周期性断食—投喂对凡纳滨对虾氮磷收支和环境氮磷负荷的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以凡纳滨对虾为实验对象,通过对其进行单周期的饥饿后再投喂和周期性断食-投喂实验,查明凡纳滨对虾达到完全补偿生长所需的时间以及在周期性断食-投喂过程中摄食、排粪、排泄、生长和蜕皮的变化规律,建立个体氮磷收支模型,探讨周期性断食-投喂方式对凡纳滨对虾氮磷收支结构以及环境氮磷负荷的影响。
     单周期的饥饿后投喂实验中,饥饿1d、2d、3d的凡纳滨对虾(初始干重0.1167±0.0042g),分别需要经过3d、5d、9d的恢复投喂其体重才能达到完全补偿生长,此时其粗蛋白含量也达到对照组水平。凡纳滨对虾在饥饿期的氮、磷排泄率均随时间变化而呈下降趋势,峰值出现在7∶00,谷值不明显;恢复投喂期各组对虾的氮、磷排泄率峰值均出现在19∶00,而谷值出现在7∶00。
     周期性断食-投喂实验中,S_1(饥饿1d投喂3d)、S_2(饥饿2d投喂5d)、S_3(饥饿3d投喂9d)组凡纳滨对虾总摄食量分别为S_0(连续投喂)组的81.15%、77.19%和78.80%,总排粪量分别仅为对照组S_0的64.86%、59.08%和56.52%。S_1、S_2、S_3组对虾的终体质量、特定生长率、粗蛋白和粗脂肪含量均与S_0组无显著差异,食物转化率显著高于S_0组,各组对虾达到了完全补偿生长。
     周期性断食-投喂实验中,各组对虾的氮磷收支方程为:
     N收支 S_1:100C_N=20.1F_N+47.0U_N+41.8G_N+1.8E_N-10.8δ_N
     S_2:100C_N=19.2F_N+51.9U_N+41.7G_N+1.6E_N-14.5δ_N
     S_3:100C_N=18.1F_N+50.7U_N+43.2G_N+1.5E_N-13.5δ_N
     S_0:100C_N=25.7F_N+45.4U_N+34.7G_N+1.7E_N-7.5δ_N
     P收支 S_1:100C_P=30.9F_P+39.8U_P+25.1G_P+0.8E_P+3.4δ_P
     S_2:100C_P=27.7F_P+43.3U_P+26.2G_P+0.7E_P+2.2δ_P
     S_3:100C_P=26.3F_P+41.1U_P+26.0G_P+0.6E_P+6.0δ_P
     S_0:100C_P=38.4F_P+35.6U_P+20.6G_P+0.7E_P+4.7δ_P(C—摄食,F—排粪,U—排泄,G—生长,E—蜕皮,δ—累计误差)
Starvation experiments of Litopenaeus vannamei were carried out under laboratory conditions. The time of completely compensatory growth, feeding, faecal production, excretion, growth and exuviation of the shrimp were measured, and the nitrogen and phosphorus budgets of the shrimp were modeled. The effects of periodic starvation on nitrogen and phosphorus budgets of Litopenaeus vannamei and environmental N&P loading were discussed in this paper.
    In the sarvation-refeeding experiment, the shrimps which had been deprived of food for 1d, 2d and 3d need 3d, 5d and 9d respectively for completely compensatory growth and crude protein contentment. In the starvation period, the N and P excretion rate of the sarvated shrimps decreased with a maximum value at 7:00. In the refeeding period, the N and P excretion rate of shrimps maximized at 19:00 and minimized at 7:00 everyday.
    In the periodic starvation experiment, group S_1 (starvating 1d every 4d), S_2 (starvating 2d every 7d), S3 (starvating 3d every 12d) and conctrol group S_0 (feeding everyday) of Litopenaeus vannamei were set. The feeding amount of group S_1, S_2, S_3 were 81.15%, 77.19% and 78.80% of that of group S_0, respectively; and the amount of faecal production of group S_1, S_2, S_3 were 64.86%, 59.08% and 56.52% of that of group So, respectively. The final dry weight, the specific growth rate, the amount of crude protein and crude lipid of shrimps had no significant differences in all groups, but the food conversion efficiency of group S_1, S_2, S_3 were higher than that of group So.
    The nitrogen and phosphorus budgets of the shrimp were depicted as follows:
引文
1.鲍宝龙,苏锦祥.海洋饥饿仔鱼营养状况的研究.上海水产大学学报,1998,7(1):51~58.
    2.陈昌生,黄标,叶兆弘等.南美白对虾摄食、生长及存活与温度的关系.集美大学学报,2001,6(4):296~300.
    3.陈慈美,张彩云,朱建军等.养殖污水对厦门西海域浮游植物的生态效应.海洋通报,1994,13(6):24~33.
    4.陈楠生等译.对虾生物学.青岛:青岛海洋大学出版社,1992:171~238.
    5.陈晓耘.饥饿对南方鲶幼鱼血液的影响.西南农业大学学报,2000,22(2):167~169,176.
    6.陈祖峰,郑爱榕.海水养殖自身污染及污染负荷估算.厦门大学学报(自然科学版),2004,43(sup.):258~262.
    7.崔奕波.鱼类生物能量学的理论与方法.水生生物学报,1989,13(4):369~383.
    8.崔毅,陈碧鹃,陈聚法.黄渤海海水养殖自身污染的评估.应用生态学报,16(1):180~185.
    9.邓利,张波,谢小军.南方鲇继饥饿后的恢复生长.水生生物学报,1999,23(2):167~173.
    10.邓利,张为民.饥饿对黑鲷血清生长激素、甲状腺激素以及白肌和肝脏脂肪、蛋白质含量的影响.动物学研究,2003,24(2):94~98.
    11.刁晓明.饥饿状态下白鲫能量物质消耗的研究.重庆水产,1998,45(4):20~23.
    12.董双林,堵南山,赖伟.日本沼虾生理生态学研究Ⅰ-温度和体重对其代谢的影响.海洋与湖沼,1994,25(3):233~237.
    13.董双林,李德尚,潘克厚等.论海水养殖的养殖容量.青岛海洋大学学报,1998,28(2):253~258.
    14.段彪,苟旭.团头鲂饥饿后恢复生长的初步研究.饲料工业,2001,22(7):9~10.
    15.郭东晖,李少菁,陈峰.中华假磷虾碳氮收支的实验研究.海洋学报,2005, 27(1):101~106.
    16.韩家波,木云雷,王丽梅.海水养殖与近海水域污染研究进展.水产科学.1999,18(4):40~43.
    17.黄国强,董双林,王芳等.饵料种类和摄食水平对中国对虾蜕皮的影响.中国海洋大学学报,2004,34(6):942~948.
    18.计新丽,林小涛,许忠能等.海水养殖自身污染机制及其对环境的影响.海洋环境科学,2000,19(4):66~71.
    19.贾晓平,蔡文贵,林钦等.我国沿海水域的主要污染问题及其对海水增养殖的影响.中国水产科学,1997,4(4):78~82.
    20.姜志强,贾泽梅,韩延波.美国红鱼继饥饿后的补偿生长及其机制.水产学报,2002,26(1):67~72.
    21.雷思佳,李德尚.台湾红罗非鱼幼鱼水分含量与脂肪、蛋白质含量及比能值之间关系的研究.华中农业大学学报,1999,18(4):367~370.
    22.李程琼,冯健,刘永坚等.奥尼罗非鱼多重饥饿后的补偿生长.中山大学学报(自然科学版),2005,44(4):99~102.
    23.李纯厚,黄洪辉,林钦等.海水对虾池塘养殖污染物环境负荷量的研究.2004.23(3):545~550.
    24.李庆彪,李美芝,王宝庭.虾池生态系的特点与虾病.海洋学报,1995,17(5):135~139.
    25.李松青,林小涛,李卓佳等.摄食对凡纳滨对虾耗氧率和氮、磷排泄率的影响.热带海洋学报,2006,25(2):44~48.
    26.李松青.南美白对虾的氮磷收支及养殖环境氮磷负荷的研究.暨南大学硕士学位论文.2003.27~29.
    27.李正森,梁顺荣,廖一久.规则性绝食对虾类影响之研究.Ⅱ规则性绝食对草虾摄食量及其成长之影响.台湾省水产学会刊,1974,3(2):93~100.
    28.林浩然.鱼类生理学.广州:广东高等教育出版社,1999,16~58.
    29.林小涛,张秋明,许忠能等.虾蟹类呼吸代谢研究进展.水产学报.2000.24(6):575~580.
    30.林小涛,周小壮,于赫男等.饥饿对南美白对虾生化组分及补偿生长的影响. 水产学报.2004,28(1):47~53.
    31.钱云霞,陈惠群,孙江飞.饥饿对养殖鲈鱼血液生理生化指标的影响.中国水产科学.2002,9(2):133~137
    32.日本水产会,黄小秋译.浅海养殖自身污染.东京:恒星社厚生阁,1977.28~43.
    33.沈文英,金叶飞,金俊等.饥饿和再投喂对白鲫生物化学组分的影响.绍兴文理学院学报,2002,22(2):49~51.
    34.沈文英,寿建昕.鱼类补偿生长的研究进展.水利渔业,2003,23(4):40~42.
    35.宋昭彬,何学福.鱼类饥饿研究现状.动物学杂志,1998,33(1):48~52.
    36.孙舰军,丁美丽.改善虾池环境增强中国对虾抗病力的研究.海洋科学,1999,(1):3~5.
    37.孙耀,李健,崔毅等.虾塘新生残饵的N、P营养物溶出速率及其变化规律研究.应用生态学报,1997,8(5):541~544.
    38.王剑伟.稀有觞鲫的摄食率、排泄率和排粪率.水生生物学报,2000,24(1):82~85.
    39.王兴强.凡纳滨对虾生长和生物能量学的初步研究.中国海洋大学博士学位论文.2004,3~5.
    40.王岩,崔正贺.鱼类补偿生长研究中的几个问题.上海水产大学学报,2003,12(3):260~264.
    41.王岩.中国对虾、非鲫和海湾扇贝对海水实验围隔中悬浮物沉积的影响.海洋科学,1998,(5):1~3.
    42.吴耀泉.谈谈港湾浅海筏式养殖区”老化”与贝类排泄物关系.中国水产,1996,(4):31.
    43.伍喜林,杨凤.动物补偿生长效应研究.中国饲料,2003,5:9~11.
    44.线薇薇,朱鑫华.投饵水平对褐牙鲆幼鱼生长影响的研究.青岛海洋大学学报,2000,30(3):453~458.
    45.肖慧.投饵水平对中华鲟生长影响的研究.内陆水产,1998,2:6~10.
    46.杨红生,周毅.滤食性贝类对养殖海区环境影响的研究进展.海洋科学,1998,(2):42~44.
    47.杨庆霄,蒋岳文,张昕阳等.虾塘残饵腐解对养殖环境影响的研究(Ⅰ).海洋环境科学,1999,18(2):11~15.
    48.杨圣云,许振祖.优化养殖水域生态系统结构的若干途径.海洋科学,1997,21(3):42~43.
    49.杨严鸥,崔奕波,熊邦喜.建鲤和异育银鲫摄食不同质量饲料时的氮收支和能量收支比较.水生生物学报,2003,27(6):573~580.
    50.杨严鸥,姚峰,何文平.长吻鮠异育银鲫和草鱼补偿生长的比较研究.中国水产科学.2005,12(5):575~579.
    51.杨逸萍,王增焕,孙建等.精养虾池主要水化学因子变化规律和氮的收支.海洋科学,1999,(1):15~17.
    52.殷名称.北海鲱卵黄囊期仔鱼的摄食能力和生长.海洋与湖沼,1991,15(4):348~358.
    53.于赫男.南美白对虾继饥饿胁迫后的补偿生长研究.暨南大学硕士学位论文.2004.4~6.
    54.翟雪梅,张志南.虾池生态系统能流结构分析.青岛海洋大学学报,1998,28(2):275~282.
    55.张道波,马琳,马矬.中国对虾仔虾对磷需要量的研究.青岛海洋大学学报(自然科学版),2000,30(1):63~67.
    56.张海波,仲维仁.海水网箱养鱼的自身污染及防治.齐鲁渔业,1995,9(2):68.
    57.张硕,董双林,王芳.中国对虾氮收支的初步研究.海洋学报,1999,21(6):,1999,21(6):81~86.
    58.张硕,董双林.饵料和盐度对中国对虾幼虾能量收支的影响.大连水产学院学报,2002,19(3):227~233.
    59.周歧存,郑石轩,叶应旺.投饵水平对凡纳对虾生长、饲料利用和虾体主要成分的影响.海洋通报,2004,23(1):64~68.
    60.朱小明,吴荔生,马志勇等.日本对虾仔虾呼吸和排泄的初步研究.台湾海峡,2001,20(1):37~42.
    61.朱晓鸣,解绶启,崔奕波.投饵水平对异育银鲫生长及能量收支的影响.海洋与湖沼,2000,31(5):471~479.
    62. Ali M, Wootton R J. Capacity for growth compensation in juvenile three-spined sticklebacks experiencing cycles of food deprivation. J Fish Biol., 2001, 58: 1531~1544.
    63. Allan G L, Moriaty D J W., Maguire G B. Effects of pound preparation and feeding rate on production of Penaeus monodon fabricius, water quality, bacteria and benthos in model fanning ponds. Aquaculture, 1995, 130: 329~349.
    64. Allen J R, Wootton R J. The effect of ration and temperature on the growth of three-spined stickleback, Gasterosteus aculeatus L. J Fish Biol, 1982, 20: 409~422.
    65. Bartley D M, Carlberg J M, van Olst J C, et al. Growth and conversion efficiency of juvenile American lobsters (Homarus atnericanus) in relation to temperature and feeding level. Proceeding of the eleventh annual meeting. World Mariculture Society. New Orleans, Louisiana, 1980. 355~368.
    66. Bilton H T, Robins G L. The effects of starvation and subsequent feeding on survival and growth of Fulton channel sockeye salmon fry (Oncorhynchus nerka). J Fish Res. Bd Can. 1973, 30: 1~5.
    67. Boehlert G. W, Yoklavich M M. Effects of temperature, ration, and fish size on growth of juvenile black rockfish, Sebasts melanops. Environ Biol. Fish, 1983, 8: 17~28.
    68. Bostworth B G, Wolters W R. Compensatory growth in juvenile red swamp crawfish, Procambarus clarkii. Eighth Inernational Symposium on Astacology. Romaire R Ped. Baton Rouge, La-USA, Louisiana State Univ, Printing Office. 1995, 648~656.
    69. Brabrand A, Faafeng B A, Nilssen J PM. Relative importance of phosphorus supply to phytoplankton production: fish excretion versus external loading. Can. J. Fish. Aquat. Sci., 1990, 47: 364~372.
    70. Brett J R. Fish Physiology. New York: Academid Press, 1979, 599~677.
    71. Brett, J. R., Zala, C. A., Daily pattern of nitrogen excretion and oxygen consumption of sockeye salmon (Oncorhynchus nerka) under controlled conditions. J. Fish. Res. Board Can. 1975, 32: 2479~2486.
    72. Carter C G, Brafield A E. The bioenergetics of grass carp, the influence of body weight, ration and dietary composition on nitrogenous excretion. J. Fish Biol., 1992, 41(4): 533~543.
    73. Carter C G, Brafield A E. The relationship between specific dynamic action and growth in grass carp, Ctenopharyngodon idella (Val.). J. Fish Biol., 1992, 40 (6): 895~907.
    74. Cui Y, Chen S, Wang S. Effect of ration size on the growth and energy budget of the grass carp, Ctenopharngodon idella Val. Aquaculture, 1994, 123: 95~107.
    75. Cui Y, Wootton R J. Bioenergetics of growth of a cyprinid, Phoximus phoxinus: the effect of ration, temperature and body size on food consumption, fecal production and nitrogenous excretion. J Fish Biol., 1988b, 33: 431~443.
    76. Cui Y, Wootton. Pattern of enengy allocation in the minnow, Phoxinus phoxinus (L.)(Pisces: Cyprinidae). Funct Ecol, 1988a, 2: 57~62.
    77. Damsgaard B, Dill L M. Risk-taking behavior in weight-compensating coho salmon, Oncorhynchus kisutch. Behav Ecol, 1998, 9: 26~32.
    78. Dosdat, A., Servais, F., Me'tailler, R., Huelvan, C., Desbruye'res, E. Comparison of nitrogenous losses in five teleost fish species. Aquaculture 1996, 141: 107~127.
    79. Foy R H., Rosell R. Loading of nitrogen and phosphorus from a Northern Ireland fish farm. Aquaculture, 1991, 96: 17~30
    80. From J, Rasmussen G. A growth model, gastric evacuation, and body composition in rainbow trout, Salmo gairdneri Richardson. 1836. Dana, 1984, 3: 61~139.
    81. Gaylord T G, Gatlin Ⅲ D M. Dietary protein and energy modifications to maximize compensatory growth of channel catfish (Ictalurus punctatus). Aquac, 2001, 194: 337~348.
    82. Godin J GJ. Effect of hunger on the daily pattern of feeding rates in juvenile pink salmon, Oncorhynchus gorbuscha Walbaum. J. Fish Biol, 1981, 19: 63~71.
    83. Grant J, Thompson K R. A model of carrying capacity for suspended mussel culture in eastern Canana. J. Shellfish Res, 1988, 7 (3): 568.
    84. Greeff J C, et al. The effect of compensatory growth on feed intake, growth rate and efficiency of feed utilization in sheep. South African Journal of Animal science, 1986, 16: 162~168.
    85. Gu H, Anderson A J, Mather P B, et al. Effect of feeding level and starvation on growth and water and protein content in juvenile redelaw crayfish, Cherax quadricarinatus (von Martens). Marine and Freshwater Research, 1996, 47(5): 745~748.
    86. Hayward R S., Noltie D B., Wang N. Use of compensatory growth to double hybrid sunfish growth rate. Trans. Am. Fish Soe. 1997, 126: 316~322.
    87. Hewitt D R, Iving M G. Oxygen consumption and ammonia excretion of the brown tiger prawn Penaeus esculentus fed diets of varying protein content. Comparative Biochemistry and Physiology Part A, 1990, 96 (3): 373~378.
    88. Jobling M, Davis P S. Effects of feeding on metabolic rate, and the specific dynamic action in plaice, Pleuronectes platessa L. J. Fish Biol., 1980, 16: 629~638.
    89. Jobling M. The influence of feeding on metabolic rate of fish: a short review. J. Fish Biol., 1981, 18: 385~400.
    90. Jobling M. Toward an explanation of specific dynamic action (SDA). J. Fish Biol., 1983, 23: 549~555.
    91. Jobling, M., Some effects of temperature, feeding and body weight on nitrogenous excretion in young plaice (Pleuronectes platessa L.). J. Fish Biol., 1981, 18: 87~96.
    92. Kikuchi, K., Nitrogen excretion rate of Japanese flounder-a criterion for designing closed recirculating culture systems. Bull. Fish. Res. Isr. 1995, 47: 112~118.
    93. Kim M K, Lovell R T. Effect of restricted feeding regimes on compensatory weight gain and body tissue changes in channel catfish Ictalurus punctatus in pond. Aquaculture, 1995, 135: 285~293.
    94. Luquet P, Oteme Z J, Cisse A. Evidence for compensatory growth and its utility in the culture of Heterobranchus longifilis. Aquat Living Resour., 1995, 8: 389~394.
    95. Meyer-Burgdorff K-H, Osman M F, Gunther K D. Energy metabolism in Oreochromis niloticus. Aquaculture, 1989, 79: 283-291.
    96. Miglave I, Jobling M. The effects of feeding regime on proximate body composition and patterns of energy depositon in Juvenile Arctic charr, Salvelinus alpinus. J. Fish Biol., 1989a, 35: 1~11.
    97. Nelson S G, Knight A W, Li H W. The metabolic cost of food utilization and ammonia production by juvenile Macrobrachium rosenbergii (Crustacea Palaemonidae). Comparative Biochemistry and Physiology, 1977, 57a: 67~72.
    98. Nicieza A G, Metcalfe N B. Growth compensation in juvenile Atlantic salmon: Responses to depressed temperature and food availability. Ecology, 1997, 78: 2385~2400.
    99. Paez-Osuma F, Guerrero-Galvan, Ruiz-Fernandez. The environmental impact of shrimp aquculture and the coastal pollution in Mexico. Marine Pollution Bulletin, 1998, 36: 65~75.
    100. Paul A J, Paul J M, Smith R L. Compensatory growth in Alaska yellowfin sole, Pleuronectes asper, following food deprivation. J. Fish Biol., 1995, 46: 442~448.
    101. Perera, W.M.K., Carter, C.G., Houlihan, D.F. Feed consumption, growth and growth efficiency of rainbow trout, Oncorhynchus mykiss Walbaum. fed diets containing bacterial single cell protein. Br. J. Nutr. 1995, 73: 591~603.
    102. Robert G. Wetzel, Erik S. Brammer et al. Photosynthesis of submersed macrophytes in acidified lakes Ⅱ. Carbon limitation and utilization of benthic CO2 sources. Aquatic Botany, 1985, 22(2): 107~120.
    103. Robert S., Hayward, Ning Wang, Douglas B. Group holding impedes compensatory growth of hybrid sunfish. Aquaculture, 2000, 183: 299~305.
    104. Sedgwick R W. Effects of ration size and feeding frequency on the growth and food conversion of juvenile Penaeus merguiensis de Ma. Aquac, 1979, 16: 279~298.
    105. Skilbrei O T. Compensatory sea growth of male Atlantic salmon, Salmo salar L., which previously mature as parr. J. Fish Biol., 1990, 37: 425~435.
    106. Solomon D J, Brafield A E. The energetics of feeding metabolism and growth of perch (Perca fluviatilis). J Anim Ecol, 1972, 41: 699~718.
    107. Suvapepun Sunee. Environmentnal impacts of marieulture. In: Snidvongs A, Utoomprukpom W, and Hungspreugs M (ed). Proceedings of the NRCT~JSPS Joint Seminar on Marine Science. Bangkok: Department of Marine Science, Chulalongkom University, 1994, 25~29.
    108. Thor P, Cervetto G, Besiktepe S, et al. Influence of two green algal diets on specific dynamic action and incorporation of carbon into biochemical fractions in the copepod Acartic tonsa Journal of Plankton Research, 2002, 24 (4): 293~300.
    109. Weatherley A H. and Gills H S. Recovery growth following periods of restricted rations and starvation in rainbow trout, Salmo gairdveri Richardson. J. Fish Biol. 1981, 18: 195~208.
    110. Wilson P N. and Osboum D F. Compensatory growth after undemutrition in mammals and birds. Biol. Rev., 1960, 35: 324-363.
    111. Zhang Z, Runham N W. Effects of food ration and temperature level on the growth of Oreochromis niloticus (L.) and their otoliths. J. Fish Biol., 1992, 40: 34~349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700