木质素磺酸钠对腈菌唑WP性能的影响及作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可湿性粉剂(WP)是一种能在水中分散形成稳定的、可供喷雾使用的农药制剂,其成本低,加工包装运输方便,且无溶剂污染,应用非常广泛。但WP也存在一定问题,其浓度低、悬浮率低,对于低熔点原药(如腈菌唑)热贮后性能差。随着新剂型(WG、SC)等的涌现和应用,WP未来的发展必须朝高质量、高性能方面发展,优秀的分散剂可以提升WP的质量和性能,因此分散剂的研究是WP能否保持国内第二农药剂型地位的关键。
     本文首先研究了不同种类分散剂(特别是木质素磺酸盐系分散剂)对40%腈菌唑WP性能的影响,进一步筛选出几种WP优选配方;其次,研究了分散剂的分子量和磺化度对WP性能的影响;最后,就农药助剂对腈菌唑WP的增效作用和分散稳定机理进行了初步研究。
     通过测定聚羧酸系、脂肪族系、氨基磺酸系、木质素磺酸盐类等不同品种共13个分散剂对40%腈菌唑WP应用性能的影响,发现木盐做分散剂的腈菌唑WP润湿性能较好。WP热贮前的悬浮率以GCL4-A和Borresperse Na作分散剂时的最好,热贮后,悬浮率基本都有下降,其中GCL4-A为分散剂时下降得较少。
     分别测定了GCL4-1、GCL4-A、Borresperse Na、石岘木钠四种木质素磺酸钠(简称木钠)的分子结构特征。以四种木钠为分散剂制备40%腈菌唑WP并测试其性能。结果显示,GCL4-A和GCL4-1的性能较好,这与GCL4-A的高纯度、高磺化度及GCL4-1的高磺化度、高分子量密切相关。GCL4-A做分散剂时,WP热贮前后的悬浮率分别为84.47%和81.89%,悬浮液2 h的分散稳定指数都是最小分别为2.6和4.03。
     对40%腈菌唑WP的新配方进行了研究。结果表明,润湿剂选用1%掺量的K12时,WP的润湿时间最短为52 s;分散剂选用5%掺量的GCL4-A性价比较好,热贮前后的悬浮率分别为80.07%和78.19%。GCL4-A与GCL4-1、PC2700、六偏磷酸钠的复配效果较好。在此基础上筛选了四种WP配方,综合性能好于深圳某农化公司实际产品。
     采用超滤的手段对石岘木钠、SAF、GCL4-1进行分级。石岘木钠超滤实验表明,随着截留分子量由小变大,超滤级分分子量依次增大,重均分子量从2360增加到19852;磺酸根含量依次减小,从2.66 mmol/g降低到0.98 mmol/g。以三种分散剂的不同分子量级分制备WP,性能测试表明,WP热贮前后的悬浮率随分散剂分子量的增大基本上依次增大,热贮前的润湿时间随分子量的增大而依次减小,悬浮液2 h的分散稳定指数及沉淀层厚度随分子量的增大基本上依次减小。
     测试了一组分子量相近,不同磺化剂用量的改性木盐GCL3S样品对40%腈菌唑WP性能的影响。结果表明,WP热贮后的悬浮率随磺化剂用量的增加先增后降,磺化剂用量为57.2 g时制备的GCL3S-9对应WP悬浮率最大,为81.34%,说明适度磺化剂用量的改性产品对应的WP性能较优。
     考察了GCL4-1、GCL4-A、Borresperse Na、石岘木钠对40%腈菌唑WP的增效作用。水溶液表面张力测试表明,GCL4-1降低表面张力的能力最强,最低降至22.4 mN/m,其次为GCL4-A的32.2 mN/m。四种木钠降低WP药液在基材表面接触角的能力依次为:GCL4-A>GCL4-1> Borresperse Na >石岘木钠。GCL4-A制备的WP其药液在香蕉叶表面持液量最大为3.6 mg/cm~2。
     初步研究了GCL4-1、GCL4-A、Borresperse Na、石岘木钠对40%腈菌唑WP的分散稳定作用机理。GCL4-A在腈菌唑颗粒表面的吸附能力最强,吸附量最大为7.2 mg/g,石岘木钠的吸附能力最弱,吸附量最大仅为3.9 mg/g;GCL4-A、GCL4-1为分散剂时对腈菌唑颗粒表面的Zeta电位影响较大且非常相近,1.5 g/L时达到绝对值最大的31.7 mV和32.4 mV,远高于另外两种木钠。对照应用性能可知,通过在腈菌唑上的大量吸附并提高颗粒的静电排斥作用,是两种分散剂具有较好的分散性能的原因。
Wettable powder (WP) is composed of drug, fillers and additives and crushed into very fine particles, which can form a stable dispersion in water for spraying pesticide use. It is widely used because of its low cost, convenient packaging and transportation process and without solvent pollution. However, WP also has some problems such as low concentration, suspension rate and the performance of after accelerated aging is poor for some low melting point drugs (such as myclobutanil),Excellent dispersant can enhance the quality and performance.
     The effect of different dispersants especially lignosulfonates on 40% myclobutanil WP’s performance was tested firstly and several WP formulations were choosed. Then, the effect of pesticide dispersants’molecular weight and sulfuric group content on WP was studied. Finally, the mechanism of pesticides additives on the suspension dispersion and drug-efficiency were studied.
     The applied performance of WPs, which used 13 different dispersants of PC, SAF, ASP, and LS were tested. According to the effect, LS has better wettability, WP’s suspension rate was best when use GCL4-A and Borresperse Na as dispersant before accelerated aging.
     The structural features of 4 kinds of LS were investigated. Using this four LSs as dispersants to prepare 40% myclobutanil WPs and tested their performances, the results showed that GCL4-A and GCL4-1 were better, when using GCL4-A as dispersant, WP’s suspension rates before and after accelerated aging were 84.47% and 81.89%, the 2 h suspension stability index were 2.6 and 4.03.
     New formulation of 40% myclobutanil WP was studied.The results showed wettability of WP with K12 as wetting agent was best and the dosage was 1%; when using 5% GCL4-A as dispersant, the performance of WP was good, the suspension rates before accelerated aging were 80.07% and 78.19%. GCL4-A mixed with GCL4-1、PC2700、hexametaphosphate were good. Four formulas of WP were prepared and the comprehensive performance was better than the actual product.of shenzhen chemical company.
     Using the ultrafiltration method to divide SXMN、SAF、GCL4-1 into different molecular weight range Fractions. The gel permeation chromatography and potentiometric titration testing showed the relative molecular weight of SXMN was increased with the Fraction, from 2360 to 19852; the sulfonic acid content of SXMN was decreased with the Fraction, which was decreased from 2.66 mmol /g to 0.98 mmol /g. Using the different molecular weight range Fractions of the three dispersants to prepare WPs and tested their performances, the results showed that with the increasing of molecular weight range Fractions, WP’s suspension rates before and after accelerated aging increased, the wetting time before accelerated aging decreased, the 2 h suspension stability index and thickness of sediment layer decreased.
     Using a group of GCL3S with similar molecular weight and different sulfonic content as dispersants to prepare WPs and tested their performances, the results showed that WP’s suspension rate after accelerated aging increased with the sulfonating agent firstly and then dropped. when sulfonation agent was 57.2 g, the corresponding GCL3S-9’s suspension rate was the highest for 81.34%, it indicated moderate amount of sulfonating agent was good.
     It investigated GCL4-1、GCL4-A、Borresperse Na、SXMN on the performance of WP efficiency. The results showed GCL4-1 had the strongest ability to reduce surface tension, it can drop to 22.4 mN / m, followed by GCL4-A of 32.2 mN / m. The ability of reducing contact angle of WP suspension on substrate were GCL4-A>GCL4-1>Borresperse Na >SXMN. When using GCL4-A as dispersant, retention of the WP suspension on the banana Leave surface was biggest of 3.6 mg/cm~2.
     It investigated GCL4-1、GCL4-A、Borresperse Na、SXMN on the mechanism of WP dispersion. The results showed GCL4-A had the highest adsorption amount of 7.2 mg/g and SXMN had the lowest adsorption amount of 3.9 mg/g. The Zeta potential of GCL4-A、GCL4-1 on Myclobutanil were very similar, they were 31.7 mV and 32.4 mV when the concentration was 1.5 g/L, much higher than Borresperse Na and SXMN. Combined the application performance We can see that GCL4-A and GCL4-1 were better because they had the high adsorption amount on Myclobutanil and increased the electrostatic repulsion of particles.
引文
[1]凌世海.固体制剂(第三版)[M].北京:化学工业出版社, 2003, 90-176.
    [2]蒋志坚,马毓龙.可湿性粉剂[M].北京:化学工业出版社, 1997, 1-151.
    [3]凌世海.农药剂型进展评述[J].农药, 1998, 37(8): 6-10.
    [4]凌世海,吴青壬,温家钓.发展高质量可湿性粉剂的浅见[J].农药, 1990, 29(5): 35-38.
    [5] Govoreanu R, Saveyn H, Meeren P V, et al. Simultaneous determination of activated sludge floc size distribution by different techniques[J]. Water Science and Technology, 2004, 50(12): 39-46.
    [6]邱学青,杨东杰,欧阳新平.木素磺酸盐在固体颗粒表面的吸附性能[J].化工学报, 2003, 54(8): 1155-1159.
    [7]中华人民共和国农业部农药检定所.农药登记汇编[M].北京:中国农业大学出版社, 2004–2007.
    [8] Sushil K Khetan. Pesticide Formulation Design [M]. Vienna: United Nations Industrial Development Organization Vienna, 1998: 62–66.
    [9] Knowles D A. Trends in Pesticide Formulations [M]. London: 2001: 45–68.
    [10]徐妍,孙宝利,战瑞,等.浅谈农药可湿性粉剂的质量提升[J].现代农药, 2009, 8(1): 7-11.
    [11]郑铁军.农药新剂型的研究[J].黑龙江农业科学, 2003, (1): 35-37.
    [12]华乃震,林雨佳.用于农药的表面活性剂新进展[J].江苏化工, 2000, 28(4): 20-21.
    [13] FARM Chemicals Handbook 1977. Farm Chemicals J. New York: 1977.
    [14]邵维忠.农药助剂.化学工业出版社[M].北京, 2003, 135.
    [15]华乃震.农药水分散粒剂的开发和进展[J].现代农药, 2006, 4(2): 32-37.
    [16]蒋挺大.木质素[M].北京:化学工业出版社, 2001, 10-260.
    [17]胡文莉.木质素磺酸盐在固体颗粒表面的吸附性能研究[D].华南理工大学硕士论文. 2010.
    [18]衣守志,石淑兰,李翠珍.制浆废液中木质素的分离与利用新进展国际造纸[J]. 2001, (6): 56-58.
    [19]谭东.木质素的提取及应用[J].广西化工, 1994, 23(4): 6-14.
    [20]郑大锋,邱学青,楼宏铭.木质素的结构及其化学改性进展[J].精细化工, 2005, 4(4): 249-252.
    [21]周建,曾荣,罗学刚.木质素化学改性的研究现状[J].纤维素科学与技术, 2006, 14(3): 59-66.
    [22]王延平,刘存海.木质素的结构及其应用[J].西南造纸, 2006, 35(5): 13-17.
    [23] Karels A E, Niemi A. Fish community responses to pulp and paper mill effluents at the southern Lake Saimaa, Finland[J]. Environmental pollution, 2002, 116(2).
    [24]王海洋,陈克利.木质素的综合利用概况与分析[J].化工时刊, 2004, 18(4): 8-10.
    [25]赵斌元,胡克螯,吴人洁.可持续发展的资源——木质素[J].材料导报, 1999, 13(1): 51-53.
    [26]陶用珍,管应亭.木质素的化学结构及其应用[J].纤维素科学与技术, 2003, 11(1): 42-54.
    [27]张桂梅,廖双泉,廖建和.木质素的提取方法及综合利用研究进展[J].热带农业科学, 2005, 25(1): 66-70.
    [28]谢宝东.木质素磺酸盐水煤浆添加剂的性能与作用机理研究[D].华南理工大学硕士论文. 2004.
    [29] Goring D A I, Vuong R, Gancer C, et al. The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy [J]. Journal of Applied Polymer Science, 1979, 24(4): 931-936.
    [30]杨东杰,邱学青,陈焕钦.木素磺酸盐系表面活性剂[J].化学通报, 2001, (7): 416-420.
    [31]张延霖,张秋云.木素磺酸盐类分散剂的应用进展[J].广东化工, 2006, 6(33): 16-18.
    [32]木质素磺酸盐生产情况介绍. http://pesticide.blog.sohu.com/82834689.html
    [33]向育君,徐伟箭,夏新年,等.木质素磺酸盐研究及其主要应用最新进展[J].高分子通报, 2010, (9): 99-104.
    [34]邱学青,杨东杰,王晓东.改性木素磺酸钙高效减水剂GCL-3A性能研究[J].化学建材, 2001, (2): 40-44.
    [35]张群彩,杨东杰,楼宏铭,等.改性木质素磺酸盐水煤浆添加剂对神华煤制浆性能的影响[J].精细化工, 2006, 3(3): 246-249.
    [36]邱学青,庞煜霞,杨东杰,等.改性木质素磺酸盐农药分散剂及其制备方法[P]. ZL10030227, 2007.
    [37] Lin Stephen Y. Sulfonated lignin dispersants and dyestuffs[P]. USP4308203, 1981.
    [38]刘千钧,刘明华.两性木质素絮凝剂的制备及脱色性能研究[J].福州大学学报:自然科学版, 2007, 35(1): 152-156.
    [39]周建成,李忠正.木素磺酸盐改性产物作聚合物驱采出液处理剂的研究[C].北京:中国造纸学会, 2003: 481-485.
    [40]王中华. AMPS/AA/DMDAAC-木质素磺酸盐接枝共聚物钻井液降粘剂的合成与性能[J].精细石油化工进展, 2001, 2(9): 1-3.
    [41]李爱阳,李大森,蔡玲,等.丙烯酰胺改性木质素磺酸盐处理含铜废水的研究[J].黄金, 2008, 29(8): 51-54.
    [42]尉小明,刘庆旺,殷国强.木质素磺酸盐(LSS)氧化改性研究[J].钻采工艺, 2000, 23(6): 63-65.
    [43]焦艳华,徐志刚,乔卫红,等.改性木质素磺酸盐表面活性剂合成及性能研究[J].大连理工大学学报, 2004, 44(1): 44-47.
    [44]杨开吉,苏文强,陈京环.造纸副产品木素磺酸盐的应用进展[J].西南造纸, 2006, 35(4): 44-45.
    [45]分散剂之木质素磺酸盐. http://pesticide.blog.sohu.com/56536148.html.
    [46]张国生,侯广新,封丽. 15%三唑酮可湿性粉剂悬浮率稳定性研究[J].农药, 2004, 43(8): 354-355.
    [47]郭丽华,赵秀香,宋影,等. 20%克威特灵可湿性粉剂助剂的改良[J].农药, 2008, 47(7): 92-94.
    [48] Kotzian, Rudiger G. Herbicidal composition[P]. USP7338920, 2008.
    [49] Winowiski T, Brzezinski J, Lebo S. Improved efficacy of lignosulfonate dispersants through a novel combination. Symposium on Pesticide Formulations and Delivery Systems-Meeting the Challenges of the Current Crop Protection Industry[C]. DALLAS: TEXAS, 2001: 23-24,
    [50] Moechnig, Bruce W. Inert granular carrier for chemicals[P]. USP5242690, 1993.
    [51] Lundstedt, Alan P. Pesticide DIspersant[P]. USP6855327, 1999.
    [52] Winowiski, Thomas S, Lebo, et al. Methods for producing dried pesticide compositions[P]. USP7901701, 2011.
    [53] Chow, Victor Shui-Chiu, Merritt, et al. Pesticide formulations containing phosphate ester surfactant and alkoxylated lignosulfonate[P]. USP7238645, 2007.
    [54]杜有辰,刘跃群,朱炳煜,等.不同种类木质素磺酸钠对制备二甲戊灵微胶囊性能的影响[ J ].应用化学, 2009, 26(1): 112-115.
    [55]马丽杰,赵静.壳聚糖.木质素磺酸钠复凝聚法制备生物农药微胶囊[J].北京化工大学学报, 2006, 33(6): 51-56.
    [56]李雪刚,付文焕,曹敏惠,等. 50%乙酰甲胺磷WG的配制[J].农药, 2006, 45(10): 664-666.
    [57]林雨佳,赵军,华乃震. 600 g/L吡虫啉悬浮剂的开发和研制[J].农药, 2008, 47(12): 877-879.
    [58]张祖满. 100吨/年碱木质素制农药分散剂中试通过国家鉴定[J].安徽化工, 1992 , (1): 49-50.
    [59]张跃.农药加工用分散剂的研制[J].中国造纸, 1988, (4): 60-61.
    [60]屠豫钦,袁会珠,齐淑华,等.我国农药的有效利用率与农药的负面影响问题[J].世界农药, 2003, 25(6): 1-4.
    [61]顾中言,许小龙.我国农药应用技术现状、发展趋势和需解决的关键问题[J].江苏农药, 2001, (2): 9-11.
    [62]邵振润,郭永旺.我国施药机械与施药技术现状及对策[J].植物保护, 2006, 32(2): 5-8.
    [63]袁会珠,齐淑华,杨代斌.药液在作物叶片的流失点和最大稳定持留量研究[J].农药学学报, 2002, 12(4): 66-67.
    [64] Alison Forster W, Jerzy A Z, Liu Zhiqian. Cuticular uptake of xenobiotics into living plants. Part 2: Influence of the xenobiotic dose on the uptake of bentazone, poxiconazole and pyraclostrobin, applied in the presence of various surfactants, into Chenopodium album, Sinapis alba and Triticum aestivum leaves[J]. Pest Manag Sci. 2006, 62: 664-672.
    [65] Sunaram K M S, Sundaram A. In fluence of formulation on spray deposit paRems,dislogeable and penetrated residues,and persistence characteristics of fenitrothion inconifer needles[J]. Pesticide Science, 1987, 18: 259-271.
    [66]姜咏芳.有机硅助剂对烟嘧磺隆增效作用及其增效机理初步研究[D].山东农业大学硕士学位论文. 2008.
    [67]朱金文,朱国念,刘乾开.九种助剂对草甘膦的增效作用作用比较[J].农药, 2003, 42(2): 19-21.
    [68]王小艺,黄炳球.茶皂素对农药的增效机理Ⅱ.对药液接触角的影响[J].茶叶科学, 1998, 18 ( 2) : 129-133.
    [69]张昌朋.除草剂助剂增效作用及增效机理初步研究[D].沈阳农业大学硕士学位论文. 2007.
    [70] David H, Orlando Auciello. A new ceramic forming process-gelcasting[J]. Physics Today, 1998 (22): 877-880.
    [71]周跃华,杨占红.氧化铝悬浮液稳定性的研究[J].上海有色金属, 2007, 8(3): 116-118.
    [72]邱学青,杨东杰,欧阳新平.木素磺酸盐在固体颗粒表面的吸附性能[J].化工学报, 2003, 54(8): 1155-1159.
    [73]庄占兴,路福绥,刘月,等.萘磺酸甲醛缩合物分散剂在氟铃脲颗粒表面的吸附性能研究[J].农药学学报, 2008, 10(4): 477-482.
    [74]冯建国,路福绥,陈甜甜,等.聚合物分散剂对氟虫脲水悬浮剂分散稳定性的影响[J].高等学校化学学报, 2010, 31(10): 1386-1390.
    [75]丁彬.最新农药助剂性能质量控制与品种优化选择及应用技术实用手册[M].银声音像出版社, 2004, 1035-1037, 1316-1321.
    [76]成家壮.农药水性化剂型的前景[J].广州化工, 2001, 29(3): 1-3.
    [77]中华人民共和国农业部农药检定所.农药登记汇编[M].北京:中国农业大学出版社, 2004–2007.
    [78]包玉华.表面活性剂在农药中大有作为[J].四川化工与腐蚀控制, 2002, 2(2): 59-63.
    [79]田天,陈磊,赵伟.绿色高性能混凝土概述[J].河南建材, 2006, 15(6): 34-35.
    [80]罗红晔,由宇润,许莲云,等.腈菌唑毒性研究[J].农药, 1997, 36(2): 29-32.
    [81]杨海岗,林妍妍. 10%烯酰吗啉?腈菌唑水乳剂高效液相分析方法研究[J].今日农药, 2009, (2): 18-19.
    [82]胡伟武,陈红艳,徐镇. 5%腈菌唑微乳剂的研制[J].农药, 2003, 42(4): 21-22.
    [83]张国生,侯广新,郑瑞琴. 45%硫磺·腈菌唑悬浮剂配方的研究[J].浙江化工, 2004,(8): 4-6.
    [84]李光华,杨萌,梁永贞. 20%腈菌唑·福美双可湿性粉剂防治黄瓜黑星病药效试验[J].农药科学与管理, 2003, 24(9): 15-16.
    [85]符瑞益,彭军. 10%三唑酮·腈菌唑ME高效液相色谱分析[J].农药, 2009, 48(8): 579-580.
    [97]庄占兴.氟铃脲悬浮剂加工原理及其性能研究[D].山东农业大学博士学位论文. 2009.
    [98]胡纪华,杨兆禧,郑忠.胶体与界面化学[M].广州:华南理工大学出版社, 1999:90-180.
    [99]沈钟,赵振国,王果庭.胶体与表面化学[M].北京:化学工业出版社, 2004, 89-95.
    [100]庄占兴,路福绥,陈甜甜,等.苯乙烯丙烯酸共聚物分散剂在氟铃脲颗粒界面的吸附性能[J].高等学校化学学报, 2009, 30(2): 332-336.
    [101]赵斌元,胡克鳌,范永忠,等.木质素磺酸及其衍生物红外光谱研究[J].分析化学, 2000, 28(6): 716-719.
    [102]李志礼,庞煜霞,李晓娜,等.木质素磺酸钠的结构特征及用作烯酰吗啉水分散粒剂分散剂[J].化工学报, 2008, 59(8): 2127-2133.
    [103]李晓娜,邱学青,楼宏铭,等.分子量和磺化度对木质素磺酸钠农药分散剂性能的影响[J].精细化工, 2009, 26(8): 755-759.
    [104]郑大锋,邱学青,楼宏铭,等.不同分子量木质素磺酸钙在盾构砂浆中的应用[J].化工学报, 2007, 58(09): 2382-2387.
    [105]邱学青,周明松,王卫星,等.不同分子量木质素磺酸钠对煤粉的分散作用研究[J].燃料化学学报, 2005, 33(02): 179-184.
    [106]张强,陈颖,付文静,等. TURBISCAN LAB稳定性分析仪研究农药WDG悬浮液稳定性[J].光谱学与光谱分析, 2008, 28(14): 843-846.
    [107] Govoreanu R, Saveyn H, Meeren P V, et al. Simultaneous determination of activated sludge floc size distribution by different techniques[J]. Water Science and Technology, 2004, 50(12): 39-46.
    [108]袁会珠,陈万权,杨代斌.药剂浓度、雾滴密度与氧乐果防治麦蚜的关系研究[J].农药学学报,2000, 2(1): 58-62.
    [109] Verwey Ejw, Overbeek J Th G. Theory of the Stability of Lyophobic Colloids [M]:Elesvier, 1948.
    [110] Sato T, Ruch R J. Stabilization of colloid dispersions by polymer adsorption[M]. New York: Dekker, 1980.
    [111] Reid B Grigg, Bai Baojun. Calcium lignosulfonate adsorption and desorption on Berea sandstone[J]. Journal of Colloid and Interface Science, 2004, 279(1): 36-45.
    [112] Liu Ming-Hua, Hong Shu-Nan, Huang Jian-Hui. Adsorption/desorption behavior between a novel ampHoteric granular lignin adsorbent and reactive red K-3B in aqueous solutions[J]. Journal of Environmental Sciences, 2005, 17(2): 212-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700