地黄(Rehmannia glutinosa Libosch.)根区土壤中酚酸类物质的化感作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
怀地黄(Rehmannia glutinosa Libosch.)是我国著名的“四大怀药”之一,以干燥块根入药,块根含梓醇(catalpol)、地黄苷、益母草苷等多种有效成分,地黄为我国传统的大宗道地中药材,一直被视为药材中的上品。地黄是已知块根类药材中连作障碍最严重的药用植物,每茬收获后须隔8~10年方可再种,严重制约了药材的发展。
     本实验通过对不同间隔年限种植地黄的土壤、不同生育时期的地黄土壤和不同土壤质地的地黄土壤等进行系统研究,使用HPLC分别检测了土壤中与化感现象相关的5种酚酸,通过研究地黄土壤中酚酸类物质的动态变化情况与其根际微生态环境的内在关系,旨在为缓解地黄化感自毒作用和消减连作障碍提供理论依据。主要研究结果如下:
     1土壤中一元酚酸类物质影响地黄生长
     地黄连作表现为块根不能膨大,多须根。本课题首次研究表明:间隔2~8年的土壤中对羟基苯甲酸和香豆酸的含量与膨大中后期、收获期的地黄块根干鲜重量以及体积呈显著或极显著的反比例关系,间隔2~8年的土壤中对羟基苯甲酸和香豆酸的含量与伸长期、膨大中后期的地黄叶片干鲜重量呈显著或极显著的反比例关系;间隔2~8年的土壤中阿魏酸的含量和苗期的地黄块根干鲜重量呈显著的反比例关系;间隔2~8年的土壤中丁香酸的含量与地黄生长的各测量指标呈正比例关系。
     间隔2~8年的土壤中阿魏酸、对羟基苯甲酸和香豆酸的含量和浓度为60%(土壤母液体积/总体积×100%,下同)的土壤水提液对萝卜种子进行生物测试,与其种子发芽率或发芽指数呈显著的负相关,阿魏酸、对羟基苯甲酸和香豆酸和浓度为60%、24%、12%的土壤水提液对萝卜种子进行生物测试,与其幼根和幼茎的伸长呈显著或极显著的负相关;阿魏酸、对羟基苯甲酸和香豆酸和浓度为24%的水提液对莴苣种子进行生物测试,与其种子发芽率或发芽指数呈显著的负相关,阿魏酸、对羟基苯甲酸和香豆酸和浓度为60%、24%、12%的水提液对莴苣种子进行生物测试,与其幼根和幼茎的伸长呈显著或极显著的负相关。
     对地黄进行外源添加酚酸试验,对比正茬和重茬CK,3个浓度梯度下的5种酚酸对地黄均有抑制作用,但其各自对地黄的抑制能力均未超过重茬CK。其中,对地黄生长抑制能力最强的是丁香酸,浓度最低条件下地黄根鲜重、干重分别为正茬CK和重茬CK的51%、54%和106%、115%。研究同时发现,外源添加酚酸的浓度和其对地黄生长的抑制能力没有明显的相关性,其中对羟基苯甲酸、香豆酸对地黄的抑制效果和其浓度成正比例关系;低浓度的丁香酸和阿魏酸对地黄生长有较强的抑制作用;高浓度的香草酸对地黄生长抑制作用较强。
     综合考虑大田和实验室生物测试结果,首次证明了地黄土壤中酚酸类物质相互作用,影响地黄的生长,阻碍了地黄块根的膨大。
     2地黄的苗期和伸长期是自毒作用发生的关键时期
     不同质地类型土壤再植地黄的大田,植株形态调查数据分析均表明,从地黄苗期开始,土壤中酚酸含量和地黄各形态指标呈现出显著或者极显著的相关性,考虑到地黄根系分泌物(或者是经过土壤微生物转化后的物质)对地黄自身“毒害”作用的滞后性,地黄生育的苗期和伸长期应当是地黄化感作用的重点时期,且粘土对地黄的化感作用略高于砂壤土。
     不同质地类型土壤的水浸提液生物测试结果分析也表明,无论是萝卜还是莴苣种子,从整个生育时期看,正茬和重茬地黄生育中前时期的各个浓度土壤水提取液对种子幼根生长的抑制作用最强,重茬地黄各个浓度土壤提取液对种子幼根生长的抑制作用在这个时期表现的尤为明显,粘土提取液对种子萌发和生长的抑制作用略高于砂壤土提取液,以上结论与大田生长情况吻合。
     研究地黄土壤中酚酸类物质的动态变化可以发现,播种期重茬土壤中对羟基苯甲酸含量高于正茬,在地黄的块根膨大期之前,重茬土壤中阿魏酸、香豆酸和丁香酸的含量高于正茬,其中重茬土壤中阿魏酸的含量为正茬的2~5倍,而在此时期,重茬地黄的叶片、块根等测量指标远低于正茬,两者之间存在较强的负相关性,因此可以推测,阿魏酸、香豆酸、丁香酸和对羟基苯甲酸在重茬地黄的生长前期起到一定的抑制作用,其中阿魏酸的抑制作用较强。
     研究不同重茬程度的地黄土壤(在地黄生长的不同生育时期,刨除地黄后,取到的土壤)对再植地黄均有抑制生长的作用,出苗后一个月土壤的抑制效果最弱,出苗后6个月土壤抑制效果最强,说明地黄的化感自毒作用随时间推移逐步加强。出苗后2个月土壤与出苗后3个月土壤对再植地黄的抑制效果差异最大,后者的根鲜、干重分别为前者的78.4%、80.0%,由此可以断定7月~8月是地黄化感自毒作用发生最强烈的时期,这一结论与大田试验数据分析结果相吻合。
     综合考虑不同试验结果,首次证明了地黄化感作用发生时期为生长前期(苗期和伸长期),此时期土壤中一元酚酸类物质对地黄的连作障碍起关键作用,营养生长受到抑制,必定会导致生殖生长提前,地黄、串皮(纤维根)、早花,从而进一步影响地黄块根的膨大。
     3酚酸类物质对地黄生长抑制作用机制分析
     间隔8年地黄土壤中速效钾、速效氮、全氮和有机质含量分别为间隔2年地黄土壤的1.79倍、1.19倍、1.05倍和1.08倍,而间隔2年土壤的速效磷含量为间隔8年土壤的2.94倍,这与陈龙池等的报道结论相同。因此,可以推断酚酸类物质致使地黄土壤养分平衡发生改变,进而影响地黄的生长和发育。碳-营养平衡假说认为在营养胁迫时,植物生长的速度大为减缓,与之相比,光合作用变化不大,植物会积累较多的C、H元素,体内C/N增大,因此酚类等以C为基础的化感物质就会增多。根据此假说,间隔年限短的土壤再植地黄时,由于营养胁迫的原因导致酚酸类等化感物质的增多,从而影响地黄的生长。因此,土壤营养与土壤中酚酸物质互相影响,与地黄的生长发育形成了一个有机的整体。
     研究发现香草酸是一种大豆胞囊线虫性激素,其类似物丁香酸在温室条件下也显著影响大豆胞囊线虫的密度,土壤中丁香酸和残茬腐解产物中香草酸等物质的存在可能促进了胞囊线虫的繁殖,使线虫密度达到危害阈值。线虫病是地黄一种非常严重的虫害,地黄一旦染上胞囊线虫病,将导致地黄块根不能膨大,且很难治愈,是地黄的“癌症”,试验中我们可以很明显的发现重茬地黄胞囊线虫病发病率远远高于正茬地黄,可以推测重茬地黄土壤中酚酸类物质的互相作用与地黄胞囊线虫的发病情况相关。
     前人研究表明,植物化感作用潜力是植物所释放出的所有化感物质综合作用的结果。Einhellig认为,几乎所有植物的化感作用潜力都是由2种或2种以上的化合物的互作所引起的。在田间环境下,植物所释放的化学物质浓度一般都低于其抑制作用的起始浓度。因此,酚酸绝对含量高并不一定代表抑制地黄块根膨大作用强烈,但地黄土壤中浓度较高的酚酸含量可能会影响地黄的生长,造成间隔2年土壤再植的地黄叶片比间隔8年土壤的长势差,从而造成地黄叶片制造光合产物的能力下降,源对库的供应不足,阻碍了重茬地黄块根的膨大。
     研究发现两种酚酸类物质在浓度水平较低时,物质间的作用是增效;若物质浓度水平提高,其作用是相互拮抗。分析可知,因为在地黄的生长过程中,前期主要进行叶片的生长,后期主要是块根的膨大和干物质积累。因此在重茬地黄的生长前、中期,酚酸的作用一方面通过影响IAA变化和根细胞的有丝分裂、伸长从而影响重茬地黄的根系生长和吸收,另一方面破坏地黄的光合作用从而导致重茬地黄叶片制造光合产物的能力下降;随着生长中心的转移,重茬地黄自生长中后期开始进行块根细胞的分化和发育。这个时期酚酸浓度的变化出现拐点,其含量开始下降,但重茬地黄的块根生长依然收到抑制。根据上述研究结论,在化感物质互作增效范围内,酚酸浓度的降低很可能导致酚酸的互作效应增强,从而抑制重茬地黄块根的膨大。试验中所检测的5种一元酚酸类物质都属于苯丙素类化合物中的苯丙酸类,化学结构十分类似,因此对根系细胞膜的作用位点基本相同。由于5种酚酸的作用特性不同,对地黄根系细胞膜的作用力也略有区别,具有更强竞争力的酚酸往往能够捕获不止一个的作用位点(或至少干涉较近的其他位点)。当在地黄的根系细胞膜周围聚集了比分子总数更多的开放位点时,酚酸物质间的作用是增效的(在物质的浓度较低时出现的情况)。反之,若分子总数比细胞膜的位点更多时,这时具有更强竞争力的酚酸将能捕获到更多的作用位点,而竞争力较弱的酚酸捕获到的位点就少,这样由于两种酚酸化合物的作用效果没有得到充分的表达(在物质的浓度较高时出现的情况),引起“拮抗作用”。对地黄外源添加酚酸物质并研究其生长变化也可以说明酚酸的绝对浓度和其对地黄块根膨大的抑制作用没有明显相关性,这些酚酸物质间的相对浓度含量才是决定地黄连作障碍效应的关键,具体到某种单一的酚酸作用及多种酚酸互相作用的临界浓度,还需要进一步的深入研究。
     本研究表明,土壤中酚酸类物质及其相互作用,改变了地黄根际微生态环境,从而直接和间接影响地黄块根的膨大,是引起地黄连作障碍的主要因素之一,采取有效措施改变前作的茬口理化性状,特别是调整或消减前作茬口中化感物质,是解决地黄连作障碍的技术关键。
Rehmannia glutinosa Libosch is one of China’s famous "four huaiyao". Since its root tube contains catalpol, Rehmannia glutinosa glycosides, Rehmannia glutinosa motherwort glycosides and a variety of active ingredient, its dry root can be used to pharmaceutical. In the continuous cropping of Rehmannia glutinos, it shows non-swelling and lots of fibrous roots. It takes 8-10 years to replant Rehmannia glutinos after the first cultivation. This has seriously hampered the development of medicinal herbs.
     This experiment study with different intervals years’s soil of Rehmannia glutinosa, the different growth periods’soil Rehmannia glutinosa,the different type of soil, by HPLC to detect phenolic acids related to allelopathy effect in the soils,in-depth study of the relationship between phenolic acids changes of Rehmannia glutinosa soil and its microecological environment, aims to provide a theoretical basis for reducing autotoxicity and continuous cropping obstacles of Rehmannia glutinosa. The Main findings are as follows:
     1 AN phenolic acids of soils impact on the growth of Rehmannia glutinosa Rehmannia glutinosa’s cropping performance which is not enlarged root tube, more fibrous roots. his study firstly shows that: 4-hydroxybenzoic acid and syringic acid’s content of soils of 2 to 8 interval years and dry and fresh root weight and root volume of mid and late expansion of root and harvest period has significantly or very significantly negative correlation relationship, 4-hydroxybenzoic acid and syringic acid’s content of soils of 2 to 8 interval years and dry and fresh leaf weight of mid and late expansion of root and elongation period has significantly or very significantly negative correlation relationship; Ferulic acid’s content of soils of 2 to 8 interval years and dry and fresh root weight of seedling period has significantly negative correlation relationship; Syringic acid’s content of soils of 2 to 8 interval years and each measure indexs of Rehmannia glutinosa has significantly positive correlation relationship.
     Ferulic acid,coumalic acid, 4-hydroxybenzoic acid’s content of soils of 2 to 8 interval years and germination percentage and index of radish’s bioassay of concentration of 60%’s aqueous extracts from the soils of Rehmannia glutinosa has significantly positive correlation relationship, Ferulic acid, oumalic acid,4-hydroxybenzoic acid’s content of soils of 2 to 8 interval years and elongation of root and stem of radish’s bioassay of concentration of 60%,24%,12%’s aqueous extracts from the soils of Rehmannia glutinosa has significantly or very significantly positive correlation relationship; Ferulic acid, coumalic acid,4-hydroxybenzoic acid’s content of soils of 2 to 8 interval years and germination percentage and index of lettute’s bioassay of concentration of 24%’s aqueous extracts from the soils of Rehmannia glutinosa has significantly positive correlation relationship, Ferulic acid, coumalic acid,4-hydroxybenzoic acid’s content of soils of 2 to 8 interval years and elongation of root and stem of lettute’s bioassay of concentration of 60%,24%,12%’s aqueous extracts from the soils of Rehmannia glutinosa has significantly or very significantly positive correlation relationship.
     Study on added phenolic acids exogenous to Rehmannia glutinosa, ALL 5 phenolic acids have inhibition of Rehmannia glutinosa under 3 concentrations by contrast the CK of normal rotation and successive cropping, but the inhibition of each them did not exceed the CK of successive cropping. Among them, the strongest acid’s ability to inhibit Rehmannia glutinosa growth is syringic acid,dry and fresh root weight of Rehmannia glutinosa is 51%、54% and 106%、115% of he CK of normal rotation and successive cropping Rehmannia glutinosa under the conditions of the C concentration of syringic acid. The study also found that adding exogenous acid concentration and its effect on growth inhibition Rehmannia glutinosa capacity not related, of which 4-hydroxybenzoic acid, coumalic acid on the inhibitory effect of Rehmannia glutinosa and its concentration has no relationship. Low concentration of syringic acid and ferulic acid on Rehmannia glutinosa strong inhibition of growth; high concentration of vanillic acid to strong growth inhibition Rehmannia glutinosa. Considering field and laboratory bioassay results, first proved phenolic acids in soil of Rehmannia glutinosa are interactivly affect the growth of Rehmannia glutinosa, inhibit expansion of Rehmannia glutinosa’s root tube.
     2 Seedling and elongation period of Rehmannia glutinosa is the critical period of Rehmannia glutinosa’s autotoxicity
     Field morphology data analysis of replanted Rehmannia glutinosa under different types of soil texture show that, from the beginning of seeding period, content of phenolic acids in soil and the morphology indexs of Rehmannia glutinosa has significantly or very significantly correlation, taking into account the lag autotoxicity to Rehmannia glutinosa of root exudates of Rehmannia glutinosa(or the result of microbial transformation),the seedling and elongation period should be the key period of all time.
     Analysis of bioassay results of different types of soil texture extraction showed that both the radish or lettuce,from the entire reproductive period, seeds radicle growth inhibition of various concentrations of extract of the soils of normal rotation and successive cropping Rehmannia glutinosa’s pre and mid periods is the stronggest,inhibition of seed radicle growth in this period of successive cropping Rehmannia glutinosa under various concentrations of soil extract is very strong,this growth in line with the field.
     Study phenolic acids in soil of Rehmannia glutinosa dynamic changes can be found, sowing period successive cropping soil’s content of 4-hydroxybenzoic acid is higher than normal rotation soil,before enlargement of Rehmannia glutinosa,successive cropping soil’s content of、ferulic acid, coumalic acid, syringic acidis higher than normal rotation soil,in which the content of ferulic acid in the successive cropping soil is 2 to 5 times than normal rotation soil, and in this period, leaf and root weight of successive cropping Rehmannia glutinosa well below the normal rotation Rehmannia glutinosa,and they have a Significant negative correlation,it can be speculated that the ferulic acid,coumalic acid,syringic acid and 4-hydroxybenzoic acid in the successive cropping Rehmannia glutinosa inhibit the growth of pre Rehmannia glutinosa, in which a strong inhibitory effect of ferulic acid.
     Study the different levels of successive cropping soil’s inhibitory effect to replanted Rehmannia glutinosa,successive cropping soil for 1 month the weakest inhibitory effect on Rehmannia glutinosa,successive cropping soil for 6 month the strongest inhibitory effect on Rehmannia glutinosa,as a word,the effect of autotoxicity gradually strengthen as time added.2 month successive cropping soil and 3 month successive cropping soil the greatest difference between the inhibitory effect, which the root of fresh, dry weight is 78.4%,80.0% for the former,it can be concluded that in July-August is the strongest effect of autotoxicity Rehmannia glutinosa,this conclusion coincides with field experiment data.
     Considering the different test results,it’s the first time prove allelopathy of Rehmannia glutinosa occurred during the seedling and elongation period,this period an phenolic acids in soil play a key role for the continuous cropping obstacles,incomplete nutrition growth will lead to problems in reproductive growth,thus further affecting the expansion of Rehmannia glutinosa root tube.
     3 Effects of phenolic acids on the growth inhibition mechanism Analysis of Rehmannia glutinosa
     Content of vailable K,available N,total N and organic matter in Rehmannia glutinosa soil of interval of 2 years of soil of interval of 8 years is 1.79 times, 1.19 times, 1.05 times and 1.08 times,while Content of vailable P in Rehmannia glutinosa soil of interval of 8 years of soil of interval of 2 years is 2.94 times, which reports such as Chen Longchi the same conclusion.Therefore,phenolic acids may be inferred that the result of Rehmannia glutinosa soil nutrient to change and then have a impact of growth and development of Rehmannia glutinosa. C-N balance hypothesis that while nutritional stress, the rate of plant growth has slowed, compared with little change in photosynthesis, plants will have accumulated more C,H elements, in vivo C/N increases, so phenolic acids such as C-based allelochemicals will increase.According to this hypothesis,the short period between replanted Rehmannia glutinosa soil,due to nutritional stress,causes allelochemicals such as phenolic acids increase,thus affecting the growth of Rehmannia glutinosa.Therefore,soil nutrition and phenolic acids effects with each other,with the growth and development Rehmannia glutinosa formed an organic whole.
     Study show that vanillic acid is a sex hormone of heterodera glycines,and its analogues syringic acid in the greenhouse also significantly affect the density of heterodera glycines,the existence of the syringic acid in the soil and vanillic acid in the decomposition productsmay contribute to the cyst nematode reproduction,so that against the nematode density thresholds.Nematode is a very serious pest to Rehmannia glutinosa,root-knot nematode disease once infected,it will not lead to expansion of Rehmannia glutinosa root tube,and it is very difficult to cure, is Rehmannia glutinosa the "cancer",we can test it is clear found the incidence of root-knot nematode disease successive cropping Rehmannia glutinosa is much higher than the normal rotation Rehmannia glutinosa,it can be assumed successive phenolic acids in cropping soil of Rehmannia glutinosa arising from the interaction of the incidence of root-knot nematode disease.
     Studies have shown that the potential of plant allelopathy is the release of plant allelochemicals in all the results of the combined effects. Einhellig report that almost all plants,the potential of allelopathy are two kinds or more than two kinds of compounds caused by interaction. In the field environment,the plant released by the concentration of chemical substances are generally lower than the inhibitory effect of initial concentration, therefore, high levels of phenolic acids absolutely concentration do not necessarily represent the strong inhibitory effect to root tube of Rehmannia glutinosa, but the concentration of higher phenolic acids content may affect the growth of Rehmannia glutinosa, resulting in the leaf growth of intervals of 2 interval years of soil replanted Rehmannia glutinosa is weaker than 8 interval years of soil replanted Rehmannia glutinosa’s, resulting in decline of manufacturing in photosynthetic capacity of the product of Rehmannia glutinosa leaf,the source of the insufficient supply of the library,hampered enlargement of successive cropping Rehmannia glutinosa root tube.
     The study found two types of phenolic acids in low concentration levels,their role is to increase mutual;the effect was antagonism if the concentration level of material is higher. we can see that because the growth of Rehmannia glutinosa process, mainly the leaves growth and development early, the latter is mainly the expansion of root and dry matter accumulation. Therefore on the one hand,the role of acid of early stage of growth of successive cropping of Rehmannia glutinosa through the effects of IAA and elongation of mitosis of root cells and thus the impact of successive cropping Rehmannia glutinosa root tube growth and absorption,on the other hand,damage to photosynthesis and resulting in Rehmannia glutinosa leaves manufacturers cropping decline in the ability of photosynthate.With the growth center transfer,the differentiation and development of root of successive cropping Rehmannia glutinosa start since the mid-late period.During this period the changes in acid concentration began to decline but the root of successive cropping Rehmannia glutinosa inhibit has continued to receive. Based on the above findings,the lower the acid concentration of acid is likely to lead to enhancement of the interaction effect,thus inhibiting the successive cropping Rehmannia glutinosa root enlargement.Test in the detection of five kinds of an phenolic acids are phenylpropanoid compounds of styrene-acrylic acid,the chemical structure very similar to the role of the membrane of the root system is basically the same site.Five kinds of phenolic acids as a result of the role of characteristics of different cell-to-ground Rehmannia glutinosa root is also a slight difference between the force, is more competitive acid tend to capture the role of more than one site (or at least closer to interfere in other sites).When the root cell membrane of Rehmannia glutinosa gathered around more than the total number of elements of the open site,the effect is enhanced between the phenolic acids(in the lower concentration of a substance). Conversely, if the total number of elements are more than cell sites, the more competitive acid will be able to capture the role of more sites, and less able to compete to capture the acid sites on the small, two types of phenolic acidss as a result of this effect has not been fully reflected (in the higher concentration of a substance), give rise to "antagonism."Add exogenous phenolic acids to Rehmannia glutinosa and to study changes in their growth to show that the absolute phenolic acids concentration and its inhibition of root enlargement has no significant correlation, the key solution to continuous cropping obstacles of Rehmannia glutinosa is the relative concentrations of these phenolic acids, specific to a single variety of phenolic acids and the role of the critical concentration of each other, but further in-depth study is needed.
     To sum up, the interaction between phenolic acids, multifaceted role in the rhizosphere of Rehmannia glutinosa microecological environment, caused by the change in order to direct and indirect effects of the expansion of Rehmannia glutinosa root tube.
引文
[1]中华人民共和国药典(第二部)[M].北京:化学工业出版社,2005.
    [2]丁自勉,地黄[M].北京:中国中医药出版社,2001:1-15.
    [3]王太霞,司源,李景原,胡正海.怀地黄块根内含梓醇结构的组织化学和超微结构研究[J].西北植物学报,2005,25(5):928-931.
    [4]郭巧生.药用植物栽培学[M].北京:高等教育出版社,2004:259-230.
    [5]温学森,杨世林,魏建和,等.2002.地黄栽培历史及其品种考证[J].中草药,33(10):946-949.
    [6]李更生,刘长河等.不同产地的地黄中梓醇含量比较[J].中草药,2002,33(2):126-128.
    [7]张淑香,高子勤.连作障碍与根际微生态系统II.根系分泌物与酚酸物质[J].应用生态学报,2000,11(1) :152-156.
    [8]刘红彦,王飞,王永平,鲁传涛.地黄连作障碍因素及解除措施研究[J].华北农学报,2006,21(4),131-132.
    [9]余叔文.植物间的相互作用-相生相克现象[M].北京:科学出版社,1992,376-394.
    [10]孙文浩.相生相克作用及其应用[J].植物生理学通讯,1992,28 (2):81-87.
    [11]阎飞,杨振明,韩丽梅.植物化感作用(Allelopathy)及其作用物的研究方法[J].生态学报,2000,20 (4):694-696.
    [12] Molish H,Der E.Influss einer pflanze auf die - andere allelopathie.Fisher Jena,1937,13-20.
    [13] Rice EL.Allelopathy.Second edition New York:Academic Press,1984.
    [14] Riavi,S.J.K.and Rizvi,V.Exploitation of allelochemicealsi improving crop productivity.In;Rizvi,S.J.K.and Rizvi,V.(eds).Alleiopathy;Basic and Applied A spec.London;Chapman&Hall,1992,443-472.
    [15] Bansal,G.L..1994.the science of allelopathy:problems and prospects.allelopathy in agriculture and forestry.scientific publishers.jodhpur.india:23-36.
    [16]孔垂华.植物化感作用严重应注意的问题[J].应用生态学报,1998,9(3):332-336.
    [17]黄京华,曾任森,黎华寿.HPLC在化学生态学和环境监测中的应用[J].广西农业生物科学,2002,21 (4):284-288.
    [18]王峰,张琪,蔡崇法.生化他感物质的收集与分离[J].科技进步与对策,2000.17 (12):198-199.
    [19] Whitehead D C,Hazel D,R D Hartley.Bound phenolic compounds in wheat extracts of soil,plant roots and leaf litter.Soil Biol Biochem,1983,15(2):133-136.
    [20]王光华.大豆根残体对大豆生长影响[M].哈尔滨:哈尔滨工程大学出版社,1995.
    [21]韩晓增,许艳丽.大豆重迎茬研究[M].哈尔滨:哈尔滨工程大学出版社,1992,84-91.
    [22]王光华.大豆根浸提液生化他感现象的研究[M].哈尔滨:哈尔滨工程大学出版社,1995.
    [23] Tang C S,Young C C.Collection and identification of allelopathic compounds from the undistured root system of bigalta limpograss.Piant Physiol.1982,(69):155-160.
    [24]何华勤,董章杭,梁义元等.水稻化感作用研究的新进展[J].农业现代化研究,2002,23(2):140-143.
    [25]林思祖,杜玲,曹光球.化感作用在林业中的研究进展及应用前景[J].福建林学院学报,2002,22(2):184-188.
    [26]王大力,祝心如.豚草的化感作用研究[J].生态学报,1996,16 (1):11-19.
    [27] Iderjit & Dak sh ini K M M. allelopathic potential of an annual weed Polypogon monspeliensis in crops in India.Plant and Soil,1995,173:251-257.
    [28] GuenziW.D&McCalla.Phenolic acids in oats whear,so rghum and cron residues and their phyto toxicity A g ro. J. ,1966,58:303-304.
    [29] Grierson P F.Organic acids in the rhizo sphere of Banksia integ rif olia L. F. Plant and Soil, 1992,144:259-265.
    [30]胡妞,孔垂华.胜红蓟化感作用研究1.水溶物的化感作用及其化感物质分离鉴定[J].应用生态学报,1997,8(3):304-308.
    [31]杨善元等.凤眼莲根系中抑藻物质分离与鉴定[J].植物生理学报,1992,18 (4):399-402.
    [32]刘秀芬等.根际他感化学物质的分离,鉴定与生物活性的研究[J].生态学报,1996,16 (1):1-10.
    [33] Vance G F,etal. Phenolic compounds in soils of hydro sequences and developmental sequences of spodo soils. Soil Sci. Soc. A m J. ,1986,50:992-996.
    [34]曾任森.化感作用研究中的生物测定方法综述[J].应用生态学报,1999,10(1):123-126.
    [35]阮维斌,王敬国,张福锁等.根际微生态系统理论在连作障碍中的应用[J].中国农业科技导报,1999,1(4):53-58.
    [36]闫飞,杨振明,邹永久.大豆连作障碍中的生化互作效应[J].大豆科学,1998,17(2):147-152.
    [37]韩丽梅,邹永久.大豆连作微量元素营养研究1连作对锌营养的影响[J].大豆科学,1998,17(1):65-71.
    [38]韩丽梅,鞠台艳等.大豆连作微量元素营养研究2连作对钼营养的影响[J].大豆科学,1998,1 7(2):135-140.
    [39]韩丽梅,鞠台艳等.大豆连作微量元索营养研究3连作对锰营养的影响[J].大豆科学,1998,8(3):207-2l2.
    [40]韩晓增,许艳丽.重迎茬大豆植株氨磷钾含量与积累特征的研究大豆重迎茬研究[M].哈尔滨工程太学出版,1995.
    [41]梁银丽,陈志杰.设施蔬菜土壤连作障碍原因和预防措施[J].西北园艺:蔬菜,2004,4:4-5.
    [42]吴凤芝,王伟.大棚番茄土壤微生物区系研究[J].北方园艺,1999,3:1-2.
    [43]徐瑞富,王小龙.花生连作田土壤微生物群落动态与土壤养分关系研究[J].花生学报,2003, 32(3):19-24.
    [44]马汇泉,郑桂萍.大豆连作障碍及产生机理[J].土壤,1997,29(1):46-48.
    [45]陈晓红,邹志荣.温室蔬菜栽培连作障碍研究现状及防治措施[J].陕西农业科学,2002,12:16-17,20.
    [46]潘惠霞.甘草、麻黄根际土壤微生物的生态分布特性[J].西北植物学报,2003,23(10):1792-1795.
    [47]张福锁.土壤与植物营养研究新动态(第一卷) [M],1992,北京农业大学出版社.
    [48]陆景陵主编.植物营养学(上册) [M],1994,北京农业大学出版社,109-111.
    [49] Uren N C,Reisenauer H M.The role of root exudates in nutrient acquisition.In:Tinker,B.and Lauch li,A.(eds).Advaunces in Plant Nutrition.Vol3. Praeger Publishers.New York.1988,79-114.
    [50] Chou C H,Leu,L.L.Allelopathic substances and activities of Delonix regia Raf.Chem.Ecol,1992,(18):353-367.
    [51] Chou C H,Waller G R.Phytochemical ecology:allelochem icals,myco toxins, and insect phermones and allomones,Institute of Botany,Academ in Sinica,Taipei,1989,504.
    [52] Tang C S,Takenaka T.Quantitation of a bioactive metabo lite in undisturbed rhizo sphere-benzyl isothiocyanate from Carica Papayal. Chem. Ecol.1983,(9):1247-1253.
    [53] Yu,J Q,Matsui Y.Phytotoxic substances in root exudates of cucumber. Chem.Ecol.1994,(20):21-31.
    [54]喻景权,松井佳久.豌豆根系分泌物自毒作用的研究[J].园艺学报,1999,26(3):175-179.
    [55] Wang T S C,Kao M M,L i S W.The exploration and improvement of the yield decline of monoculture sugarcane in Taiwan.In: Chou, C. H. (ed).Tropical Plant Tnst of Bot.Acad.Sinica,Monogr.No.5 Taipei,Taiwan,1984:1-9.
    [56] Yamane A Nishimura H,Mizutani J.Allelopathy of yellow field cress: Identification and characterization of phytotoxic constituents.Chem. Ecol.1992,(18):683-691.
    [57]孔垂华,胡飞.植物化感作用及其应用[M].中国农业出版社,2001.
    [58] Indejit.PlantPhenoliesinalleloPathy.Bot.Rev.1996,62:186-202.
    [59]孔垂华,胡飞,骆世明.胜红蓟对作物化感作用研究[J].中国农业科学,1997,30(5):95.
    [60] MandaveN.B.TheehemistryofalleloPathy.shingtonDC:Amer.Chem.Soe,1985.33.
    [61] Harborne,J.B.GeneralProeedures·andmeasurementoftotalPhenolies.In“Methodsin PlantBiochemistry:PlantPhenolics(J.B.Harborne,Eds.).Vol.l:l-28.AcademiePress,London,1989.
    [62]余叔文,汤章诚.植物生理与分子生物学[M].北京:科学技术出版社,1998.
    [63] Glass,D.K.Influence of phenolic acids on ion upcake.Plant physiol,1974,54:855-858.
    [64] Glass,D.M.Inhibition of phosphate uptake in BarIcy roots by hydroxy-benzoic acids.Plant physio1.1975,(14):2127-2113.
    [65] Ba ziramakenga R.Effects of benzo nic and dnnamic acids on membrability of soybean rots.J.Chem Eco1.1995,(10):1272-1281.
    [66] Patterson,D.T.Weed Sci,1981,29 (1):53-59.
    [67] Eiuhellig FA.M echanism of action of allelochemicals in allelpothy.Allelopathy(1),1995,97- 115.
    [68] Murrag Art.Effect of sim ple phenolic com pounds of heather(1alluna vulgafis)on rumen microbial activity in vitro.Chem Eco,1996,22 (8):1493-1505.
    [69] Blum U and Shafer SR.Microbial population and phenoic acids in soil.Soil Biol Biochem.1988,20(6):793-800.
    [70]马瑞霞,冯怡.化感物质对BACILLUS SUBT lS在厌氧条件下的生长及反硝化作用的影响.化学生态学,1988,(2):187-193.
    [71]肖辉林,彭少麟,郑煜基等.植物化感物质及化感潜力与土壤养分的相互影响[J].应用生态学报,2006,17(9):1747-1750.
    [72]陈龙池,廖利平,汪思龙等.外源毒素对林地土壤养分的影响[J].生态学杂志,2002,21 (1):19-22.
    [73]薛建平,葛德燕,张爱民,柳俊,朱艳芳.试管地黄的不定根膨大过程中4种内源激素的消长[J].作物学报,2004,30(10):1056-1059.
    [74]张爱民,盛玮,薛建平,葛德燕.地黄叶片器官形态建成中几种内源激素的变化[J].中国中药杂志,2005,30(4):298-300.
    [75]白宝璋,田纪春,王清连.植物生理学[M].北京:中国农业科技出版社,1996,150.
    [76]苑博华,廖祥儒,郑晓洁,吴立峰,赵慧.吲哚乙酸在植物细胞中的代谢及其作用[J].生物学通报,2005,40(4):21-23.
    [77]郝群辉,刘红彦,王飞,张玉军.怀地黄根际土壤水提物的GC—MS分析[J].河南农业科学,2007,2,78-80.
    [78] Tang C S,Takenaka T.Quantitation of a bioactive metabo lite in undisturbed rhizo sphere-benzyl isothiocyanate from Carica Papayal. Chem. Ecol.1983,(9):1247-1253.
    [79]何华勤,梁义元,沈荔花,等.酚酸类物质的抑草效应分析.应用生态学报,2004 ,15 (12):2342-2346.
    [80]吴凤芝,黄彩红,赵凤艳.酚酸类物质对黄瓜幼苗生长及保护酶活性影响[J].中国农业科学,2002,35(7):821-825.
    [81]吴凤芝,赵凤艳,马凤鸣.酚酸物质及其化感作用[J].东北农业大学学报,2001,32(4):402-407.
    [82]孔垂华,徐涛环境胁迫下植物的化感作用及其诱导机制[J].生态学报,2000,20(5):849-854.
    [83]林文雄,何华勤,梁义元等.水稻化感作用及其生理生化特性的研究[J].应用生态学报,12(6):871-875.
    [84]张学文,刘亦学,刘万学等.植物化感物质及其释放途径[J].中国农学通报.2007,23(7):295-297.
    [85]邹丽芸,喻景权.西瓜连作障碍中自毒作用的研究[J].杭州:浙江大学,2004.
    [86]黄璐琦,郭兰萍.环境胁迫下次生代谢产物的积累及道地药材的形成[J].中国中药杂志.2007,32(4):277-280.
    [87]林文雄.水稻化感作用[M].福建:厦门大学出版社,2005:24-33.
    [88]郭兰萍,黄璐琦,蒋有绪,等.苍术根茎及根际土水提物生物活性研究及化感物质的鉴定[J].生态学报,2006,26(2):528-534.
    [89]沈荔花.福建农林大学博士论文:外来植物加拿大一枝黄花入侵的化感作用机制研究,2007:36-50.
    [90]阮维斌,赵紫娟,薛健,等. 2001.高效液相色谱法检测与化感现象相关的5种酚酸[J].应用与环境生物学报,7(6):609-612.
    [91]李红霞,许闽,孟江,等.怀地黄多糖的含量测定[J].河南科学,2002,20(2):144-146.
    [92]梁文举,张晓珂,孔垂华,等.根分泌的化感物质及其对土壤生物产生的影响.地球科学进展,2005,20(3): 330-337.
    [93]林文雄.水稻化感作用[M].福建:厦门大学出版社,2005:251-262.
    [94]史刚荣. 2004.植物根系分泌物的生态效应[J].生态学杂志,23(1):97-101.
    [95] Bryant JP, ChapinⅢFS, Klein DR. 1983. Carbon/nutrient balance of boreal plant in relation to vertebrate herbivory. Oikos, 40: 357-368.
    [96] Tuomi J, Niemila P, ChapinⅢFS, et al. 1988. Defensive responses of trees in relation to their carbon/nutrient balance// Mattson WJ, Levieux J, Bernard DC, eds. Mechanisms of Woody Plant Defences Against Insects: Search for Pattern. New York: Springer: 57-72.
    [97] Blum U.1996.Allelopathic interaction involving phenolic acids. Journal of Nematology, 28: 259-267.
    [98] Einhellig FA. 1996. Interaction involving allelopathy in cropping systems. Agronomy Journal, 88: 886-893.
    [99]苏文华,张光飞,李秀华,等.植物药材次生代谢产物的积累与环境的关系[J].中草药,2005,36(9): 1415-1418.
    [100] Barkosky ,R.,Einhellig.F.A.1993.Effect of salicylic acid on plant-water relationships.J.Chem.Ecol.19:23-247.
    [101]朱祖祥.土壤学[M].北京:中国农业出版社,1983.
    [102]姚军,张有山.土壤质地类型与其基础肥力相关性[J].北京农业科学,1998,16(4):33-34.
    [103] Materchera S A.Penetration of very strong soil by seeding roots of different species.Plant and Soil,1991,135:31-41.
    [104]马伟,戴绍军,赵昕,等.不同土质对喜树幼苗生长和喜树碱质量分数及产量的影响[J].东北林业大学学报,2007,35(8):19-22.
    [105]阎秀峰,王洋,李一蒙.植物次生代谢及其与环境的关系[J].生态学报,2007,27(6):2554-2561.
    [106] Inderjit,Streibig Jens C.Olofsdotter.M.2002.Joint action of phenolic acid mixtures and its significance in allelopathy research.Physiologia Plantarom.114:422-428.
    [107]陈慧,等.地黄连作对根际微生物区系及土壤酶活性的影响[J].应用生态学报,2007,18(12):2755-2759.
    [108]胡开辉,等.化感水稻根际微生物类群及酶活性变化[J].应用生态学报,2006,17(6):1060-1064.
    [109]何光训.土壤酚类物质引起植物中毒的植物生理原因[J].浙江林学院学报1992,9(3):339-344.
    [110]何光训.杉木连栽林地土壤酚类物质降解受阻的内外因.浙江林学院学报1995,12(4):434-439.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700