除虫脲水悬浮剂的物理稳定性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对农药化学品环境相容性要求的不断提升,农药水悬浮剂以其安全、高效等诸多优点成为绿色化学所倡导的农药制剂之一。本文以除虫脲为研究载体,在润湿分散剂筛选的基础上,系统研究了不同因素对农药水悬浮剂体系的分散稳定性和流变行为的影响,探讨了其相关机理。同时制备了Mg-Al MMH,并首次将其作为触变剂应用到农药水悬浮剂中,研究了不同Mg-Al MMH含量、电解质种类和浓度及温度对体系流变性的影响,探讨了Mg-Al MMH在除虫脲水悬浮剂中的触变性机理。主要研究结果如下:
     1.润湿分散剂的筛选是悬浮剂配方筛选的核心。通过流点法、平均粒径测定、Zeta电势测定三种润湿分散剂筛选方法的综合比较,结果表明:
     (1)三种方法各有特点同时具有一定相关性:a.流点法适用于任何种类润湿分散剂的筛选,筛选速度快,但筛选精确度较差,可作为润湿分散剂初步筛选方法;b.粒径测定可以准确确定合适的分散剂种类,适合各类润湿分散剂的筛选;c.Zeta电势的测定适合筛选阴离子型润湿分散剂,与粒径测定筛选结果相一致。
     (2)采用粒径测定、Zeta电势测定及黏度曲线法确定润湿分散剂的含量,三种方法具有较好的相关性。
     (3)对于20%除虫脲水悬浮剂,筛选结果为:润湿分散剂MOTAS:700# = 4:1,用量2%。
     (4)热重分析法进一步验证了采用非离子润湿分散剂和阴离子润湿分散剂复配能够起到更好的分散效果。
     2.通过IR谱图和吸附等温线的测定研究了分散剂MOTAS在除虫脲颗粒表面的吸附特性,结合平均粒径和Zeta电势的测定研究了除虫脲水悬浮剂的分散稳定性,研究结果表明:
     (1)IR谱图表明MOTAS以氢键结合力的方式吸附在除虫脲原药颗粒表面,同时通过静电排斥和空间位阻作用保持悬浮剂的分散稳定性。吸附等温线的测定表明,分散剂吸附量随着聚合物浓度增加而增大直至达到饱和吸附,等温吸附曲线近似Langmuir吸附模型。在相同条件下,分散剂相对分子量越大,原药颗粒表面的饱和吸附量越大;pH值影响聚合物分散剂的电离,随着pH值的增大,饱和吸附量降低;温度升高,饱和吸附量降低。
     (2)分散剂加入量过多或过少均会使分散稳定性下降,其最佳用量为2%;分散剂相对分子量越大,原药颗粒间的静电排斥力和空间位阻作用越大,分散稳定性增强;pH影响聚合物分散剂的电离,当pH值为9时,悬浮体系的分散稳定性最好;电解质的加入会破坏体系分散稳定性,且对于同浓度的一价Na~+,二价的Ca~(2+)压缩双电层的能力更为明显,使体系的分散稳定性明显变差。
     3.通过流变曲线的测定和稳态剪切法研究了添加MOTAS、MT所制备的除虫脲水悬浮剂的流变特性,探讨了体系的流变性机理。研究结果表明:
     (1)除虫脲水悬浮剂为“剪切变稀”的非牛顿流体,符合Herschel-Buckley流变模型。MT的加入可以使水悬浮剂产生一定的触变性,随着蒙脱土含量的增加,体系的流变参数和触变程度相应增加。
     (2)随着分散剂含量的增加,水悬浮剂的流变参数先增加后减小,但分散体系的触变程度随分散剂的含量的增加而减弱,当分散剂含量为2%时,体系有较好的流动性,且有一定程度的触变性。
     (3)体系的pH值不影响其流体类型和正触变性,但对除虫脲颗粒表面电荷和MT粒子间的作用力均有较大影响,二者的综合效应使得体系的流变参数和触变程度随pH的增大呈现出先减小后增大的趋势,当pH值在8~9之间时,有一定的触变性,且体系流动性最好。电解质的加入不改变体系“剪切变稀”的假塑性特征和正触变性。
     (4)不同浓度的电解质对除虫脲水悬浮剂体系的影响取决于电解质对体系中原药颗粒表面电性和MT粒子表面电性的影响。随着电解质浓度的增加,体系的流变参数和触变性呈现出先增大后减小又增大的趋势,且同一浓度的NaCl和CaCl_2相比,CaCl_2对体系流变性的影响更为显著。
     (5)温度对分散剂在原药颗粒表面的吸附量影响较大,从而影响水悬浮剂的流变性。温度的升高不改变体系“剪切变稀”假塑性特征和正触变性,但除虫脲水悬浮剂的流变参数随着温度的升高而升高,当温度升高到55℃时,体系的触变性程度降低。
     4.采用液相共沉淀法制备Mg-Al MMH溶胶,并利用流变曲线和触变性测定研究了其在除虫脲水悬浮剂中的作用,结果表明:
     (1)XRD谱图表明颗粒具有水滑石晶体结构。
     (2)Mg-Al MMH作为触变剂应用于除虫脲水悬浮剂能够产生较好的正触变性,且制备的悬浮体系符合“剪切变稀”的假塑性流体类型。体系的流变参数和触变性随Mg-Al MMH的含量的增大而增大,Mg-Al MMH与吸附了分散剂后带负电的原药颗粒通过静电引力形成空间网状结构。
     (3)在一定的温度范围内,体系的流变参数随温度的升高而增大,但不影响体系“剪切变稀”假塑性特征和正触变性。
     (4)电解质的加入不改变体系“剪切变稀”假塑性特征及正触变性。随着电解质浓度的增加,体系的流变参数和触变性呈现出先增大后减小又增大的趋势,对于相同浓度的NaCl和CaCl_2,CaCl_2对体系的影响更为显著。
With the increasing requirement of pesticide chemicals to environmental compatibility, pesticide water suspension concertration with many advantages such as safety and high effectiveness has been one of the important represents in pesticide formulation that green chemistry initiated. This thesis had chosen Diflubenzuron as the research object, on the basic of the selection of the wet dispersant, we did more research systemicly about the effects of different facts on the dispersed stability mechanism and rheology of pesticide suspension concentrate system, and probed into the related mechanism. We also prepared Mg-Al MMH and applied it to pesticide suspension concentrate as thixotropy. The influences of mass fractions of Mg-Al MMH(ω) , electrolytes concentration and temperature on the rheology of the system and Mg-Al MMH on the thixotropy mechanism of Diflubenzuron SC were studied in this paper.The main researches were following:
     1. The selection of the wet dispersant was the core during the selection of SC prescription process. The result after compositely comparing of such three methods (drop-point, average size and Zeta potential.) in dispersant selecting showed that :
     (1) The three methods had thire own characters respectively and certain correlate at the same time. a. The drop-point method which was fit to selection among any dispersants was a quick selecting progress. However, it was a premilinary selection method because of its poor accurate. b. The suitable dispersant could be determined exactly after particle size determination, and this method could be applied to the selection of any species dispersants. c. The method of Zeta potential which was aggrement with the selection result of particle size determination was fit to the selection of ionic dispersant.
     (2) The methods of average size, Zeta potential and viscosity curve determined the content of dispersant. They had better correspondence.
     (3) The selection result for 20% Diflubenzuron SC was MOTAS:700# = 4:1 with the total conent of 2%.
     (4) Non-ionic wet dispersant combined with ionic wet dispersant playing better dispersion was further verified by thermogravimetric analysis(TG).
     2. The adsorption behaviour of dispersant MOTAS on the interface of Diflubenzuron particles was studied by the measurement of IR spectrogram and adsorption isotherm. The dispersion stability of Diflubenzuron SC was studied by average size and Zeta potential. The result showed that:
     (1) The IR spectrogram showed that MOTAS adsorded on the interface of Diflubenzuron particles by hydrogen bonding, and the dispersed stability of SC was keeped by electrostatic repulsion and steric hindrance effect. The result of adsorption isotherm showed that the adsorption capacity increased with the polymer concentration increasing until it reached saturation, and the adsorption isotherm was correspond with Langmuir equilibrium. The more dispersant molecular weight, the bigger saturated adsorption capacity of the interface of the technical material particles, and the saturated adsorption capacity decreased with the pH value increased which the pH value effect the ionization of polymer dispesant, and the saturated adsorption capacity decreased with the temperature increased under the same conditions.
     (2) The dispersion stability decreased with excessive or shortage dispersant which the optimal content is 2%, and the dispersion stability increased with bigger molecular weight of dispersant and bigger electrostatic repulsion and steric hindrance of original particles, and the pH value effect the ionization of polymer dispesant. At the pH value of 9 the dispersion stability of suspension concentrate was best. The addition of electrolytes could destroy dispersion stability, and the ability of compressing double-layer of monovalent Na~+ was more distinct than bivalent Ca~(2+) when they were at the same concentration, and it decreased the dispersion stability more distinct.
     3. The prepared Diflubenzuron SC with adding MOTAS and MT as auxiliary agent was studied by flow curve experiment and Steady Shear Method, and its thixotropic behavior was studied by stable shear experiment. The result showed that:
     (1) Diflubenzuron SC was non-newtonina fluid of“shear-thinning”, which correspond with Herschel-Buckley rheological model. SC had certain thixotropic behavior after the adding of MT, and the rheological parameters and thixotropic degree increased with the content of MT increasing.
     (2) The rheological parameters of SC decreased after increasing with the dispersant mass fraction increasing, while the thixotropic behavior of dispersion system decreased with the dispersant mass fraction increasing. The system had good fluidity and thixotropic behavior when the dispersant mass fraction was 2%.
     (3) The pH value didn’t have effect on the fluid pattern and positive thixotropy, while it had a great impact on the surface charge of Diflubenzuron particles and forces between particles of MT, the rheological parameters and thixotropic degree of the system had a trend of decreasing and then increasing with the increased pH value under the composite effects. When the pH value was between 8 and 9, the system had certain thixotropic and its fluidity was best. The property of rheogram“shear-thinning”of the pseudo-plasticity and positive thixotropy of the SC added with electrolytes were not changed.
     (4) The effects of electrolytes with various concentration on the Diflubenzuron SC system were dependented on the composite effects of two different surface potentials electrolytes exerted between technical material particles and MT particles. The rheological parameters and thixotropic behavior of SC had a trend of increasing and then decreasing and then increasing with the dispersant mass fraction increasing. The influences of CaCl_2 were more significant than NaCl at the same concentration.
     (5) Temperature had a big influence on the dispersant adsorption capacity of technical material particles. Therefore, Temperature effected the rheology of SC. As the temperature increased, the property of rheogram“shear-thinning”of the pseudo-plasticity and positive thixotropy of the SC were not changed . However, the rheological parameters of Diflubenzuron SC increased with increase of temperature. The thixotropic degree of SC decreased when the temperature reached 55℃.
     4. Mg-Al MMH colloidal was prepared by liquid co-precipitation method, the analysis of rheological curve and thixotropic behavior showed that:
     (1) The XRD spectrogram showed that the particles had a structure of hydrotalcite crystal.
     (2) Mg-Al MMH acted as thixotropic agent which was applied to Diflubenzuron SC had better positive thixotropy, and the prepared SC system corresponded the property of rheogram“shear-thinning”of the pseudo-plasticity. The rheological parameters and thixotropic behavior of SC increased with the increase of the mass fractions of Mg-Al MMH..The space network structure was formed by electrostatic attraction between Mg-Al MMH and technical material particles with negative charged which adsorbed dispersant.
     (3) The rheological parameters of Diflubenzuron SC increased with increase of temperature at a certain temperature range, but the property of rheogram“shear-thinning”of the pseudo-plasticity and positive thixotropy of the SC were not changed.
     (4) The property of rheogram“shear-thinning”of the pseudo-plasticity and positive thixotropy of the SC added with electrolytes were not changed, too. The rheological parameters and thixotropic behavior of SC had a trend of increasing and then decreasing and then increasing with the dispersant mass fraction increasing. The influences of CaCl_2 were more significant than NaCl at the same concentration.
引文
卜小莉,黄啟良,王国平,李凤敏,折东梅,张春华.触变性及其在农药悬浮体系中的应用前景.农药, 2006, 45(4): 231-236.
    卜小莉,黄啟良,王国平,李凤敏,折冬梅,张春华. 30%吡虫啉悬浮剂中触变性稳定体系的构建.农药科学与管理, 2006, 27(4): 24-28.
    曹亚,李惠林,张爱民. CMC型高分子表面活性剂在固/液界面上的吸附.物理化学学报, 1999, 15(5): 952-955.
    陈克权,钱瑛,李德生,张永福,殷雪萌.香精与乙烯/醋酸乙烯酯共聚物离子界面行为的研究.高分子学报, 2000, 6: 668-671.
    陈立亚,于宝珠,赵慧芳. Zeta电位及其在药学分散体系研究中的应用.药物分析杂志, 2006, 26(2): 281-285.
    陈甜甜,路福绥,李现伟,张树芹,侯万国. Mg-Al MMH对除虫脲水悬浮剂流变性的影响.高等学校化学学报, 2010, 31: 2063-2041.
    陈宗淇,石林,吴世英,王光信.负触变性现象.北学通报, 1991, 54(2): 31-32.
    陈宗淇,于网林,郝策,滕弘霓.二氧化硅悬浮体和水解聚丙烯酞胺体系流变性.化学学报, 1990, 48(7): 666-672.
    崔正刚,殷福珊.微乳化技术与应用.北京:中国轻工业出版社, 1999: 273.
    戴肖南,侯万国,李淑萍.无机电解质及聚合物对Mg-Al型混合金属氢氧化物-高岭土分散体系触变性的影响.应用化学, 2002, 194: 338~341.
    戴肖南,候万国,李淑萍,王新芳. Mg-Al-MMH-高岭土分散体系触变性研究.高等学校化学学报, 2001, 22(9): 1578-1580.
    邓斌,李强国,胡正水,侯耀永.纳米SiC水悬浮液稳定性的研究.长沙电力学院学报(自然科学版), 2003, 18(1): 78-81.
    丁晓燕,何瑾馨.表面活性剂复配物在提高分散染料高温分散稳定性中的作用.纺织科技进展, 2005, (6): 55-56.
    董秀芳,李裕,刘有智,齐雪琴.悬浮液中TiO2微粒分散性研究.化工科技, 2004, 12(1): 12-14.
    董元彦,路福绥,唐树戈.物理化学.北京:科学出版社, 2008.
    冯建国.浅谈粒度测试方法及其在农药剂型加工中的应用.农药研究与应用, 2009, 13(6): 9-13.
    冯建国,路福绥,陈甜甜,张树芹,李慧.聚合物分散剂对氟虫脲水悬浮剂分散稳定性的影响.高等学校化学学报, 2010, 7(7): 1386-1390.
    冯建国,路福绥,李明. 5%氟虫脲润湿分散剂的筛选.农药, 2009, 48(7): 484-486.
    傅献彩,沈文霞,姚天杨,侯文华.物理化学(第五版)下册.北京:高等教育出版社, 2006
    高长义,冯银鹏,林丽. 15%硝磺草酮水悬浮剂配方研究.精细化工中间体, 2009, 39(4): 11-14.
    关有俊,谭亮,胡志宾,徐立.水性高分子超分散剂的合成.上海涂料, 2005, 43(4): 9-10.
    郭红. 40%硫·三环唑悬浮剂悬浮率稳定性.农药, 2008, 47(8): 582-583.
    何林,慕立义,王金信. 40%氰·莠悬浮剂的物理稳定性研究.农药, 2002, 141: 22-24.
    何林,慕立义.农药悬浮剂物理稳定性的预测和评价.农药科学与管理, 2001, 22(5): 10-12.
    侯吉瑞,刘中春,张淑芬,岳湘安,杨锦宗.碱对聚丙烯酰胺的分子形态及其流变性的影响.物理化学学报, 2003, 19(3): 256-259.
    侯万国,苏延磊,孙德军,张春光. Mg-Fe-MMH-钠质蒙脱土分散体系的触变性研究.化学学报, 2000, 58(6): 722-726.
    华锋君,孙静,高濂,杨玉良.纳米二氧化硅符合悬浮液合成及聚合物吸附研究.化学学报, 2000, 58(12): 1660~1665.
    华乃震.水基性农药制剂的开发和前景.农药, 2006, 45(12): 805-809.
    黄啟良,李风敏,袁会珠,杨代斌,齐淑华.颗粒粒径和粒谱对悬浮剂贮存物理稳定性影响研究.农药学学报, 2001, 3(2): 77-80.
    黄啟良,李风敏,袁会珠,杨代斌,齐淑华.悬浮剂润湿分散剂选择方法研究.农药学学报, 2001, 3(3): 66-70.
    贾春晓,侯万国,郝明途,郭雄华. Al-Mg类水滑石-钠质蒙脱土悬浮体的流变性.应用化学, 2003, 20(1): 42-46.
    江琳沁,高濂,刘阳桥,孙静. Tiron对纳米Al2O3悬浮液性能的影响. 2003, 18(1): 65-70.
    蒋以超,黄天栋.胶体化学.北京:北京农业大学出版社, 1993: 244.
    金晶,盖蔚,刘昌胜.添加剂聚乙烯吡咯烷酮对磷酸钙骨水泥流变性能的影响.华东理工大学学报(自然科学版), 2005, 31(1): 83-87.
    阚艳梅,王佩玲,李永祥,程一兵.丙烯酸-丙烯酸酯共聚物对钛酸铋水悬浮液性质的影响.无机材料学报, 2002, 17(6): 1194-1198.
    孔德玉,叶青,倪彤元,蒋靖.溶胶法引入纳米SiO2对水泥浆流变性能的影响及机制. 稀有金属材料与工程, 2010, 39(赠刊2): 451-454.
    冷阳.我国农药制剂的动态及发展趋势.世界农药, 2010, 32: 19-21.
    李登好,郭露村. PAANH4-凹凸棒石粘土水悬浮液分散稳定性研究.材料科学与工程学报, 2005, 23(2): 207-210.
    李登好,郭露村. pH对α-A2O3-H2O-聚丙烯酸悬浮液稳定性的影响.中国陶瓷工业, 2005, 12(4): 1-4.
    李登好,郭露村.α-Al2O3-H2O-聚丙烯酸悬浮液的抗电解质性能.硅酸盐学报, 2006, 34(3): 376-380.
    李登好,朱晓文,郭露村.温度对α-Al2O3-H2O-PAA悬浮液稳定性的影响.材料科学与工程学报, 2006, 24(2): 227-229.
    李景国,髙濂,郭景坤.聚丙烯酸铵在纳米氮化钛上的定量吸附研究.无机材料学报, 2002, 17(2): 241-246.
    李淑萍,戴肖南,侯万国,胡季帆,李冬青. pH值对Fe-Al-Mg型混合金属氢氧化物/钠质蒙脱土悬浮体触变性的影响.高等学校化学学报, 2002, 23(9): 1763-1766.
    李淑萍,侯万国,孙德军,张春光. Fe-Al-Mg-MMH/钠质蒙脱土分散体系触变性研究.高等学校化学学报, 2001, 22(7): 1173-1176.
    李新芳,朱冬生,王先菊,汪南.纳米Cu分散稳定性能影响因素及作用机理研究.化学工程, 2007, 35(12):46-50.
    李燕.类水滑石/阳离子淀粉分散体系的吸附及流变学研究.山东大学, 2008.
    梁明龙,何觉勤,许丽娟,陈劲礼. 20%三环唑悬浮剂的配方研制及应用.农药, 2010, 49(12): 879-881.
    林雨佳,赵军,华乃震. 600g/L吡虫啉悬浮剂的开发和研制.农药, 2008, 47(12): 877-879.
    刘畅,王可兴,潘思轶.果肉性质对酸橙汁流变学特性影响研究.食品科学, 2006, 27(10): 92~95.
    刘峰,王会利,何茂华,刘学涛,慕卫.利用正交试验设计优选氰·莠水悬浮剂配方.农药学学报, 2003, 5(12): 88-92.
    刘步林,吕盘根,邵维忠.农药剂型加工技术.第二版.北京:化学工业出版社, 1998, 306-315.
    刘德新,岳湘安,侯吉瑞.蒙脱土悬浮液体系流变性研究.铸造, 2005, 54(2): 172-175.
    刘付胜聪,肖汉宁,李玉平,胡智荣.纳米TiO2表面吸附聚乙二醇及其分散稳定性的研究.无机材料学报, 2005, 20(2): 310-316.
    刘付胜聪,肖汉宁,李玉平.聚丙烯酸在纳米TiO2表面吸附行为的研究.高等学校化学报, 2005, 26(4): 742-746.
    刘付胜聪,肖汉宁,李玉平.纳米SiO2表面吸附聚丙烯酰胺及其液相分散稳定性.硅酸盐学报, 2004, 32(7): 816-821.
    刘付胜聪,肖汉宁,李玉平.纳米ZnO表面吸附聚电解质及其分散体系稳定性的研究.科学通报, 2005, 50(12): 1184-1189.
    刘付胜聪.纳米氧化物表面高分子修饰及其对聚丙烯酸酯复合涂层性能的影响. 2005, 湖南大学.
    刘鹏飞,刘西莉,曹永松,黄啟良,李健强.水悬浮剂中烷基酚聚氧乙烯醚在农药颗粒表面的吸附.应用基础与工程科学学报(英文版), 2010, 18(2): 237-244.
    刘勤冬.菊酯农药水悬浮剂的研究.安徽化工, 2006, 4: 45-46.
    刘阳桥,高濂,郭景坤.丙烯酸类共聚物在纳米Y-TZP分体上的等温吸附研究.无机材料学报, 2001, 16(4): 635-640.
    刘阳桥,髙濂,郭景坤. PBTCA稳定Al2O3悬浮液及沉积物分形特性的研究.无机材料学报, 2000, 15(5): 856-861.
    刘月,路福绥,陈甜甜.萘磺酸盐甲醛缩合物在灭幼脲界面的吸附特性研究.现代农药, 2010, 9(6): 15-18.
    刘占山,任新国,李旭君.农药悬浮剂研究现状.农药科学与管理, 2007, 28(11): 45-48.
    路福绥,刘军,薛刚,盛峰. 50%复方多菌灵悬浮剂的流变特性研究.农药, 1999, 12(38): 11-12.
    路福绥,刘军,薛刚.铜高尚悬浮剂的流变特性研究.农药, 2000, 39(6): 19-20.
    路福绥. 50%复方多菌灵悬浮剂的流变特性研究.农药, 1995, (5): 11-12.
    路福绥.果汁的流变特性研究.食品工业科技, 1999, 20(2): 12-13.
    路福绥.农药悬浮剂的物理稳定性.农药, 2000, 10(39): 8-10.
    吕明静,肖春霞,郭露村.复合分散剂稳定的氧化铝悬浮液抗电解质特性的研究.陶瓷学报, 2010, 31(1): 1-95.
    吕少一,邵自强,王飞俊,王文俊,李永红.羧甲基纤维素醋酸丁酸酯水分散体的流变性能.高分子材料科学与工程, 2010, 26(8): 54-57.
    麻建国, E.Dickinson,M.J.W.Povey.黄原胶体系的流变学及糖和盐对体系的影响.无锡轻工业大学学报, 1998, 1(17): 1-7.
    明亮,楼远来.国内外农药剂型研究进展及发展方向.江苏农业科学, 2007(6): 102-105.
    潘立刚,陶岭梅,张兴.农药悬浮剂研究进展.植物保护, 2005, 31(2): 17-20.
    秦友山,李汉承,高楠. Zeta电位法探索聚羧酸盐分散剂在农药水分散粒剂中的最佳用量. 现代农药, 2008, 7(6): 10-14.
    邵维忠,王早骧,缪鑫才,印桂华.农药助剂.第三版.北京:化学工业出版社, 2002: 10-12.
    邵维忠.农药助剂(第三版).北京:化学工业出版社, 2002.
    沈德隆,周瑛,唐蔼淑,李青,李铁英.农药多组分悬浮体系的流变学行为研究.农药, 1995, 5(34): 6-9.
    沈娟,黄啟良,夏建波,陈丹,折冬梅,李凤敏,胡炜.分散剂及黄原胶对多菌灵悬浮剂
    流变性质的影响.农药学学报, 2008, 10(3): 354-360.
    宋晓岚,邱冠周,杨振华,曲鹏.水相介质中纳米CeO2的分散行为.稀有金属, 2005, 29(2): 167-172.
    宋晓岚,吴雪兰,曲鹏,王海波,邱冠周.纳米SiO2分散稳定性能影响因素及作用机理研究.硅酸盐通报, 2005, (1): 3-7.
    孙静,孙伟燕,髙濂.聚丙烯酸铵在纳米Y-TZP上的定量吸附研究.无机材料学报, 1999, 14(4): 645-649.
    孙静,高濂. NaCI介质中盐浓度、pH对α-A12O3表面相互作用力的影响.化学学报, 2001, 59(5): 780-783.
    孙德军,侯万国,韩书华,宋淑娥,张春光.电解质和阳离子表面活性剂对MMH/粘土体系胶体性能的影响.高等学校化学学报, 1998, 19(2): 252-256.
    孙德军,刘尚营,杨智,侯万国,张春光. Al-MgMMH正电胶体粒子体系的流变学.高等学校化学学报, 2001, 2(6): 1002-1005.
    谭成侠,沈德隆.粉·福(粉锈宁+福美双)悬浮剂配方的开发研究.农药, 1998, 30(5): 12-15.
    谭训言. ZrO2陶瓷基复合粉体的分散机制及成型工艺研究. 2004,山东大学.
    汤枫秋,黄校先,张玉峰,郭景坤.盐离子对纳米氧化锆浆料流变性能的影响.无机材料学报, 1999, 14(2) : 239-243.
    田安丽,蔡玉青,房宽峻,张霞. SMA共聚物的合成及对超细颜料水性体系的分散作用. 高分子材料科学与工程, 2005, 21(6): 102-105.
    汪剑炜,王正东,胡黎明.超分散剂的应用.涂料工业, 1995, (1): 29-34.
    王莉,李丽芳,贾猛猛,王建伟,王冬青. Zeta电位法选择农药悬浮剂所需润湿分散剂. 应用化学, 2010, 27(6): 727-731.
    王启宏(主编).材料流变学.北京:中国建筑工业出版社, 1985.
    王瑞刚,吴厚政,陈玉如,杨正方.陶瓷料浆稳定分散进展.陶瓷学报, 1999, 20(1): 35-40.
    王向东,张跃,王树彬,周武平,熊宁,林同伟.碳化钛悬浮体分散特性和流变性能的研究.稀有金属材料与工程, 2007, 3(11): 153.
    王雪娟,武丽芬,吴素彩.除虫脲的提纯及主要杂志的分离测定.农药科学与管理2005, 26(9): 7-9.
    王燕民,李新衡.湿法超细研磨中无机材料浆体的流变性研究.硅酸盐学报. 2006, 34(5): 585-591.
    王郁,罗大全.农药悬浮剂发展现状及展望.广西热带农业, 2008, 1: 21-23.
    魏方林,朱国念,孔小林. 10%ZJ0712水悬浮剂的研制.农药, 2004, 43(7): 300-302.
    伍秋美,阮建明,黄伯云,周忠诚,邹俭鹏.低固相含量SiO2分散体系流变性研究.化学学报, 2006, 64(15):1543-1547.
    伍秋美,阮建明,周忠诚,黄伯云. SiO2/聚乙二醇非牛顿流体流变性能研究.物理化学学报, 2006, 22(1): 48-52.
    兀新养,赵斌,周渝,刘哲峰. 30%吡虫啉水悬浮剂的研制.应用化工, 2008, 37(9): 1108-1110.
    谢冰,章少华,黄安,罗来涛.纳米TiO2颗粒的分散.稀有金属材料与工程, 2007, 36(增刊2): 114-116.熊毅,土壤胶体(第三册).北京:科学出版社, 1990.
    徐义宽.流变学测试应用于胶悬剂开发和质量控制.农药译丛, 1980, 6: 1-6.
    徐义宽.农药胶悬剂的流变学行为、配方和制造工艺.农药加工技术研究讨会论文集. 1991: 1-61.
    杨代斌,黄啟良,袁会珠,齐淑华.农药悬乳体系流变学特性研究.农药学学报, 2002, 4(4): 75-78.
    杨化桂,高丕英,古宏晨,方图南.锐钛型二氧化钛/水悬浮体的流变性研究.无机材料化学. 2000, 15(3): 431-436.
    杨化桂,韩今依,古宏晨,干路平.添加剂对TiO2/水分散体流变性的影响.高等学校化学学报, 1999, 10(20): 1601-1604.
    张立明,马天,杨金龙,黄勇.氧化铝悬浮液剪切流变特性的研究.无机材料学报, 2004, 19(5): 1145-1150.
    张国生.农药水分散粒剂与悬浮剂的配方技术及其应用.世界农业, 2009, 31(2): 37-45.
    张树芹,侯万国,王文兴.对硝基苯酚在镁铝型双金属氢氧化物及其煅烧产物上的吸附. 山东大学学报(理学版), 2007, 42 (9): 19-24.
    郑德赞. 500g/L异菌脲水悬浮剂的研制.农药, 2003, 42(8): 15-17.
    郑华华.分散剂对超细重质碳酸钙在水中分散性的影响. 2006,广西大学.
    郑忠编.胶体科学科学导论.北京:高等教育出版社, 1989.
    中华人民共和国国家质量监督检验检疫总局. GB/T14825-2006,农药悬浮率测定方法,中国标准出版社. 2007.
    中华人民共和国国家质量监督检验检疫总局. GB/T19136-2003,农药热贮稳定性测定方法.中国标准出版社. 2004.
    周明松,邱学青,杨东杰.木质素系和萘系分散剂在煤水界面的吸附性能.高等学校化学报, 2008, 29(5): 987-992.
    周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散降黏作用机理研究,2007,华南理工大学.
    朱炳煜,张正群,李刚,刘峰.有机改性膨润土及其对烟嘧磺隆油悬浮体系物理稳定性的影响.应用化学, 2009, 26(8): 881-884.
    朱炳煜,张正群,李刚,刘峰.有机改性膨润土及其对烟嘧磺隆油悬浮体系物理稳定性的影响.应用化学, 2009, 26(8): 881-884.
    朱协彬,段学臣,陈海清. MC对ITO水相浆料的稳定作用及其分散机理.中南大学学报(自然科学版), 2007, 38(4): 612-616.
    庄占兴.氟铃脲悬浮剂加工原理及其性能研究, 2009,山东农业大学.
    庄占兴,路福绥,陈甜甜,李伟,郭雯婷,罗万春.聚合物分散剂对氟铃脲水悬浮剂流变性质的影响.应用化学, 2010, 27(4): 470-473.
    庄占兴,路福绥,陈甜甜,刘月,罗万春.苯乙烯丙烯酸共聚物分散剂在氟铃脲颗粒界面的吸附性能.高等学校化学学报, 2009, 30(2): 332-336.
    庄占兴,路福绥,刘月,陈甜甜,罗万春.萘磺酸甲醛缩合物分散剂在氟铃脲颗粒表面的吸附特性.农药学学报, 2009, 10(4): 477-482.
    邹立壮,朱书全,王晓玲,郭相坤,崔广文.不同水煤浆分散剂与煤之间的相互作用规律研究X分散剂在煤粒表面上的吸附作用特征.燃料化学学报, 2006, 34(1): 10-14.
    Agibalova L.V., Voznyakovskii A.P., Dolmatov V.Yu.. Structure of suspensions of explosion-sytnthesized ultradispersed . Sverkhtverdye Materialy, 1998, 8(4): 87-95.
    Alonso M.V., Rodriguez J.J., Oliet M.. Characterization and structural modification of ammonic lignosulfonates by methylolation . Journal of Applied Polymer Science. 2001, 82(11): 2661-2668.
    Barnes H.A., Hutton J.F.. Elsevier K.W..流变学导引.北京:中国石化出版社, 1989.
    Barnes H.A.. Thixotropy-a review. Journal of Non-Newtonian Fluid Mechanics, 1997, 70(1-2): 1-33.
    Benna M., Kbir-Aliguib N., Magnin A.. Effect of pH on Rheological Properties of PurifiedSodium Bentonite Suspsensions. Journal of colloid and Interface Science, 1999, 218, 442-455.
    Berland S., Launay B.. Shear softening and thixotropic properties of wheat flour doughs in dynamic testing at high shear strain. Rheologica Acta, 1995, 34: 622-625.
    Bernhard T.C., Reinsch E., Husmann K.. The influence of suspension properties on ultra-fine grinding in stirred ball mills. Powder Technology, 1999, 105(1): 357-361.
    Bingham E.C.. Fluidity and Plasticity. McGraw-Hill, New York, 1992.
    BinnerJ G.P., Murfin A.M.. The Effect of Temperature, Heating Method and State of Dispersion on the Vacuum Filter Casting of Alumina Suspensions. Journal of the European Ceramic Society, 1998, 18: 791-798.
    Blanco López M.C., Rand B., Riley F.L.. Polymeric stabilisation of aqueous suspensions of barium titanate. Part I: Effect of pH. Journal of the European Ceramic Society, 2000, 20(10): 1579-1586.
    Blokhus A.M., Djurhuus K.. Adsorption of poly(styrene sulfonate) of different molecular weights onα-alumina: Effect of added sodium dodecyl sulfate. Journal of Colloid and Interafce Science, 2006, 296: 64-70.
    Citerne G.P., Carreau P.J., Moan M.. Rheological properties of peanut butter. Rheologica Acta 2001, 40: 86-96.
    Coussot P., Gaulard F.. Gravity flow instability of viscoplastic materials: The ketchup drip. Physical Review E, 2005, 72(3): 1409-1413.
    Dange C., Phan T.N.T., AndréV., Rieger J., Persello J., Foissy A. Adsorption mechanism and dispersion efficiency of three anionic additives [poly(acrylic acid), poly(styrene sulfonate) and HEDP] on zinc oxide . Journal of Colloid and Interafce Science, 2007, 315: 107-115.
    Davies J., Binner J.G.P.. Coagulation of electrosterically dispersed concentrated alumina suspensions for paste production. Journal of the European Ceramic Society, 2000, 20: 1555-1567.
    Desset S., Spalla O., Lixon P.. From Powders to dispersions in water:Eeffet of adsorbed moleeules on the redisdersion of alumina particles. Langmuir, 2001, 17(21): 6408-6418.
    Dupont L., Foissy A., Mercier R., Mottet B.. Effect of calcium ions on the adsorpti on of polyacrylic acid onto alumina. Journal of Colloid and Interafce Science, 1993, 161: 455-464.
    Esumi K., Iitaka M., Koide Y.. Simultaneous Adsorption of Poly(ethylene Oxide) and Cationic Surfactant at the Silica/Water Interface. Journal of Colloid and Interafce Science, 1998, 208: 178-182.
    Ewais E.. Zaman A.A.. Sigmund W.. Temperature induced forming of zirconia from aqueous slurries: mechanism and rheology. Journal of the European Ceramic Society. 2002, 22: 2805-2812.
    Faers M.A., Kneebone G.R.. Application of rheological measurements for probing the sedimentation of suspension concentrate formulations. Pesticide Science, 1999, 55: 312-325.
    Farrokhpay S., Morris G.E., Fornasiero D., Self P.. Eeffet of chemical functional groups on the polymer adsorption behavior on to titania pigment particles. Journal of Colloid and Interafce Science, 2004, 274(l): 33-40.
    Fresno Contreras M.J., Ramírez Diéguez A., Jiménez Soriano M.M.. Rheological characterization of hydroalcoholic gels-15% ethanol-of Carbopol Ultrez . Farmaco, 2001, 56 : 443-445.
    GUO L.C., ZHANG Y., NOZOUM U.. Adsorption Effects on the rheological properties of aqueous alumina suspension with polyeletrolyte. Journal of the American Ceramic Society, 1998, 81(3): 549-556.
    Hideo Terayama a., Kumiko Okumura b., Kenichi Sakai b., Kanjiro Torigoe b., Kunio Esumi b.. Aqueous dispersion behavior of drug particles by additionof surfactant and polymer. Colloids and Surfaces B: Biointerfaces, 2001, 20: 73-77.
    Holser R.A., Carriere C.J., Park J.S., Abbott T.P.. Rheological characterization of jet-cookedLesquerella fendleri seed gum and cornstarch solutions. Industrial Crops and Products, 2000, 11: 243-247.
    HOU W.G., SUN D.J., HAN S.H., WANG G.T.. Study on the thixotropy of aluminum magnesium hydroxide–Na-montmorillonite suspension. Colloid Polymer.Science, 1998, 276(3): 274-277.
    HOU W.G., Sun D.J., Han S.H.. A novel thixotropic phenomenon-complex thixotropic behavior. Chemical Research Chinese Universities, 1997, 13(1): 86-88.
    Jae-Hyun S., Seung-Man Y., Chongyoup K., Jae Chun Hyun. Microstructure and rheological behavior of electrosterically stabilized silica particle suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 190: 89-98.
    Jan Gustafsson, Erik Nordenswan, Jarl B.Rosenholm. Effect of pH on the sedimentation, z-potential, and rheology of anatase suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, (212): 235-247.
    John D.. Schofield.Extending the Boundaries of Dispersant . Technology Progress in Organic Coating, 2002, 45 (2): 249-257.
    Kelessidis V.C., Tsamantaki C., Dalamarinis P.. Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Applied Clay Science, 2007, 38: 86-96.
    Klein B., Hallbom D.J.. Modifying the rheology of nickel laterite suspensions. Mineral Engineering, 2002, 15: 745-749.
    Knowles D.A.. Trends in Pesticide Formulions. London, 2001: 45-68.
    L.E.尼尔生(美).聚合物流变学.北京:科学出版社, 1983.
    LI Y., HOU W.G., SHEN S.L.. Rheological behavior of aqueous suspensions containing cationic starch and aluminum magnesium hydrotalcite-like compound in the presence of different electrolytes. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2009, 350: 109-113.
    Lippacher A., Müller R.H., M?der K.. Liquid and semisolid SLN dispersions for topicalapplication: rheological characterization. European Journal of Pharmaceutics and Biopharmaceutics. 2004, 58(3): 561-567.
    Lisunova M.O., Lebovka N.I., Melezhyk O.V., Boiko Y.P.. Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant . Journal of Colloid and Interface Science, 2006, 299(2): 740-746.
    Liu D., Malghan, Malghan S.G.. Role of polyacrylate in modifying interraxial properties and stability of silicon nitride particles in aqueous suspensions. Colloid and Surfaces A:Physicochemical and Engineering Aspects, 1996, 110: 37-45.
    LIU H.B., Xiao H.N.. Adsorption of poly(ethylene oxide) with different molecular weights on the surface of silica nanoparticles and the suspension stability. Materials Letters, 2008, 62: 870-873.
    LIU Y.Q., Gao L.. Dispersion of aqueous alumina suspensions using copolymers with synergisticfunctional groups. Materials Chemistry and Physics, 2003, 82: 362-369.
    LIU Y.Q., GAO L., GUO J.K.. Adsorption of Acrylic Copolymers at the Alumina–water Interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 174: 49-356.
    LIUFU S.C., Xiao H.N., Li Y.P.. Adsorption of cationic polyelectrolyte at the solid/liquid interface and dispersion of nanosized silica in water. Journal of Colloid and Interface Science, 2005, 285: 33-40.
    Luckham P.F.. The physical stability of suspension concentrates with particular reference to pharmaceutical and pesticide formulations. Pesticide Science , 1989, 25: 25-34.
    Mitchell R.J., Markell A.R.. Flowsliding in Sensitive Soils. Canadian Geotechnical Journal, 1974, 11: 11-31.
    Napper D.H.. Steric stabilization. Journal of Colloid and Interface Science, 1977, 58(2): 390-407.
    Nylund J., Sundberg A., Sundberg K.. Dissolved and colloidal substances from a mechanicalpulp suspension—Interactions influencing the sterical stability. Colloid and Surfaces A:Physicochemical and Engineering Aspects, 2007, 301: 335-340.
    PALLA B.J., SHAHD O.. Stabilization of high ionic strength slurries using surfactant mixtures:molecular factors that determine optimal stability] . Journal of Collioid and Interface Science, 2000, 256: 134-152.
    PALLA B.J., SHAHD O.. The effect of the mixsurfactant system on stabilization of high ionic strength slurries. Journal of Collioid and Interface Science, 2000, 223:102-111.
    Palmqvist L., Lyckfeldt O., Carlstr6m E.. Dispersion mechanisms in aqueous alumina suspemiom at high solids loadings . Colloid and Surfaces A:Physicochemical and Engineering Aspects, 2006, 274:100-109.
    PANG X.M., XU M.X., LIANG H., LI X.L., JI H.M.. Rheological Properties and Thixotropy Model of Concentrated Aqueous Silicon Slurry for Gel Casting. Colloid and Surfaces A:Physicochemical and Engineering Aspects, 2007, 10: 1-10.
    Ping Ding, Andrzej W.. Pacek. Effect of pH on deagglomeration and heology/morphology of aqueoussuspensions of goethite nanopowder. Journal of Colloid and Interface Science, 2008, (325): 165-172.
    R.H.Ottewilla. Stability and instability in disperse systems. Journal of Colloid and Interface Science, 1977, 58(2): 357-373.
    Rao M.A.. Rheology of fluid and semi-solid foods: principles and applications. Aspen Publ. Inc, 1999.
    Robert J., Flatt, Paul B.. Electrostatic repulsion between particles in cement suspensions: Domain of validity of linearized Poisson-Boltzmann equation for nonideal electrolytes. Cement and Concrete Research. 2003, 33: 781-791.
    Roberto Duro, Carmen Alvarez, Ramón Martínez-Pacheco, JoséLuisómez-Amoza, Angel Concheir, Consuelo Souto. The adsorption of cellulose ethers in aqueous suspensions of pyrantel pamoate: effects on zeta potential and stability.European Journal of Pharmaceutics and Biopharmaceutics, 1998, 45: 181-188.
    Rodham D.K.. Colloid and interface science in formulation research for crop protection products . Current Opinion in Colloid and Interface Science, 2000, 5: 280-287.
    Rudeerat Suntako a., Pitak Laoratanakul b., Nisanart Traiphol. Effects of dispersant concentration and pH on propertiesof lead zirconate titanate aqueous suspension. Ceramics International, 2009, 35: 1227-1233.
    Stokes J.R., Telford J.H.. Measuring the yield behaviour of structured fluids. Journal of Non-Newtonian Fluid Mechanics. 2004, 124(1-3): 137-146.
    Suntako R., Laoratanakul P., Traiphol N.. Effects of dispersant concentration and pH on properties of lead zirconate titanate aqueous suspension. Ceramics.International, 2009, 35: 1227-1233.
    Tadros Th.F.. Steric stabilisation and flocculation by polymers. Polymer journal, 1991, 23(5): 683-696.
    Toorman E.A.. Modelling the thixotropic behaviour of dense cohesive sediment suspensions. Rheologica Acta 1997, 36(1): 56-65.
    Vassilios C., Kelessidis, Christina Tsamantaki, Panayiotis Dalamarinis. Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Applied Clay Science, 2007, (38): 86-96.
    Victor K.D., Robert D.V.. The effect of adsorbed polystyrene on the stability of graphon dispersions in touene. Journal of Colloid and Interface Science, 1976, 54(1): 22- 26.
    Voznyakovskii A.P., Dolmatov V.Yu, Klyubin V.V.. Structure and sedimentation stability of suspensions of detonation nanodia-monds in nonaqueous liquid media . Sverkhtverdye Materialy, 2000, 10(2): 64-71.
    WANG X.L., GUO L.C.. Effect of temperature on the stability of aqueous ZrO2 suspensions. Colloid and Surfaces A:Physicochemical and Engineering Aspects. 2007, 304: 1-6.
    Winzeler H.B., Vogel R., Dudler A.. Rheological Measurements in Development and Quality of Suspension Concentrates[C]. Zurich. Advances in Pesticide Science(part3). New York:Pergamon Press, 1979, 798-809.
    XU R.L., WU C.L., XU H.Y.. Particle Size and Zeta Potential of Carbon Black in Liquid Media. Carbon, 2007, 45, 2806-2809.
    YANG Y.P., Wolfgang M., Sigmund. A new aproach to prepare highly loaded aqueous alumina suspensions with temperature sensitive rheological properties. Journal of the European Ceramic Science, 2003( 23): 253-261.
    Zaman A.A., Tsuchiya R., Moudgil B.M.. Adsorption of a Low-Molecular-Weight Polyacrylic Acid on Silica, Alumina, and Kaolin . Journal of Colloid and Interface Science, 2002, 256(1): 73-78.
    Zhang X.L., Wang Z.D., Hu L.M.. Adsorption of hyperdispersants having a poly-ε- caprolactone solvatable chain on magnetic particles . Colloids and Surfaces, 1997: 237-242.
    ZHU A.P., YUAN L.H., LIAO T.Q.. Suspension of Fe3O4 Nanoparticles Stabilized by Chitosan and O-carboxy Methylchitosan. International Journal of Pharmaceutics, 2007, 56, 1789-1492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700