368-370
    111. H. Bader, J. Hoigné. Determination of ozone in water by the Indigo Method. Water Research, 1981, 15(4): 449~456.
    112.孙加飞,马军,隋军.气相色谱法测定水中痕量硝基苯.理化检验. 1993, 29(5): 275~276
    113. J. W. Munch, D. J. M. Winslow, S. D. Wendelken, et al. EPA Method 556: Determination of Carbonyl Compounds in Drinking Water by Pentafluorobenzyblydroxylamine Derivatisation and Capillary Gas Chromatography with Electron Capture Detection. 1998: 1~37
    114. H. Tamura, A. Tanaka, K. Mita, et al. Surface Hydroxyl Site Densities on Metal Oxides as a Measure for the Ion-exchange Capacity. J. Colloid Interface Sci. 1999, 209(1): 225~231
    115. M. Mullet, P. Fievet, A. Szymezyk, et al. A Simple and Accurate Determination of the Point of Zero Charge of Ceramic Membranes. Desalination. 1999, 121(1): 41~48
    116.杨忆新,马军,秦庆东等.纳米TiO2催化氧化去除水中微量硝基苯的研究,环境科学,2006,27(10):2028~2034
    117. Yixin Yang, Jun Ma, Qingdong Qin, et al. Degradation of Nitrobenzene by Nano-TiO2 Catalyzed Ozonation. Journal of Molecular Catalysis A: Chemical. 2007, 267(1-2): 41~48
    118.徐瑛,彭善堂.掺钇纳米TiO2的制备及其光催化降解性能.中南民族大学学报(自然科学版), 2005, 24(2): 16~18
    119.吴腊英,李长江.纳米二氧化钛粉末的溶胶-凝胶法合成及晶相转化.无机化学学报. 2002, 18(4): 339.
    120.蔡乃才,董庆华.悬浮体系中的半导体光催化及应用.化学通报. 1991(7): 9~13.
    121. A. Heller, Y. Degani, D. W. Johnson, et al. Controlled Suppression and Enhancement of the Photoactivity of Titanium Dioxide (rutile) Pigment. J. Phys.Chem, 1987.9(23): 5987-8991.
    122.印红玲,周德平,杨庆良,冯易君.含Mn、Ag催化剂分解高湿度臭氧尾气的研究.功能材料,2005,2 (36): 307~310.
    123. A. Sclafani, L. Palmisano, M. Schiavello. Influence of the Preparation Methods of TiO2 on the Photocatalytic Degradation of Phenol in Aqueous Dispersion. Journal of Physical Chemistry. 1990, 94(2): 829~832
    124. J. Staechlin, J. Hoigné, Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions. Environ. Sci. Technol., 1985, 19(12): 1206~1213
    125. W. H. Glaze, J. W. Kang. Advanced Oxidation Processes Test of a Kinetic Model of the Oxidation of Organic Compounds with Ozone and Hydrogen Peroxide in a Semibatch Reactor. Ind. Eng. Chem. Res., 1989, 28(11): 1580~1587
    126. F. J. Beltran. Ozone Reaction Kinetics for Water and Wastewater Systerms. Lewis Publisher. 2004: 4~19
    127. J. Staehelin, J. Hoigne. Decomposition of Ozone in Water: Rate of Initiation by Hydroxide Ion and Hydrogen Peroxide. Environ. Sci. Technol., 1982, 16: 676~681
    128. W. H. Glaze, J. W. Kang. The Chemistry of Watertreatment Process Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Sci. Eng., 1987, 9(5): 335~35
    129. J. Staechlin, J. Hoigné. Decomposition of Ozone in Water in the Presence of Organic Solutes acting as Promoters and Inhibitors of Radical Chain Reactions. Environ. Sci. Technol., 1985, 19(12): 1206~1213.
    130.沈吉敏.水中硝基(氯)苯及多羟基单宁酸的O3/H2O2降解效果及机理.哈尔滨工业大学博士论文. 2007: 65~66.
    131. J. Hoigné. Inter Calibration of OH Radical Sources and Water Quality Parameters. Water Science and Technology, 1997, 35(4): 1~8
    132. W. Y. Choi ,A. Termin,M. R. Hoffmann. J. Phys. Chem., 1994, 98: 13669~13679.
    133. V. Brezová, A. Blaková, Karpinsky, et al. Phenol Decomposition using Mn+/TiO2 Photocatalysts Supported by the Sol-gel technique on Glass fibres. J. Photochem &. Photobio A: Chemistry, 1997, 109(2): 177~183.
    134. A. W. Xu, Y. Gao, H. Q. Liu. The Preparation, Characterization, and their Photocatalytic Activities of Rare-Earth-Doped TiO2 Nanoparticles. Journal of Catalysis. 2002, 207(2): 151~157.
    135.岳林海,水淼,徐铸德等.稀土掺杂TiO2的相变和光催化活性.浙江大学学报(理学版), 2000, 27(1): 69~74.
    136.刘畅,暴宁钟,杨祝红等.过渡金属离子掺杂改性的光催化性能研究进展.催化学报. 2001, 22(2):215~218.
    137.卫生部和国家标准化管理委员会.《生活卫生饮用水卫生标准》, GB5749– 2006, 2006.
    138. K. J. D Mackenzie, Trans, J. Br. Ceram. Calcination of Titania: V, Kinetics and Mechanism of the Anatase-rutile Transformation in the Presence of additives. Soc., 1975, 74(2): 29~34.
    139.张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    140. Handbook of X-Ray photoelectron spectroscry. Physical Electronics Inc.
    141. R.Andreozzi, A.Insola, V.Caprio, et al. The use of Manganese Dioxide as a Heterogeneous Catalyst for Oxalic Acid Ozonation in Aqueous Solution. Appl. Catal. A. 1996, 138(1): 75~81
    142. R. Andreozzi, A. Insola, V. Caprio, et al. The Kinetics of Mn (II)-catalysed ozonation of Oxalic Acid in Aqueous Solution. Wat Res. 1992, 26(7): 917~921
    143. R. Gracia, S. Cirtes, J. Sarasa, et al. TiO2-catalyzed Ozonation of Raw River Water. Water Research, 2000, 34(5): 1525~1532.
    144. Fernando J. Beltran, Francisco J. Rivas, Ramon Montero-de-spinosa. Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 2. Heterogeneous Catalytic Ozonation. Ind. Eng. Chem. Res. 2003, 42(14): 3218~3224
    145. Y. Pi, M. Ernst, J. Schrotter. Effective of Phosphate Buffer upon CuO/Al2O3 and Cu (Ⅱ) Catalyzed Ozonation of Oxalic Acid Solution. Ozone Sci. & Eng. 2003, 25(5): 393~397
    146. L. R. Radovic, C. Moreno-Castilla, J. Rivera-Utrilla. Carbon Materials as Adsorbents in Aquesous Soutions. In Chemictry and Physics of Carbon (Edited by: L.R.Radovic) Dekker, 2001, 27: 227~406
    147. C. G. Hewes, R.R. Davinson, Renovation of Waste Water by Ozonation,Water AIChE Symposium Series 1972, 69~71
    148. R. Andreozzi, A. Insola, V. Caprio, et al. The Kinetics of Mn (Ⅱ)-catalysed Ozonation of Oxalic Acid in Aqueous Solution. Water Res. 1992, 26(7): 917~921
    149.简丽.钴掺杂二氧化钛的制备及光催化性能的研究.环境科学与技术, 2003, 26(增刊): 6~8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700