毛竹SSR位点引物开发及部分竹种系统学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
竹类植物是禾本科一个最大的自然类群,具有70余属,1200余种。竹子不仅具有生长快,用途广等特性,而且还具有良好的水源涵养和水土保持等环境功能。竹类植物通常难以开花,而且一旦开花,植株乃至全林即全部枯死,因而传统的以花、果实形态为主的分类方法对竹类植物十分困难。目前竹子的分类依然存在着很多争议,而分子标记技术的应用为竹子系统分类的深入开展提供了新的依据。SSR(Simple Sequence Repeat)简单序列重复,又称为微卫星,这类分子标记具有含量丰富,多态程度高,检测方法简便,不受环境和基因表达影响等特点,在种质鉴定、遗传多样性分析以及系谱分析中成为一种理想的分子标记。目前,竹类植物的微卫星引物开发国内外报道较少,无法满足竹子系统研究的需要。
     本研究通过磁珠富集法开发了31对毛竹SSR引物并对部分竹类植物进行了系统分类学研究。主要结果如下:
     1通过磁珠富集,成功构建了毛竹基因组DNA的GT、AG、CCA重复序列的富集文库,利用克隆PCR方法共检测了2330个克隆,三个文库分别检测菌落数为1080、620、630个,阳性克隆分别为219、113、119个,阳性率为19.4% (451/2330);
     2获得350条非冗余序列,长度范围在61~831bp之间,平均为288bp,序列总长为100 704bp,占毛竹基因组大小约1/20000;发现重复位点641个,重复次数在3~54次之间,其中重复3、4、5、6、7、8、9、10、>10次的位点数分别为415、86、37、14、19、8、12、11、39个;双核苷酸重复位点最多,为521个,三核苷酸、四核苷酸位点数分别为108、35个;
     3对获得序列进行Blast比对,结果显示:所得序列与GenBank登录序列的毛竹基因序列相似数最多,为63条,与水稻、甜高粱、小麦、玉米序列相似数分别为28、11、3、3条,这与毛竹的基因组进化地位相吻合;
     4设计合成了53对SSR引物,以毛竹基因组DNA为模板对这些引物是否工作进行了检测,其中34对引物扩增出了预期大小的条带,利用温度梯度PCR确定了各引物最适退火温度;
     5用荧光标记物FAM对34对引物中的正向引物进行标记,利用毛细管电泳分析9份毛竹种内样品SSR-PCR扩增产物的大小,其中引物对27、36、40的扩增产物中具有非预期大小的片段,对这三对引物扩增黄槽毛竹的PCR产物进行了克隆和序列分析,发现这些位点存在序列重复;利用其余31个位点对9份毛竹种内样品进行位点特征分析,发现31个位点在除黄槽毛竹的8个毛竹样品中都有预期大小的等位基因的扩增,而黄槽毛竹的位点特征与其他8个毛竹样品具有较大差异,其中位点2、17、38、42、50对黄槽毛竹显示零等位,位点8、13、15、18、21、24、28、31、32、33、37、41、43、46、49、51具有不同于其他8个毛竹样品的特殊等位基因,这些差异位点占总位点数的61.8% (5+16/34);
     6对除黄槽毛竹的8份毛竹样品的31个SSR位点进行分析,结果显示:有18个位点在所有8份毛竹样品中都只扩增出了一个大小相同的片段,其余13个位点的扩增条带具有差异,表现出了多态性;这31个位点的等位基因数(Observed Number of Alleles, Na)在1~3个之间,平均为1.548个;有效等位基因数(Effective Number of Alleles, Ne)在1~2.65之间,平均有效等位基因数为1.375个;这些位点的观测杂合度(Observed Heterozygosities, Ho)在0~1之间,平均为0.309;期望杂合度(Expeeted Heterozygosities,He)在0~0.67之间,平均为0.201;多态信息含量在0~0.575之间,平均为0.147;13个多态位点中只有1个位点的多态信息含量在0.5以上,其余12个位点在0.110~0.48之间,平均为0.352,多态信息含量较低,这些都表明毛竹种内遗传差异较小,基因突变程度较低;
     7对唐竹属、业平竹属、大节竹属的11个竹种的31个SSR位点进行了分析,检测结果用NTsys软件计算竹种间的Nei氏遗传距离(Nei's Distance),非加权算数平均法(Unweighted Pair-group Method with Arithmetic Means)对遗传距离矩阵进行聚类分析,结果显示31个SSR位点可以将这11个竹种分为三个属区;
     8对刚竹属内51份样品的31个SSR位点进行了分析,聚类结果表明:符合传统分类学方法,说明这些SSR位点可以为刚竹属植物属内的分类提供参考;各竹种种下等级之间的遗传距离大于零,说明它们相互间存在着一定的遗传变异,个体间具有遗传多样性,表明这些SSR位点可以对种内个体的进行遗传多样性及聚类研究,而且利用这些引物也可以开发为竹种或杂交种分子鉴定的标记;结果还显示竹种的种内变异程度小于种间变异,表明这些SSR位点可以为刚竹属的存在争议的种的界定提供参考。
Bamboo (Bambusoideae), the largest subfamily of the grasses (Poaceae), contains about 70 genera and 1200 species. Bamboo, the fastest growing and most widely-used woody species in the world, which is of economic significance, furthermore it plays an important role in the function of water conservation and soil conservation. It is difficult to classify and identify bamboos by using the traditional taxonomy method, which is based on the forms of flowers and fruit, because they seldom flowering and once it happens the plant or even the whole bamboo forest become dead. At present, the current bamboo classification is always in dispute in the academic field, and the application of molecular marker technology provide the basis for bamboo taxonomy. Simple Sequence Repeat or Microsatellite marker is an ideal tool for germplasm identification, genetic diversity and pedigree analysis, because they are abundant in genomic DNA, high polymorphism, easy to detect and uninfluenced by environment and gene expression. However, seldom bamboo microsatellite marker have been reported.
     This research developed 31 pairs of bamboo SSR primers by using the method of microsatellite enrichment of magnetic beads and analyzed 62 samples in 4 genera. The results are as follows:
     1. Three microsatelite enriched libraries (GT, AG, CCA) were constructed from Ph. heterocycla var. pubescens (Mazel) Ohwi genomic DNA, 2330 clones were screened by colony-PCR, with 1080, 620, 630 clones respectively, 219, 113, 119 positive clones were sequenced, the ratiowas 19.4% (451/2330).
     2. 350 non-redundancy sequences were obtained, which were between 61 bp and 831bp. The average length was 288bp, and the total length was 100 704bp, about 1/20 000 the size of Ph. heterocycla var. pubescens (Mazel) Ohwi genomic DNA. 641 SSR sites were found, the number of repeat motifs in each site were between 3~54, with 415, 86, 37, 14, 19, 8, 12, 11, 39 sites of 3, 4, 5, 6, 7, 8, 9, 10, >10 repeat unit. The sites of dinucleotide composed the most, with 521 sites, trinucleotide, tetronucleotide were 108, 35 sites respectively.
     3. Blast analysis of obtained sequences showed that: 63 sequences producing significant alignments to Ph. edulis sequences in GenBank, composed the most, and 28, 11, 3, 3 sequences producing significant alignments to rice, sweet sorghum, wheat and corn respectively, which consistent with the phylogenetic position of Ph. heterocycla var. pubescens (Mazel) Ohwi.
     4. 53 pairs of SSR primers were designed, 34 of which amplified target fragment from Ph.heterocycla var. pubescens (Mazel ) Ohwi genomic DNA and the annealing temperature were determined by using temperature gradient PCR.
     5. FAM labeled forward primer of 34 pairs of primers, capillary electrophoresis analyzed the length of SSR-PCR product of 9 samples of intraspecies of moso bamboo, loci 27, 36, 40 amplified specific fragments, clone and sequenced several fragments of these three primers' PCR amplification product in Ph. heterocycla cv. Luteosulcata. The result showed that, these loci manifested gene duplication. The other 31 loci analysis of 9 species showed that 31 loci amplified expected alleles at all 8 samples of moso bamboo except Ph. heterocycla cv. Luteosulcata. Ph. heterocycla cv. Luteosulcata manifested difference to the other 8 samples. Loci 2, 17, 38, 42, 50 showed null allele, loci 8, 13, 15, 18, 21, 24, 28, 31, 32, 33, 37, 41, 43, 46, 49, 51 ampified specific alleles to other 8 species, these loci takes the rate at 61.8% (5+16/34).
     6. 31 paris of developed SSR markers were used to assess the genetic diversity among the 8 moso bamboo, 18 loci were amplified only one band, 13 loci were polymorphism, at the rate of 41.94 %, the observed number of alleles were between 1~3, at an average of 1.548, and the effective number of alleles were between 1~2.6, at an average of 1.375; the Observed heterozygosities and Expeeted heterozygosities were between 0~1, 0~0.67, at an average of 0.309, 0.201. The PIC (Polymophism Information Content) is between 0~0.575, at an average of 0.147, showed the low level of mutation in these 8 moso bamboo.
     7. Capillary electrophoresis analyzed 31 SSR loci in 11 species belongs to 3 genera Semiarundinaria,Sinobambusa,Indosasa, Ntsys software calculated Nei’s genetic distance and clustering analyzed by unweighted pair-group method with arithmetic means, the result showed that these 31 loci could distinguish these species 3 genera.
     8. Capillary electrophoresis analyzed 31 SSR loci in 51 species (varieties or types) of genus Phyllostachys, the result showed that: On the whole, the clustering result consistent with the traditional taxonomy, shows that these SSR loci could be used to classify the genetic distance of Phyllostachys; the genetic distance between intraspecies is larger than 0, shows the presence of genetic variation and genetic polymorphism between them, so these loci could developed for species identification markers; the result also shows the genetic distance between species is larger than intraspecies, so these loci also could used for defining species which is in disputing.
引文
Albar L., Ndjiondjop M. N., Esshak Z., et al. Fine Genetic Mapping of a Gene Required for Rice Yellow Mottle Virus Cell-to-cell Movement. Theoretical and Applied Genetics, 2003, 107: 371~378
    Akaji, et al. Highly Polymorphic Microsatellites of Rice Consist of AT Repeats, and a Classification of Closely Related Cultivars with These Microsatellite Loci. Theoretical and Applied Genetics, 1997, 94: 61~67
    Aluko G., Martinez C., Tohme J., et al. QTL Mmapping of Grain Quality Traits from the Interspecific Cross Oryza sativa×O. glaberrima. Theoretical and Applied Genetics, 2004, 109: 630~639
    Bai Q. F., Zhu S. L., Chen X. Q., et al. Gene Diagnosis of 10 Chinese Families with Adult Polycystic Kidney Disease from Guangxi Region. Chinese Journal of Medical Genetics, 1998, 15(4): 218~220
    Barkley N. A., Newman M. L., Wang M. L., et al. Assessment of the Genetic Diversity and Phylogenetic Relationships of a Temperate Bamboo Collection by Using Transferred EST-SSR Markers. Genome, 2005, 48: 731~737
    Bhatia S., Shokeen B.. Isolation of Microsatellites from Catharanthus Roseus(L.)G. Don Using Enriched Libraries. Methods in Molecular Biology, 2009, 547: 289~302
    Blair M., McCouch S. R.. Microsatellite and Sequence-tagged Site Markers Diagnostic for the Bacterial Blight Resistance Gene Xa-5. Theoretical and Applied Genetics, 1997, 95(1~2): 174~184
    Carleton K. L., Streelman J. T., Lee B. Y. et al. Rapid Isolation of CA Microsatellites from the Tilapia Genome, Animal genetics, 2002, 33(2): 140~144
    Chen C. X., Zhou P., Choi Y. A. et al. Mining and Characterizing Microsatellites from Citrus ESTs. Theoretical and Applied Genetics, 2006, 112(7): 1248~1257
    Chen G. Q., Li L. F., Hao G. et al. Characterization of Seven Genomic and One dbEST-derived Microsatellite Loci in the River Mangrove Aegiceras corniculatum(Myrsinaceae). Conservation Genetics, 2007, 9(2): 449~451
    Chu Z. T., Sun H., Qian Y. P., Shi L., et al. The Relation between TNF Microsatellite Loci Polymorphism and Systemic Lupus Erythematosus in Yunnan People. Hereditas, 2001, 23(1): 11~13
    Clark L. G., Zhang W., Wendel J. F.. A Phylogeny of Grass Family(Poaceae) Based on ndhF Sequence Data. Systematic Botany, 1995, 20: 436~460
    Clayton W. D, Renvoize S. A.. Genera Graminum In Grasses of the World. HMSO, London 1986
    Cordeiro G. M., Maguire T. L., Edwards K. J. et al. Optimisation of a Microsatellite Enrichment Technique in Saccharum spp. Plant Molecular Biology Reporter, 1999, 17(3): 225~229
    Deng X. J., Li X. L., Wang P. R., et al. Genetic Analysis and Gene Mapping of a Dominant Long Culm Mutant in Rice. Acta Botanica Sinica, 2004, 46(8): 965~972
    Edwards A., Civitello A., Hammond H. A., et al. DNA Typing and Genetic Mapping with Trimeric and Tetrameric Tandem Repeats. The American Journal of Human Genetics, 1991, 49: 718~721
    Edwards K. J., Barker J. H., Daly A., et al. Microsatellite Libraries Enriched for Several Microsatellite Sequences in Plants, Bio Techniques, 1996, 20(5): 758~760
    Eujayl I., Sorrells M. E., Baum M., et al. Assessment of Genotypic Variation among Cultivated Durum Wheat based on EST-SSRs and Genomic SSRs, Euphytica, 2001, 119(1~2): 39~43
    Fan Y. Y., Zhuang J. Y., Wu J. L., et al. SSLP-based Identification of Subspecies in Rice (Oryza sativa L.). Hereditas, 2000, 22(6): 392~394
    Friar E., Kochert G.. Bamboo Germplasm Screening with Nuclear Restriction Fragment Length Polymorphisms. Theoretical and Applied Genetics, 1991, 82: 697~703
    Friar E., Kochert G.. A study of Genetic Variation and Evolution of Phyllostachys (Bambusoideae, Poaceae) Using Nuclear Restriction Fragment Length Polymorphisms. Theoretical and Applied Genetics, 1994, 89: 265~270
    Guo Z. H., Chen Y. Y., Li D. Z., et al. Genetic Variation and Evolution of the Alpine Bamboos (Poaceae: Bambusoideae) using DNA Sequence Data. Journal of Plant Research, 2001, 114(3): 315~322
    Guo Z. H., Li D. Z.. Phylogenetics of the Thamnocalamus Group and its Allies (Gramineae: Bambusoideae): Inference from the Sequences of GBSSI Gene and ITS Spacer. Molecular Phylogenetics and Evolution, 2004, 30(1): 1~12
    Hamada H., Pitrino M. T.. Kakunaga. A Novel Repeated Element with Z-DNA-forming Potential is Widely Found in Evolutionarily Diverse Eukaryotic Genomes. Proceedings of the National Academy of Sciences of the USA, 1982,79: 6462~6469
    Han fling B., Weetman D.. Characterization of Microsatellite Loci for the Chinese mitten crab, Eriocheirsinensis. Molecular Ecology Note, 2003, 3: 15~17
    Hawaiian. Endemic mint (Stenogyne rugosa, Lamiaceae): Characterization and Microsatellite Markers. BMC Plant Biology, 2006, 6(16): 1471~2229
    He Ping. Abundance. Polymorphism and Applications of Microsatellite in Eukaryote. HeredItas, 1998, 20(4): 42~45
    Hodkinson T. R., Renvoize S. A., Chonghaile G. N., et al. A Comparison of ITS Nuclear rDNA Sequence Data and AFLP Markers for Phylogenetic Studies in Phyllostachys (Bambusoideae, Poaceae). Journal of Plant Research, 2000, 113: 259~269
    Holland P. W.. Gene Duplication: Past, Present and Future. Seminars in Cell and Developmental Biology, 1999. 10(5): 541~547
    Holttum R. E.. The Classification of Bamboo. Phytomorphology, 1956, 6: 73~90
    Hsiao J Y, Rieseberg L H. Population Genetic Structure of Yushania Niitakayamensis (Bambusoideae, Poaceae) in Taiwan. Molecula Ecology, 1994(3): 201~208
    Hsu K. C., Wang J. P.,Chen X. L., Chiang T. Y.. Isolation and Characterization of Microsatellite Loci in Acrossocheilus Paradoxus(Cyprinidae) Using PCR-based Isolation of Microsatellite Arrays(PIMA), Conservation Genetics, 2004, 5: 113~115
    Huang C. C., Chiang T. Y., Hsu T. W. Isolation and Characterization of Microsatellite Loci in Taxus Sumatrana (Taxaceae) Using PCR-based Isolation of Microsatellite Arrays(PIMA), Conservation Genetics, 2007a, 9(2): 471~473
    Huang Y. W., Chiang T. Y., Chiou W. L.. Isolation and Characterization of Microsatellite Loci of Lycopodium fordii Bak.(Lycopodiaceae, Pteridophyta), Conservation Genetics, 2007b, 9(3): 775~777
    Janaki Ammal E. K.. Chromosome Atlas of cultivated plants. In: Darlington C. D. Janaki Ammal E. K. (eds.), George Allen and Unwin Ltd., UK, 1945, 114
    Kandpal R. P., Kandpal G., Weissman S. M.. Construction of Libraries Enriched for Sequence Repeats and Jumping Clones, and Hybridization Selection for Region-specific Markers. Proceding of the National Academy of the USA, 1994, 91: 88~92
    Kaneko S., Franklin D. C., Yamasaki N., et al. Development of Microsatellite Markers for Bambusa arnhemica (Poaceae: Bambuseae), a Bamboo Endemic to Northern Australia. Conservation Genetics, 2007, 9(5): 1311~1313
    Karagyozov L., Kalcheva I., Chapman V., Construction of Random Small Insert Genomic Libraries Highly Enriched for Simple Sequence Repeats. Nucleic Acids Research, 1993, 21 : 3911 ~ 3912.
    Karagyozov L.. Construction of Random Small-insert Genomic Libraries Highly Enriched for Simple Sequence Repeat. Nucleic Acid Research, 1993, 21: 3911~3912
    Karagyozov L., Kalcheva I. D., Chapman V. M.. Construction of Random Small-insert Genomic Libraries Highly Enriched for Simple Sequence Repeats. Nucleic Acids Research, 1993, 21(16): 3911~3912.
    Kijas J., Fowler J., Garbett C., et al. Enrichment of Microsatellites from the cirus Genome Using Biotinylated Oligonucleotide Sequences Bound to Streptavidin Coated Magnetic Particles. Biotechniques, 1994, 16: 656~662
    Kobayashi M.. Phylogeny of World Bamboos Analysed by Restriction Fragment Length Polymorphisms of Chloroplast DNA. Chapman G P. The Bamboos. London:Linnean Society, 1997, 19: 227~234
    Lai C. C., Hsiao J. Y.. Genetic Variation of Phyllostachys Pubescences (Bambusoideae, Poaceae) in Taiwan Based on DNA Polymorphisms. Botanical Bulletin Academia Sinica, 1997, 38: 145~152
    Lai Y, Sun F. The Relationship between Microsatellite Slippage Mutation Rate and the Number of Repeat Units. Molecular Biology Evolution, 2003, 20(12): 2123~2131
    Li D. Z.. Proposal to conserve the name Sasa (Gramineae) with a conserved type. Taxon, 1996, 45: 543~544
    Li X. G., Tian J. J., Tani N., Yoshihiko T.. Isolation and Characterization of Nuclear Microsatellites from Chamaecypress obtusa Endl. Journal of genetics and genomics, 2004, 31(4): 375~379
    Li Y. C., Korol A. B., Fahima T., et al. Microsatellites: Genomic Distribution, Putative Functions and Mutational Mechanisms: a Review. Molecular Ecology, 2002, 11(12): 2453~246
    Lin C. J., Wang J. P., Lin H. D. et al. Isolation and Characterization of Polymorphic Microsatellite Loci in Hemibarbus labeo (Cyprinidae) using PCR-based Isolation of Microsatellite arrays(PIMA). Molecular Ecology Notes, 2007, 7(5): 788~790
    Lindqvist C., Scheen A..C., Yoo M. J., et al. An Expressed Sequence Tag (EST) Library from Developing Fruits of an Hawaiian endemic mint (Stenogyne rugosa, Lamiaceae): Characterization and Microsatellite Markers. BMC Plant Biology, 2006, 6(16): 1471~2229
    Li Y. C., Korol A. B., Fahima T, Beiles A.et al. Microsatellites: Genomic Distribution, Putative Functions and Mutational Mechanisms: a review. Molecular Ecology, 2002, 11(12): 2453~2465
    Litt M., Luty J. A., A Hypervarible Microsatellite Revealed by in vitro Amplification of a DinucleotideRepeat within the Cardiac Muscle Actin Gene. The American Journal of Human Genetics, 1989, 44: 397~401
    Loh Jin Phang, Ruth Kiew, Ohm Set et al. A Study of Genetic Variaton and Relationships within the Bamboo Subtribe Bambusinae Using Amplified Fragment Length Polymorphism. Annals of Botany, 2000, 85: 607~612
    Lorieux M., Ndjiondjop M. N., Ghesquiere A.. A First Interspecific Oryza sativa×Oryza Glaberrima Microsatellite Based Genetic Linkage Map. Theoretical and Applied Genetics, 2000, 100: 593~601
    Lunt D.H., Hutchinson F., Carvalho G. R., An Efficient Method for PCR-based Isolation of Microsatellite Arrays(PIMA), Molecular Ecology, 1999, 8(5): 891~893
    Maddox J.. Triplet Repeat Genes Raise Question. Nature, 1994, 368(647): 685
    Marulanda M. L., Marquez P., Londo O. X.. AFLP Analysis of Guadua Angustifolia (Poaceae:
    Bambusoideae) in Colombia with Emphasis on the Coffee Region. Bamboo Science and Culture, 2002, 16 (1): 32~42
    
    McClure F. A.. A new Feature in Bamboo Rhizome Anatomy. Rhodora,1963, 65: 134~136 McCouch S. R., Chen X., Panaud O.,Temnykn S., et al. Microsatellite Marker Development, Mapping and Applications in Rice Genetics and Breeding. Plant Molecular Biology, 1997, 35: 89~99
    McCouch S. R., Teytelman L., Xu Y. B. et al. Development and Mapping of 2240 new SSR Markers for Rice(Oryza sativa L.). DNA Research, 2002, 9: 199~207
    Mehra P. N., Sharma M. L.. Cytological Studies in some Central and Eastern Himalayan Grasses. The Andro pogoeae Cytologia, 1975, 40: 61~74
    Moncada P.,Martinez C. P.,Borrero J.. Quantitative Trait Loci for Yield and Yield Components in an Oryza sativa×Oryza rufipogon BC2F2 Population Evaluated in an Upland Environment. Theoretical and Applied Genetics, 2001, 102: 41~52
    Murphy G. L., Connell T. D., Barritt D. S., et al. Phase Variation of Gonococcal Protein II Regulation of Gene Expression by Slipped-strand Mispairing of a Repetitive DNA sequence. Cell, 1989, 56(4): 539~547
    Navajas M., Fenton B.. The Application of Molecular Markers in the Study of Diversity in Acarology: a Review. Experimental and Applied Acarology, 2000, 24(10~11): 751~774
    Nayak S., Rout G. R.. Isolation and Characterization of Microsatellites in Bambusa arundinacea and CrossSpecies Amplification in other Bamboos. Plant Breed, 2005, 124 (6): 599~602
    O'Reilly P. T., McPherson A. A., Kenchington E. et al. Isolation and Characterization of Tetranucleotide Microsatellites from Atlantic haddock (Melanogrammus aeglefinus). Mar Biotechnology, 2002, 4(4): 418 ~ 422
    Ostrander E. A., Jong P. M., Rine J. et al. Construction of small-insert genomic DNA libraries highly enriched for microsatellite repeat sequences. Proceedings of the National Academy of Sciences of the USA, 1992, 89(8): 3419~3423
    Paetkau D. Microsatellites obtained using strand extension: an enrichment protocol. BioTechniques, 1999, 26(4):690~692, 694~697
    Peredo E. L., Arroyo-Garcia R., Jose M., et al. Evaluation of microsatellite detection using autoradiography and capillary electrophoresis in Hops. Journal of the American Society of Brewing Chemists, 2005, 63(2): 57~62
    Pestsova E., Ganal M. W., Roder M. S.. Isolation and Mapping of Microsatellite Markers Specific for the Genome of Bread Wheat. Genome, 2000, 43(4): 689~697
    Reeder R. John. The Bambusoid Embryo: A Reappraisal. American journal of botany, 1962, 49(6): 639~641
    Reeder R. John. The Embryo in Grass Systematics. American journal of botany, 1957, 44(9): 756~768
    Renvoize S. A., Hodkinson T. R.. Classification of Phyllostachys. In Chapman, The Bamboos, London, Academic Press, 1997, 19: 95~105
    Russell J. R., et al. Discrimination between Barley Genotypes using Microsatellite Markers. Genome, 1997, 40: 442~450
    Sanchez de la, Hoz M. P., Davila J. A. et al. Simple Sequence Repeat Primers used in Polymerase Chain Reactions to Study Genetic Diversity in Barley. Genome, 1996, 39:112~117
    Schlotterer C., Tautz D.,. Slippage Synthsis of Simple Sequence DNA. Nucleic Acid Research 1992, 20: 211~215
    Shafer R., Boltz E., Becker A., et al. The Expression of the Evolutionary Conserved GATA/GACA Repeats in Mouse Tissues. Chromosome, 1986, 93: 496~501
    Sharma R. K., Gupta P., Sharma V.. Evaluation of Rice and Sugarcane SSR Markers for Phylogenetic and Genetic Diversity Analyses in Bamboo. Genome, 2008, 51: 91~103
    Skinner D. M., Bettie W., Blattner F. R.. The Repeat Sequence of a Hermit crab Satellite DeoxyribonucleicAcid (TACG)×(ATCC). Biochemistry, 1974, 13: 3930~3937
    Stallings R. L., Ford A F, Nelson P, et al. Evolution and Distribution of (GT)n Repetitive Sequences in the Mammalian Genome. Genomics, 1991, 10: 807~805
    Suyama Y., Obayashi K., Hayashi I.. Clonal Structure in a Dwarf Bamboo(Sasa senanensis) Population Inferred from Amplified Fragment Length Polymorphism (AFLP) Fingerprints. Molecular Ecology, 2000, 9(7): 901~906
    Taguchi F.. Intar and Inter Specific Variation of Mitochondrial DNA in Three Phyllostachys Species. Bamboo Journal,1988(6): 28~36
    Tang J. F., Gao L. F., Cao Y. S., Jia J. Z., Homologous Analysis of SSR-ESTs and Transferability of Wheat SSR-EST Markers Across Barley, Rice and Maize. Euphytica, 2006, 151(1): 87~93
    Tautz D., Renz M.. Simple Sequences are Ubiquitous Repetitive Components of Eukaryotic Genomes[J]. Nucleic Acids Research., 1984, 12: 4127~4138
    Valdes A. M., Slat kin M., Freimer N. B.. Allele Frequencies at Microsatellite Loci: the tep Wise Mutation Model Revisited. Genetics, 1993, 133 (3): 737~749
    Vikas S., Pankaj B., Rahul K.. Identification and Cross-species Amplification of EST Derived SSR Markers in Different Bamboo Species. Conservation Genetics, 2008, 10: 721~724
    Vos Pieter, Hogers Rene, Blecker Marjo et al. AFLP:a New Technique for DNA Fingerprinting. Nucleic Acids Research, l995, 23(21): 4407~4414
    Wang M. L., Barkley N. A., Yu J. K.. Transfer of Simple Sequence Repeat (SSR) Markers from Major Cereal Crops to Minor Grass Species for Germplasm Characterization and Evaluation. Plant Genetic Resources, 2004, 3(1): 45~57
    Watanabe M., Ito M., Kurita S.. Chloroplast DNA Phylogeny of Asian Bamboos (Bambusoideae, Poaceae) and its Systematic Implication. Journal of Plant Research, 1994, 107: 253~261
    Weinberger R.. The Evolution of Capillary Electrophoresis:Past, Present, and Future Capillary Electrophoresis, 2002, 5: 32~40
    Williams J. G., Kublik A. R., Livak K. J. et al. DNA Polymorphism Amplified by Arbitrary Primers are useful as Genetic Markers. Nucleic Acid Research, 1990, 18: 6531~6535
    Wu K. S., Jones R., Danneberger L. et al. Detection of Microsatellite Polymorphisms without Cloning. Theoretical and Applied Genetics, 1994, 22: 3257~3258
    Wu K. S.,Tanksley S. D.. Abundance, Polymorphism and Genetic Mapping of Microsatellites in Rice. Molecular and General Genetics, 1993, 241: 225~235
    Xiao J., Grandillo S., Ahn S. N., et al. Genes from Wild Rice Improve Yield. Nature, 1997, 384: 223~224
    Xu Y. Q., Wang Y., Li Z. Z. et al. Characterization of Polymorphic Microsatellite Loci in a Traditional Chinese Medicinal Plant, Gastrodia elata, Molecular Ecology Notes, 2006, 6(2): 316~318
    Zane L., Bargelloni L., Patarnello T.. Strategies for Microsatellite Isolation: a Review. Molecular Ecology, 2002, 11(1): 1~16
    Zhang J., Yao X., Wei X., et al. Development and Characterization of 14 Polymorphic Microsatellite Loci in the Endangered tree Euptelea pleiospermum(Eupteleaceae), Molecular Ecology Resources, 2008, 8(2): 314~316
    Zhang S. H., Wei H., Shi J. Q.. Microsatellite DNA Polymorphisms in Inbred Strain Mice. Hereditas, 2000, 22(6): 375~378
    Zhao X., Kochert G.. Phylogenetic Distribution and Geneticmapping of a (GGC)n Microsatellite from Rice. Plant Molecular Biology, 1993, 21(4): 607~617
    Zhivotovsky L. A., Bennett L., Bowcock A. M., et al. Human Population Expansion and Microsatellite Variation. Molecular Biology and Evolution, 2000, 17(5): 757~767
    陈守良,徐克学,盛国英.中国散生竹类的数量分类和确定分类等级的探讨.植物分类学报,1983,21(2):113~119
    陈晓亚,卢山.广义方竹属叶挥发成份的系统意义.1994,13(3):22~27
    邓欣,陈信波,龙松华等.用磁珠富集法分离亚麻基因组微卫星分子标记.作物学报,2008,34(12):2099~2105
    樊龙江,郭兴益,马乃训.竹类植物与水稻等其他禾本科作物的系统进化关系及基因序列组成的比较.林业科学研究,2006, 19(2):165~169
    方伟.竹子分类学.北京:中国林业出版社,1995. 1~21
    方伟,黄坚钦,卢敏等. 17种丛生竹竹材的比较解剖研究[J].浙江林学院学报, 1998, 15(3):225~231
    方伟.浙江省竹林自然区划.竹子研究汇刊,1991,10(1):1~9
    高智慧.利用秆维管束进行中国散生竹的聚类分析.广西植物,1991,11(2):135~140
    耿伯介.《中国植物志》第九卷第一分册[M]北京科学出版社,1996
    胡成华.我国赤竹属Sasa Makino&Shibata整理.竹类研究,1985,(2):56~62
    胡娇丽,张岩,汤定钦.竹子基因组序列研究及应用.竹子研究汇刊,2008,27(2):1~7
    黄承才,汪奎宏.竹亚科植物过氧化物酶和脂酶同工酶研究.绍兴师专学报,1994,(5):87~92
    黄敏仁,陈道明等.同工酶在刚竹属竹种鉴别上的应用.竹类研究,1983,2(l):132~135
    江泽慧.世界竹藤.辽宁科技出版社,2002
    赖广辉.竹亚科刚竹属植物的修订(Ⅱ).植物研究,2001,21(2):82~185
    赖广辉.竹亚科刚竹属植物的修订(Ⅲ).广西植物,2002,22(5):390~393
    赖广辉.竹亚科刚竹属植物的修订(I).武汉植物学研究,1999,17(4):319~322
    李德铢,中国牡竹属的研究之三.竹子研究汇刊,1989,8(1):25~43
    李德侏,竹亚科分类的若干方法问题-兼论牡竹属的范畴.植物分类学报,1994,32(3):283~289
    李潞滨,武静宇,胡陶,等.毛竹基因组大小测定.植物学通报,2008,25(5): 574~ 578
    李升峰.黄酮化合物在散生竹分类中应用初探[J].竹子研究汇刊,1990,9(4):17~23
    李升蜂.同工酶在青篱竹族分类中的应用.竹子研究汇刊,1989,8(4):12~21
    李淑娴,尹佟明.用水稻微卫星引物进行竹子分子系统学研究初探.林业科学,2002,38 (3):42~48
    李坦.马尾松SSR引物开发.南京林业大学硕士学位论文,2007,pp.26, 34
    李秀兰,林汝顺,冯学琳等.中国部分丛生竹类染色体数目报道.生物学通报,2001(5)7
    李正理,靳紫宸,腰希申.12种国产竹材的比较解剖观察.植物学报,1960,3
    李正理,靳紫宸.国产竹材的比较解剖观察续报.植物学报,1962,10(1):15~29
    林新春,方伟.竹亚科分类学研究进展.竹子研究汇刊,2005,24(1):1~6
    刘凤霞,孙传清,谭禄宾,等.江西东乡野生稻孕穗开花期耐冷基因定位.科学通报, 2003, 48(17):1864 ~1867
    卢山,陈晓亚等.方竹属部分种黄酮类成分比较.竹子研究汇刊,1992,11(3):42~48
    潘磊,郑鹏,徐杰等.磁珠富集法制备莲藕基因组的微卫星分子标记.中国蔬菜,2007(5): 7~13
    庞延军,杨永华,胡成华等.从RAPD看肿节少穗竹的分类地位问题初探.南京大学学报(自然科学版),1998,34(5):531~535
    曲鲁江,李显耀,徐桂芳,等.利用微卫星标记分析中国地方鸡种的遗传多样性中国科学C辑生命科学2006,36(1):17~26
    萨姆布鲁克,拉塞尔.分子克隆实验指南.黄培堂.北京:科学出版社,2002,965~966
    沈利爽,何平,徐云碧等.水稻DH群体的分子连锁图谱及基因组分析.植物学报,1998,40(12):1115~1122
    师丽华,杨光耀,林新春等.毛竹种下等级的RAPD研究.南京林业大学学报:自然科学版,2002,26(3):65~68
    宋桂卿,王正平.国产节柱竹族地下茎的解剖及其在分类中的意义.云南植物研究,1994,16(4);373~378
    王丽,赵桂仿.植物不同种属间共用微卫星引物的研究.西北植物学报,2005,25(8):1540~1546
    王丽娟.微卫星DNA及其PCR技术的进展.国外医学分子生物学分册,1996,18(4):169~173
    王峥峰,张军丽,王伯荪等.荷木种群在不同群落中的分子生态研究.中山大学学报,2000,39(5):120~122
    王正平,朱政德,陈绍云等.中国刚竹属的研究(续).植物分类学报,1980,18(2):168~173
    王正平.中国竹亚科分类系统之我见.竹子研究汇刊,1997,16(4):1~6
    温太辉.试论竹类植物营养体分类.竹子研究汇刊,1989,8(2):17~29
    吴丰春,魏鸿.应用AFLP技术对不同品系小鼠进行遗传检测的初步研究.第三军医大学学报,2001,23(6):650~651
    吴海清.刚竹属植物地下茎的比较解剖学研究.江苏农学院学报, 1997, 18(2):63~67
    吴益民,黄纯农,王君晖.四种竹子的RAPD指纹图谱的初步研究.竹子研究汇刊,1998,17(3):10~14
    徐川梅,卢江杰,汤定钦.45SrDNA在7种竹子植物染色体上的定位.林业科学,2009, 45(12):42~45
    杨光耀,赵奇僧.苦竹类植物RAPD分析及其系统意义.江西农业大学学报,2000,22(4):551~553
    杨光耀,赵奇僧.用RAPD分子标记探讨倭竹族的属间关系.竹子研究汇刊,2001,20(2):4~8
    杨蜀岚,杨仁崔,曲雪萍,等.水稻长穗颈高秆隐性基因eui2的遗传及其微卫星分析.植物学报, 2001, 43(1):67 ~71
    易同培.四川竹类植物志.北京:中国林业出版社,1997:1~3.
    余学军,张立钦,方伟等.绿竹不同栽培类型RAPD分子标记的研究.西南林学院学报,2005,25(4):98~101
    袁文海,梁根桃.刚竹属竹种淀粉酶同工酶分析及其在竹种鉴别上的应用.浙江林学院学报,1993,10(3):263~269
    曾庆国,陈艺燕.微卫星位点筛选方法综述.生态科学,2005,24(4):368~372
    张峰.用于植物分子系统学研究的基因片断.山东科学,2004,17(1):55~58张光楚.丛生竹染色体数的研究.竹类研究,1985(2)
    章琦,赵炳宇,赵开军,等.普通野生稻的抗水稻白叶枯病(Xanthomonas Oryzae pv. Oryzae)新基因Xa-23.作物学报,2000, 26(5):536~542
    赵奇僧,汤庚国.中国竹子分类的现状和问题.南京林业大学学报:自然科学版,1993,17(4)1~8
    赵奇僧,朱政德.青篱竹属及其在中国的分布.南京林产工业学院学报,1980,(3):22~27
    郑成木.植物分子标记原理与方法.长沙,湖南科学技术出版社,2003
    周涵韬,郑文竹,周以侹等.不同作物间共用SSR引物的初步研究.厦门大学学报(自然科学版),2002,41(1):88~93
    诸葛强,丁雨龙,续晨等.广义青篱竹属(Arundinaria)核糖体DNAITS序列及亲缘关系研究[J] .遗传学报,2004,31(4):349~356
    竹内叔雄.竹的研究(1932).建筑工程出版社(中文译本),1957
    朱文进,张美俊,葛慕湘,等.中国8个地方驴种遗传多样性和系统发生关系的微卫星分析.中国农业科学2006, 39(2): 398~405

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700