基于Bir-MnO_2的复合电极材料设计、制备及电容性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源是二十一世纪最重要的研究课题之一。伴随着全球经济的快速发展,以及化石燃料枯竭、环境污染等问题日益严峻,迫切要求人们开发能取代化石燃料的可再生清洁能源及其相关的高效能源转化和存储技术。在许多应用领域,化学电源和电化学电容器(Electrochemical Capacitors,简写为ECs,也称超级电容器)是电化学能源转化和存储最为有效、实用的技术。近年来,电化学电容器因具有电容量大、功率密度高、充放电速度快、循环寿命长、工作温度范围宽、环境友好以及安全可靠等优点而备受人们的关注。
     电化学电容器的储电性能强烈依赖于电极中采用的活性物质。根据储能机理的不同,电化学电容器电极材料可分为碳材料、过渡金属氧化物和导电高分子三类。在它们之中,层状结构水钠锰矿(birnessite-type manganese dioxide,简写为Bir-MnO2)因其较高的理论容量和离子渗透率,以及环境友好、资源丰富等优点,被视为下一代高性能电化学电容器的理想电极材料之一。然而,Bir-MnO2电极材料存在电导率低、比表面积小和易溶解等不足,这极大地限制了它在电化学电容器领域的广泛应用。目前,纳米化和复合材料是提高Bir-MnO2电化学性能的主要途径。
     本论文研究以提高Bir-MnO2电极材料的电容性能为目标,从合理设计电极材料微观结构的思路出发,设计并制备出了几种基于Bir-MnO2的电极材料。通过系统研究这几种电极材料的储能特性,阐明了它们各自“成分-结构-性能”之间的关系。论文的主要研究内容和实验结果如下:
     1.改进传统水热法制备Bir-MnO2纳米材料的缺点(高温、还原剂、表面活性剂或模板等),采用一种简单的低温水热法制备出Bir-MnO2纳米片结构。SEM和TEM图像显示,所制备的Bir-MnO2纳米片长度为几百纳米,厚度在5~10nm之间。将其用于电化学电容器的电极,充放电电流密度0.1A/g时的比容量达到169F/g;且当电流密度增加到5A/g时,比容量仍为96F/g,具有较好的倍率特性。同时,Bir-MnO2电极材料也表现出良好的循环稳定性,在1A/g下充放电循环1000次后的容量保持率为94%。
     2.氧化石墨烯(GO)的表面上具有大量的含氧官能团,比如羧基、羟基、羰基和环氧基等。这些官能团不仅使得GO能在水中形成稳定悬浮液,还能吸附其他离子或分子而合成复合材料。借助这种优势,本文采用一种简单的水热法,通过控制反应物浓度、反应温度和反应时间等参数,在GO基底上垂直生长了Bir-MnO2纳米片阵列,从而制备出一种新型电极材料-层状二氧化锰/氧化石墨烯(Bir-MnO2/GO)纳米复合材料。实验结果表明,通过改变反应时间可制备出了不同MnO2含量的Bir-MnO2/GO复合材料,且反应时间12h时,所制备的电极材料电化学性能最好。在1mol/L Na2SO4电解液中,Bir-MnO2/GO复合材料的比容量达到213F/g(充放电电流密度为0.1A/g),1A/g下充放电1000次后的循环寿命达到98.1%。另一方面,电化学阻抗谱分析结果进一步显示,Bir-MnO2/GO电极的等效串联电阻比Bir-MnO2电极低,意味着电荷更易在Bir-MnO2/GO电极材料中嵌入/脱嵌,从而表现出优于单一组分Bir-MnO2和GO电极的电化学性能。
     3.GO的导电性较差,将其作Bir-MnO2纳米结构的载体时,电极材料的储电性能提升空间有限。因此,采用比表面积大、导电性良好的还原氧化石墨烯(rGO)作为生长Bir-MnO2纳米片阵列的基底,将能制备出更高性能的电化学电容器电极材料。基于这种分析,我们采用水热法合成了一种新型的层状二氧化锰/石墨烯(Bir-MnO2/rGO)纳米复合材料,并通过控制反应时间探讨了该材料的形成机理。实验结果表明,Bir-MnO2/rGO复合材料的特殊结构提供了良好的导电性、快速的电子和离子传输速率,以及较高的MnO2利用率,使其在1mol/L Na2SO4电解液中表现出了优于Bir-MnO2和rGO的比容量(充放电电流密度0.2A/g时的比容量达到315F/g)、倍率特性(电流密度增加到6A/g时的比容量为193F/g)和循环寿命(3A/g下充放电循环2000次后的容量保持率依旧为87%)。
     4.与Bir-MnO2的理论比容量值(1370F/g)相比,Bir-MnO2/rGO复合电极材料的比容量还比较低,仍具有较大的提升空间。另一方面,石墨烯复合材料的研究近年来正在逐渐兴起。但目前的研究主要集中在二元复合材料,对基于石墨烯、过渡金属氧化物和导电聚合物等三类材料复合形成的多元复合材料的研究还比较少。因此,为了进一步提高Bir-MnO2/rGO复合材料的电容性能,我们以多元复合材料为研究对象,首次提出了一种微观结构独特且尚未见报道的多元复合电极材料设计方案,即在石墨烯上垂直生长Bir-MnO2纳米片阵列,并在Bir-MnO2/rGO纳米结构外面包覆导电聚合物聚3,4-乙烯二氧噻吩-聚苯乙烯磺酸(poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate),简写为PEDOT:PSS)。同时,对所设计的Bir-MnO2/rGO/PEDOT:PSS多元复合材料作为电化学电容器电极材料的可行性进行了初步探究。实验结果表明,30wt%PEDOT:PSS含量的Bir-MnO2/rGO/PEDOT:PSS复合材料表现出最好的电容特性。在电流密度为0.1A/g时,其比容量达到249F/g。
Energy is one of the most important research topics in this century. With the rapid development of global economy, the depletion of fossil fuels, as well as the increasing environmental pollution, there is an urgent need to seek renewable and clean energy sources that can substitute fossil fuels, and to develop efficient technologies associated with energy conversion and storage. In many application areas, the most effective and practical technologies for electrochemical energy conversion and storage are batteries and electrochemical supercapacitors (or ultracapacitors). In recent years, electrochemical capacitors (ECs) have attracted significant attention, mainly due to their high power density, rapid charging-discharging rates, long lifecycle, wide operating temperature range, environmental compatibility, and good operational safety.
     The properties of ECs intimately depend on the active materials used in electrodes. According to different energy storage mechanisms, the electrode materials for ECs can be categorized into three types:carbon materials, transition metal oxides, and conducting polymers. Amongst them, birnessite-type manganese dioxide (Bir-MnO2) is believed to be a promising electroactive material for the next generation of supercapacitors, due to its high theoretical specific capacitance, high ion permeability, environmental compatibility, low cost, and abundance in nature. However, the birnessite MnO2electrode materials are suffered from some disadvantages, such as poor electronic conductivity, low specific surface, and partial dissolution, which greatly limit its wide application in ECs. Lately, preparing nanostructures or composite materials is the major method to improve the electrochemical properties of Bir-MnO2.
     In order to meet the demand of high-performance electrode materials for ECs, this dissertation designed and prepared several Bir-MnO2based electrode materials with the idea of rationally designing the microstructure of materials. By systematical studie on the energy storage characteristics of these materials, the relationships between the component, structure and performance were illustrated. The concrete research contents and results are summarized as follows:
     1. By overcoming the disadvantages of traditional hydrothermal methods for birnessite-type MnO2nanostructures, such as high temperature, reductants, surfactants and/or templates, Bir-MnO2nanosheets were synthesized by a low-temperature hydrothermal method. Nanosized Bir-MnO2sheets with lateral size of a few hundred nm, and thickness of5-10nm were observed from SEM and TEM images. To assess the as-synthesized MnO2nanosheets for use in supercapacitors, the electrode exhibits a high specific capacitance of169F g-1at a current density of0.1A g-1, good rate capability with a capacitance of96F g-1even at a high current density of5A g-1, as well as excellent cycle stability with capacitance retention of94%at1A g-1after1,000cycles.
     2. There are a large number of the oxygen-containing functionalities on the surface of GO, such as epoxide, hydroxyl, car-bonyl and carboxyl groups, et al. It not only makes GO form stable suspension in water, but also can easily adsorb ions or monomers to fabricate composites. Depending on this inherent advantages of GO, we synthesized an advanced birnessite-type manganese dioxide/graphene oxide (Bir-MnO2/GO) hybrid via a simple hydrothermal methods. In this hybrid, MnO2nanosheets arrays were vertically grow on graphene oxide flakes by adjusting the concentrations of reactants, the reaction temperature and time in hydrothermal procedure. The experimental results revealed that Bir-MnO2/GO hybrids with different Bir-MnO2content could be prepared by changing the reaction time, and the hybrid with a reaction time of12h showed the best electrochemical performances. In an electrolyte of1M Na2SO4, it exhibited a high specific capacitance (213F g-1at current density of0.1A g-1), a good rate capability (even80F g-1at10Ag-1) and a long cycle life with the capacitance retention ratio of98.1%at1A g-1after1,000cycles. Furthermore, the EIS measurements demonstrated the electrochemical resistance of MnO2nanosheet which directly grows on GO is reduced, indicating easier access for intercalation/deintercalation of charges in hybrid. Thus, the Bir-MnO2/GO hybrid displayed enhanced energy storage performances compared with the GO and Bir-MnO2.
     3. The conductivity of GO is too bad to effectively enhance the capacitive performances of Bir-MnO2nanosheets. In order to synthesis high-performance electrode materials, it would be much better to use the reduced graphene oxide (rGO) as the substrate for Bir-MnO2nanosheets arrays. Based on this analysis, we used a facile hydrothermal method to fabricate the novel birnessite-type manganese dioxide/reduced graphene oxide (Bir-MnO2/rGO) hybrid, in which Bir-MnO2nanosheets arrays were uniform and vertically grow on rGO flakes. The formation mechanism of the hybrid is also discussed based on a series of time-dependent experiments. The results revealed that the unique structure of the hybrid provided good electronic conductivity, fast electron and ion transport, and high utilization of MnO2, which made the Bir-MnO2/rGO electrode exhibit much higher specific capacitance (315F g-1at a current density of0.2A g-1) and better rate capability (even193F g-1at6A g-1) compared with both the rGO and Bir-MnO2electrodes. Moreover, the capacitance of the electrode is still87%retained after2000cycles at a charging rate of3A g-1
     4. One hand, the specific capacitances of the as-synthesized Bir-MnO2/rGO hybrid are far below the theoretical value of Bir-MnO2(1370F g-1). Thus, there is still room for the improvement of electrochemical capacitance performances. On the other hand, the MnO2/rGO composites have attracted considerable interest, and plenty of such composites have been reported in recent years. However, to date, researches on this field are mainly focuse on graphene-based binary composites, ternary composites based on graphene, transition metal oxides, and conducting polymers have seldom been reported for use as electrochemical capacitors. Hence, we took ternary composites as the object of the further reseach for Bir-MnO2/rGO hybrid, and designed a new ternary composite with unique structure. In this composite, Bir-MnO2nanosheets arrays were vertically grow on rGO flakes, and the Bir-MnO2/rGO nanostructure was wrapped by poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)(PEDOT:PSS). Here, the practicability of the as-designed ternary composites using as an electroactive material for electrochemical capacitors was preliminarily explored. The experimental results revealed that the Bir-MnO2/rGO/PEDOT:PSS composite containing30wt%PEDOT:PSS exhibited the best electrochemical performances. A specific capacitance of249F g-1could be obtained at a current density of0.1A g-1.
引文
[1]雷永泉,万泉,石永康.新能源材料[M].天津:天津大学出版社.2001.
    [2]翟秀静,刘奎仁,韩庆.新能源技术[M].北京:化学工业出版社.2005.
    [3]艾德生,高喆.新能源材料-基础与应用[M].北京:化学工业出版社.2010.
    [4]Wu, H.M., Winterborone, D., Ma, M.Y., Pickert, V., Widmer, J. DC link capacitors for traction SRM drives in high temperature automotive environments:a review of current issues and solutions[J]. IET Hybrid and Electric Vehicles Conference.2013.
    [5]Sarjeant, W.J., Zirnheld, J., MacDougall, F.W. Capacitors. Plasma SciencefJ].1998, 5(26):1368-1392.
    [6]Stoemer, H., Weber, A., Fischer, V, Ivers-Tiffee, E., Gerthsen, D. Anodically formed oxide films on niobium:microstructural and electrical properties [J]. Jiurnal of the European Ceramic Society.2009,9(29):1743-1753.
    [7]程新群.化学电源[M].北京:化学工业出版社.2010.
    [8]Liu, C., Li, F., Ma, L.P., Cheng, H.M. Advanced materials for energy storage[J]. Advanced Materials.2010,22(8):E28-E62.
    [9]Conway, B.E. Electrochemical supercapacitors:scientific fundamentals and technological applications [M]. New York:Kluwer Academic/Plenum Press.1999.
    [10]Miller, J.R., Simon, P. Electrochemical capacitors for energy management[J]. Science.2008, 321:651-652.
    [11]Helmholtz, H.V. Ueber einige gesetze der vertheilung elektrischer strome in korperlichen leitern mit an-wendung auf die thierisch-elektrischen versuche[J]. Annalen der Physik.1853, 6(165):211-233.
    [12]Becker, H.I., Low voltage electric capacitor[P]. USP:20080616.1957-7-23.
    [13]Boos, D.L., Electrolytic capacitor having carbon paste electrodes [P]. USP:3536963. 1970-10-27.
    [14]王晓峰,解晶莹,孔祥华,刘庆国.“超电容”电化学电容器研究进展[J].电源技术.2001,B05(25):166-170.
    [15]Trasatti, S., Buzzanca, G. Ruthenium dioxide:a new interesting electrode material. Solid state structure and electrochemical behavior[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1971,25:A1-A5.
    [16]Galizzioli, D., Tantardini, F., Trasatti, S. Ruthenium dioxide:a new interesting electrode material. I. Behaviours in acid solutions of inert electrolytes[J], Journal of Applied Electrochemistry.1974,4(l):57-67.
    [17]Conway, B.E., Birss, V., Wojtowicz, J. The role and utilization of pseudocapacitance for energy storage by supercapacitors[J]. Journal of Power Sources.1997,1(2):1-14.
    [18]Simon, P., Gogotsi, Y. Materials for electrochemical capacitors[J]. Nature Materials.2008, 7:845-854.
    [19]Rudge, A., Davey, J., Raistrick, I, Gottesfeld, S. Conducting polymers as active materials in electrochemical capacitors[J]. Journal of Power Sources.1994,47(l):89-107.
    [20]杨盛毅,文芳.超级电容器综述[J].现代机械.2009,4:82-84.
    [21]袁国辉.电化学电容器[M].北京:化学工业出版社.2006.
    [22]邓梅根.电化学电容器电极材料研究[博士论文].四川:电子科技大学.2005.
    [23]陈艳丽.氢氧化物、氧化物/石墨烯复合物作为超级电容器电极材料的制备及性能研究[硕士论文].甘肃:西北师范大学.2011.
    [24]Zheng, J.P., Huang, J., Jow, T.R. The limitations of energy density for electrochemical capacitors [J]. Journal of The Electrochemical Society.1997,6(44):2026-2031.
    [25]Volfkovich, Y.M., Serdyuk, T.M. Electrochemical capacitors [J]. Russian Journal of Electrochemistry.2002,38(9):935-959.
    [26]Green, M., Hanson, Carr, R., Lindau, I. STM observations of the underpotential deposition and stripping of Pb on Au (111) under potential sweep conditions [J]. Journal of The Electrochemical Society.1990,137(11):3493-3498.
    [27]Wang, Y.G., Xia, Y.Y. Recent progress in supercapacitors:from materials design to system construction[J]. Advanced Materials.2013,25(37):5336-5342.
    [28]Haspert, L.C., Gillette, E., Lee, S.B, Rubloff, G.W.Wang, Y.G., Xia, Y.Y. Perspective: hybrid systems combining electrostatic and electrochemical nanostructures for ultrahigh power energy storage[J]. Energy & Environmental Science.2013,6(9):2578-2590.
    [29]Zhang, Y., Feng, H., Wu, X.B., Wang, L.Z., Zhang, A.Q., Xia T.C., Dong, H.C., Li, X.F., Zhang, L.S. Progress of electrochemical capacitor electrode materials:a review[J]. International Journal of Hydrogen Energy.2009,34:4889-4899.
    [30]Kotz, R., Carlen, M. Principles and applications of electrochemical capacitors [J]. Electrochimica Acta.2000,16(45):2483-2498.
    [31]牧伟芳,蔡克迪,金振兴,张庆国.超级电容器的应用与展望[J].炭素.2010,1(141):42-44.
    [32]李慧,徐媛,盛志兵,李琴蔡.超级电容器的应用与发展[J].江西化工.2013,1:9-11.
    [33]胡毅,陈轩恕,杜砚,尹婷.超级电容器的应用与发展[J].电力设备.2008,9(1):19-22.
    [34]于凌宇,冯玉萍.世界超级电容器发展动态[J].今日电子.2008,12:53-55.
    [35]Burke, A. Ultracapacitors:why, how, and where is the technology[J]. Journal of Power Sources.2000,91(1):37-50.
    [36]Yan, J., Wang, Q., Wei, T., Fan, Z.J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Advanced Energy Materials.2014, 4(4):1-43.
    [37]谢小英,张辰,杨全红.超级电容器电极材料的研究进展[J].化学工业与与程.2014,31(1):63-71.
    [38]Zhang, S.S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources.2006,162(2):1379-1394.
    [39]李作鹏,赵建国,温雅琼,李江,邢宝岩,郭永.超级电容器电解质研究进展[J].化工进展.2012,31(8):1631-1640.
    [40]Wang, G.P., Zhang, L., Zhang, J.J. A review of electrode materials for electrochemical supercapacitors [J]. Chemical Society Reviews.2012,41(2):797-828.
    [41]Dai, L., Chang, D.W., Beak, J.B., Lu, W. Carbon nanomaterials for advanced energy conversion and storage[J]. Small.2012,8(8):1130-1166.
    [42]Gamby, J., Taberna, P.L., Simon, P., Fauvarque, J.F., Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitoes[J]. Journal of Power Sources.2001,101(1):109-116.
    [43]Sevilla, M., Mokaya, R. Energy storage applications of activated carbons:supercapacitors and hydrogen storage[J]. Energy & Environmental Science.2014,7(4):1250-1280.
    [44]Salitra, G., Soffer, A., Eliad, L., Cohen, Y., Aurbach, D. Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions [J]. Journal of The Electrochemical Socirty.2000,147(7):2486-2492.
    [45]Pinero, E.R., Kierzek, K, Machnikowski, J. Beguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes [J]. Carbon. 2006,44(12):2498-2507.
    [46]Barbien, O., Hahn, M., Herzog, A., Kotz, R. Capacitance limits of high surface area activated carbons for double layer capacitors [J]. Carbon.2005,43(6):1303-1310.
    [47]Xia, K.S., Gao, Q.M., Jiang, J.H., Hu, J. Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials [J]. Carbon.2008, 46(13):1718-1726.
    [48]Rose, M., Korenblit, Y., Kockrick, E., Borchardt, L., Oschatz, M., Kaskel, L., Yushin, G. Hierarchical micro-and mesopores carbide-derived carbon as a high-performance electrode material in supercapacitors [J]. Small.2011,7(8):1108-1117.
    [49]Chen, X.Y., Chen, C., Zhang, J.Z., Xie, D.H. High performance porous carbon through hard-soft templates for supercapacitor electrodes[J]. Journal of Materials Chemistry A.2013, 1(25):7379-7383.
    [50]Xu, B., Wu, F., Chen, R.J., Cao, G.P., Chen, S., Zhou, Z.M., Yang, Y.S. Highly mesoporous and high surface area carbon:a high capacitance electrode material for EDLCs with various electrolytes [J]. Electrochemistry Communications.2008,10(5):795-797.
    [51]Muniz, A.C., Garcia, F.S., Alonso, A.M., Tascon, J.M.D., Kyotani, T. Energy storage on ultrahigh surface area activated carbon fibers derived from PMIA[J]. ChemSusChem.2013, 6(8):1406-1413.
    [52]Mesar, C., Soto, P., Ortego, E.V., Salazar, J.M.G., Pico, F., Rojo, J.M., Carbon nanofibres and activated carbon nanofibres as electrodes in supercapacitors [J]. Carbon.2005,43(3):551-557.
    [53]Kim, C. Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors [J]. Journal of Power Sources.2005,142(1):382-388.
    [54]Lipka, S.M. Electrochemical capacitors utilizing low surface area carbon fiber[J]. Battery Conference on Application and Advances.1997.
    [55]Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., Baumann, T.F. Advanced carbon aerogels for energy applications [J]. Energy & Environmental Science.2011, 4(3):656-667.
    [55]Biener, J., Stadermann, M., Suss, M., Worsley, M.A., Biener, M.M., Rose, K.A., Baumann, T.F. Advanced carbon aerogels for energy applications [J]. Energy & Environmental Science.2011, 4(3):656-667.
    [56]Li, W.C., Reichenauer, G., Fricke, J. Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors [J]. Carbon.2002,40(15):2955-2959.
    [57]Zheng, C., Qian, W.Z., Cui, C.J., Zhang, Q., Jin, Y.G., Zhao, M.Q., Tian, P.H., Wei, F. Hierarchical carbon nanotube membrane with packing density and tunable porous structure for high voltage supercapacitors[J]. Carbon.2012,50(14):5167-5175.
    [58]Wei, B.Q., Masarapu, C. Single-wall carbon nanotubes supercapacitor[P]. USP:8213157 B2.2012-7-3.
    [59]Niu, Z.Q., Dong, H.B., Zhu, B.W., Li, J.Z., Hng, H.H., Zhou, W.Y., Chen, X.D., Xie, S.S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture[J]. Advanced Materials.2013,25(7):1058-1064.
    [60]Du, C.S., Pan, N. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition[J]. Nanotechnology.2006,17(21):5314.
    [61]Niu, C.M., Sichel, E.K., Hoch, R., Moy, D., Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes [J]. Applied Physics Letters.1997,70(1):1480.
    [62]Pan, H., Li, J.Y., Feng, Y.P. Carbon nanotubes for supercapacitor [J]. Nanoscale Research Letters.2010,5(3):654-668.
    [63]Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A. Tow-dimensional gas of massless Dirac fermions in graphenefJ]. Nature.2005,438(7065):197-200.
    [64]Stoller, M.D., Park, S.J., Zhu, Y.W., An, J.H., Ruoff, R.S. Graphene-based ultracapacitors[J]. Nano Letters.2008,8(10):3498-3502.
    [65]Xia, J., Chen, F., Li, J.H., Tao, N.J. Measurement of the quantum capacitance of graphene[J]. Nature Nanotechnology.2009,4(8):505-509.
    [66]Liu, C.G., Yu, Z.N., Neff, D., Zhamu, A., Jang, B.Z. Graphene-based supercapacitor with an ultrahigh energy density[J]. Nano Letters.2010,10(12):4863-4868.
    [67]Lv, W., Tang, D.M., He, Y.B., You, C.H., Shi, Z.Q., Chen, X.C., Chen, C.M., Hou, P.X., Liu, C, Yang, Q.H. Low-temperature exfoliated graphenes vacuum-promoted exfoliation and electrochemical energy storage[J]. ACS Nano.2009,3(11):3730-3736.
    [68]Yin, S.Y., Niu, Z.Q., Chen, X.D. Assembly of graphene sheets into 3D macroscopic structures [J]. Small.2012,8(16):2458-2463.
    [69]Guo, C.X., Li, C.M. A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanaosheets for enhanced supercapacitor performance [J]. Energy & Environmental Science.2011,4(12):4504-4507.
    [70]Wang, Z.L., Xu, D., Wang, H.G., Wu, Z., Zhang, X.B., In situ fabrication of porous graphene electrodes for high-performance energy storage[J]. ACS Nano.2013,7(3):2422-2430.
    [71]Yang, X.W., Zhu, J.W., Qiu, L., Li, D. Bioinspired effective prevention of restacking in multilayered graphene films:towards the next generation of high-performance supercapacitors [J]. Advanced Materials.2011,23(2):2833-2838.
    [72]Xu, Y.X., Sheng, K.X., Li, C., Shi, G.Q. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano.2010,4(7):4342-4330.
    [73]Zhang, L.L., Zhao, X.S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews.2009,38(24):2520-2531.
    [74]Frackowiak, E. Carbon materials for supercapacitor application[J]. Physical Chemistry Chemical Physics.2007,9(15):1774-1785.
    [75]Frackowiak, E., Beguin, F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon.2001,39(6):937-950.
    [76]Obreja, V.V.N. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material-a review[J]. Physica E:Low-dimensional Systems and Nanostructures.2008,40(7):2596-2605.
    [77]Eliad, L., Salitra, G., Soffer, A., Doron, A. On the mechanism of selective electroadsorption of protons in the pores of carbon molecular sieves [J]. Langmuir.2005,21(7):3198-3202.
    [78]Bleda-Martinez, M.J., Lozano-Castello, D., Cazorla-Amoros, D., Morallon, E. Kinetics of double-layer formation:influence of porous structure and pore size distribution [J]. Energy & Fules. 2010,24(6):3378-3384.
    [79]Bleda-Martinez, M.J., Perez, J.M., Linares-Solano, A., Morallon, E., Cazorla-Amoros, D. Effect of surface chemistry on electrochemical storage of hydrogen in porous carbon materials [J]. Carbon.2008,46(7):1053-1059.
    [80]Qu, D.Y., Shi, H. Studied of activated carbons used in double-layer capacitos[J]. Journal of Power Sources.1998,74(1):99-107.
    [81]Eliad, E., Salitra, G., Soffer, A, Aurbach, D. Ion sieving effects in the electrical double layer of porous carbon electrodes:estimating effective ion size in electrolytic solutions [J]. The Journal of Physical Chemistry B.2001,105(29):6880-6887.
    [82]Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., Taberna, P.L. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer[J]. Science.2006, 313(5794):1760-1763.
    [83]Fisher, R.A., Watt, M.R., Ready, W.J. Functionalized carbon nanotube supercapacitor electrodes:a review on pseudocapacitive materials [J]. Journal of Solid State Science and Technology.2013,2(10):M3170-M3177.
    [84]Hulicova-Jurcakova, D., Seredych, M., Lu, G.Q., Bandosz, T.J. Combined effect of Nitrogen-and Oxygen-functional groups of microporous activated carbon on its electrochemical performance in supercapacitors[J]. Advanced Functional Materials.2009,19(3):438-447.
    [85]Rychagov, A.Y., Urisson, N.A., Volfkovich, Y.M. Properties of the surface of activated carbon electrodes in a double-layer capacitor[J]. Russian Journal of Electrochemistry.2001, 37(11):1172-1179.
    [86]Raymundo-Pinero, E., Leroux, F., Beguin, F. A high-perfomance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer[J]. Advanced Materials.2006, 18(14):1877-1882.
    [87]Trasatti, S., Lodi, G. In electrodes of conductive metallic oxides-part A[M]. New York: Elsevier.1980.
    [88]Zheng, J., Jow, T. A new charge storage mechanism for electrochemical capacitors [J]. Journal of The Electrochemical Society.1995,142(1):L6-L8.
    [89]Zheng, J.P., Cygan, P.J., Jow, T.R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors [J]. Journal of The Electrochemical Society.1995,142(8):2699-2702.
    [90]Barbieri, O., Hahn, M., Foelske, A., Kotz, R. Effect of electronic resistance and water content on the performance of RuO2 for supercapacitos[J]. Journal of The Electrochemical Society. 2006,153(11):A2049-A2054.
    [91]Kuratani, K., Kiyobayashi, T., Kuriyama, N. Infulence of the mesoporous structure on capacitance of the RuO2 electrode[J]. Journal of Power Sources.2009,189(2):1284-1291.
    [92]Lim, J.H., Choi, D.J., Kim, H.K., Cho, W. Yoon, Y.S. Thin film supercapacitors using a sputtered RuO2 electrode[J]. Journal of The Electrochemical Society.2001,148(8):A275-A278.
    [93]Park, S.H., Kim, J.Y., Kim, K.B., Pseudocapacitive properties of nano-structured anhydrous ruthenium oxide thin film prepared by electrostatic spray deposition and electrochemical lithiation/delithiation[J]. Fuel Cells.2010,10(5):865-872.
    [94]Hu, C.C., Chang, K.H., Lin, M.C., Wu, Y.T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitos[J]. Nano Letters.2006, 6(12):2690-2695.
    [95]Devadas, A., Baranton, S., Napporn, T.W., Coutanceau, C. Tailoring of RuO2 nanoparticles by microwave assisted "instant method" for energy storage applications[J]. Journal of Power Sources.2011,196(8):4044-4053.
    [96]Chang, K.H., Hu, C.C., Chou, C.Y. Textural and capacitive characteristics of hydrothermally derived RuO2·xH2O nanocrystallites:independent control of crystal size and water content[J]. Chemistry of Materials.2007,19(8):2112-2119.
    [97]Park, B.O., Lokhanded, C.D., Park, H.S., Jung, K.D., Joo, O.S. Electrodeposited ruthenium oxide (RuO2) films for electrochemical supercapacitors[J]. Journal of Materials Science. 39(13):4313-4317.
    [98]Bi, R.R., Wu, X.L., Cao, F.F., Jiang, L.Y., Guo, Y.G., Wan, L.J. Highly dispersed RuO2 nanoparticles on carbon nanotubes:facile synthesis and enhanced supercapacitance performance[J]. The Journal of Physical Chemistry C.2010,114(6):2448-2451.
    [99]Nam, H.S., Kim, K., Kim, S.H., Kim, B.C., Wallace, G.G., Ko, J.M. Supercapacitive properties of polyaniline/hydrous RuO2 composite electrode[J]. Polymer Bulletin.2012, 68(2):553-560.
    [100]Chou, J.C., Chen, Y.L., Yang, M.H., Chen, Y.Z., Lai, C.C., Chiu, H.T., Lee, H.Y., Chueh, Y.L., Gan, J.Y. RuO2/MnO2 core-shell nanorods for supercapacitors[J]. Journal of Materials Chemistry A.2013, 1(31):8753-8758.
    [101]Shao, Y.Q., Yi, Z.H., Lu, F.H., Deng, F.Y., Li, B.B. Poorly crystalline Ru0.4sno.602 nanocomposites coated on Ti substrate with high pseudocapacitance for electrochemical supercapacitors[J]. Chemistry & Materials Science.2012,2(1):118-122.
    [102]Gao, B., Zhang, X.G., Yuan, C.Z., Li, J., Yu, L. Amorphous Ru1-yCryO2 loaded on TiO2 nanotubes for electrochemical capacitors[J]. Electrochimica Acta.2006,52(3):1028-1032.
    [103]Liu, X.R., Pickup, P.G. Carbon fabric supported manganese and ruthenium oxide thin films for supercapacitors[J]. Journal of The Electrochemical Society.2011,158(3):A241-A249.
    [104]夏熙.纳米二氧化锰与超级电容器[J].电池上业.2011,16(1):41-48.
    [105]Lee, H.Y., Goodenough, J.B. Supercapacitor behavior with KC1 electrolyte[J]. Journal of Solid State Chemistry.1999,144(1):220-223.
    [106]赵云霄.基于锰氧化物复合的超级电容器电极材料的制备及电化学性能研究[硕士论文].吉林:吉林大学.2013.
    [107]Liu, K.C., Anderson, M.A. Porous nickel oxide/nickel films for electrochemical capacitors [J]. Journal of The Electrochemical Society.1996,143(1):124-130.
    [108]Devaraj, S., Munichandraiah, N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. The Journal of Physical Chemistry C.2008, 112(11):4406-4417.
    [109]Kuo, S.L., Wu, N.L. Investigation of pseudocapacitive charge-storage reaction of MnO2·nH2O supercapacitors in aqueous electrolytes[J]. Journal of The Electrochemical Society. 2006,153(7):A1317-A1324.
    [110]夏熙.二氧化锰及相关锰氧化物的晶体结构、制备及放电性能[J].电池.2004,34(6):411-414.
    [111]Ghodbane, O., Pascal, J.L., Favier, F. Microstructural effects on chargepstorage properties in MnO2-based electrochemical supercapacitors[J]. ACS Applied Materials & Interfaces.2009, 1(5):1130-1139.
    [112]Yang, Y.J., Huang, C.D. Effect of synthetical conditions, morphology, and crystallographic structure of MnO2 on its electrochemical behavior[J]. Journal of Solid State Electrochemistry. 2010,14(7):1293-1301.
    [113]Broughton, J.N., Brett, M.J. Variations in MnO2 electrodeposition for electrochemical capacitors[J]. Electrochimica Acta.2005,50(24):4814-4819.
    [114]Chen, G.Z., Zhang, S.W. Manganese oxide based materials for supercapacitors [J]. Energy Materials,2008,3(3):186-200.
    [115]Wei, W.F., Cui, X.W., Chen, W.X., Ivey. D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews.2011,40(21):1697-1721.
    [116]Prasad, K.R., Miura, N. Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors[J]. Electrochemistry Communications.2004,6(10):1004-1008.
    [117]Lee, C.Y., Tsai, H.M., Chuang, H.J., Li, S.Y., Lin, P., Tseng, T.Y. Characteristics and electrochemical performance of supercapacitors with manganese oxide-carbon nanotube nanocomposite electrode[J]. Journal of The Electrochemical Society.2005,152(4):A716-A720.
    [118]Zhang, X.J., Shi, W.H., Zhu, J.X. Synthesis of Porous NiO nanocrystals with controllable surface area and their application as supercapcitor electrodes[J]. Nano Research.2010, 3(9):643-652.
    [119]Justin, P., Meher, S.K., Ranga, R.G. Tuning of capacitance behavior of NiO using anionic, cationic, and nonionic surfactants by hydrothermal synthesis[J]. The Journal of Physical Chemistry C.2010,114(11):5203-5210.
    [120]Liu, S., Sun, S.H., You, X.Z. Inorganic nanostructured materials for high performance electrochemical supercapacitors[J]. Nanoscale.2014,6(24):2037-2045.
    [121]马国帅,韩丹丹.化学电容器中NiO电极材料的研究进展[J].吉林化工学院学报.2013,30(5):65-71.
    [122]Nathan, T., Aziz, A., Noor, A.F., Prabaharan, S.R.S. Nanostructured NiO for electrochemical capacitors:synthesis and electrochemical properties[J]. Journal of Solid State Electrochemistry.2008.12(7):1003-1009.
    [123]Zhang, Y., Gui, Y.H., Wu, X.B., Preparation of nanostructures NiO and their electrochemical capacitive behaviors[J]. International Journal of Hydrogen Energy.2009, 34(11):2467-2470.
    [124]Meher, S.K., Justin, P., Rao, G.R. Microwave-mediated synthesis for improved morphology and pseudocapacitance performance of nickel oxide[J]. ACS Applied Materials & Interfaces.2011,3(6):2063-2073.
    [125]Cao, C.Y., Guo, W., Cui, Z.M., Song, W.G., Cai, W. Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursor and their application as supercapacitor electrodes[J]. Journal of Materials Chemistry.2011,21(21):3204-3209.
    [126]Yuan, C.Z., Zhang, X.G., Su, L.H., Gao, B., Shen, L.F. Facile synthesis and self-assembly of hierarchical porous NiO nano/microspherical superstructures for high performance supercapacitors[J]. Journal of Materials Chemistry.2009,19(1):5772-5777.
    [127]Ding, S.J., Zhu, T., Chen, J.S., Wang, Z.Y., Yuan, C.Q., Lou, X.W. Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance [J]. Journal of Materials Chemistry.2009,21(21):6602-6606.
    [128]Meher, S.K., Justin, P., Ranga, R.G. Pine-cone morphology and pseudocapacitive behavior of nanoporous nickel oxide[J]. Electrochimica Acta.2010,55(28):8388-8396.
    [129]Lee, J.W., Ahn, T., Kim, J.H., Ko, J.M., Kim, J.D. Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors[J]. Electrochimica Acta.2011,56(13):4849-4857.
    [130]Yuan, C.Z., Wu, H.B., Xie, Y., Lou, X.W. Mixed transition-metal oxides:design, synthesis, and energy-related applications[J]. Angewandte Chemie international Edition.2014, 53(6):1488-1504.
    [131]Nama, K.W., Kim, K.H., Lee, E.S. Yoon, W.S., Yang, X.Q., Kim, K.B. Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates [J]. Journal of Power Sources.2008,182(2):642-652.
    [132]Wang, H.L., Casalongue, H.S., Liang, Y.Y., Dai, H.J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials[J]. Journal of the American Chemical Society.2010.132(21):7472-7477.
    [133]Zheng, Z., Huang, L., Zhou, Y., Hu, X.W., Ni, X.M. Large-scale synthesis of mesoporous CoO-doped NiO hexagonal nanoplatelets with improved electrochemical performance[J]. Solid State Science.2009,11(8):1439-1443.
    [134]Han, D.D, Jing, X.Y., Wang, J., Yang, P.P., Song, D.L., Liu, J.Y. Porous lanthanum doped NiO microspheres for supercapacitor application[J]. Journal of Electroanalytical Chemistry.2012, 682:37-44.
    [135]Liu, Y., Zhang, Z.Q., Xiao, S.T., Qiang, C.W., Tian, L.L., Xu, J.C. Preparation and properties of cobalt oxides coated carbon fibers as microwave-absorbing materials[J]. Applied Surface Science.2011,257(17):7678-7683.
    [136]Yang, L., Cheng, S., Ding, Y., Zhu, X.B., Wang, Z.L., Liu, M.L. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanowires for high-capacity pseudocapacitors[J]. Nano Letters.2012,12(1):321-325.
    [137]Liu, T.G., Pell, W.G., Conway, B.E. Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance[J]. Electrochimica Acta.1999, 44(7):2829-2842.
    [138]Shan, Y., Gao, L. Formation and characterization of multi-walled carbon nanotubes/Co304 nanocomposites for supercapacitors[J]. Materials Chemistry and Physics.2007,103(2):206-210.
    [139]Wang, D.W., Wang, Q.H., Wang, T.M. Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitos[J]. Inorganic Chemistry.2011,50(14):6482-6492.
    [140]Meher, S.K., Rao, G.R. Ultralayered Co3O4 for high-performance supercapacitor applications[J]. The Journal of Physical Chemistry C.2011,115(31):15646-15654.
    [141]Deori, K., Ujjain, S.K., Sharma, R.K., Deka, S. Morphology controlled synthesis of nanoporous Co3O4 nanostructures and their charge storage characteristics in supercapacitors [J]. ACS Applied Materials & Interfaces.2013,5(21):10665-10672.
    [142]Xu, J., Gao, L., Cao, J., Wang, W., Chen, Z. Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material[J]. Electrochimica Acta.2010, 56(2):732-736.
    [143]Xiong, S., Yuan, C, Zhang, X., Xi, B., Qian, Y. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitor[J]. Chemsitry-A European Journal.2009,15(21):5320-5326.
    [144]Wang, G.X., Shen, X.P., Horvat, J., Wang, B., Liu, H., Wexier, D., Yao, J. Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods[J]. The Journal of Physical Chemistry C.2009,113(11):4357-4361.
    [145]Aghazadeh, M. Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material[J]. Journal of Applied Electrochemistry.2012,42(2):89-94.
    [146]Zhi, M.J., Xiang, C.C., Li, J.T., Li, M., Wu, N.Q. Nanostructured carbon-metal oxide composite electrodes for supercapacitors:a review[J]. Nanoscale,2013,5(24):72-88.
    [147]Liang, Y.Y., Schwab, M.G., Zhi, L.J., Mugnaioli, E., Kolb, U., Feng, X.L., Mullen, K. Direct access to metal or metal oxide nanocrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage[J]. Journal of the American Chemical Society.2010, 132(42):15030-15037.
    [148]Liu, Y., Zhao, W.W., Zhang, X.G. Soft template synthesis of mesoporous Co3O4/RuO2-xH2O composites for electrochemical capacitors [J]. Electrochimica Acta.2008, 53(8):3296-3304.
    [149]Wang, X.W., Liu, S.Q., Wang, H.Y., Tu, F.Y., Fang, D., Li, Y.H. Facile and green synthesis of Co3O4 nanoplates/garphene nanosheets composite for supercapacitor [J]. Journal of Solid State Electrochemistry.2012,16(11):3593-3602.
    [150]Wei, T.Y., Chen, C.H., Chien, H.C., Lu, S.Y., Hu, C.C. A cost-effective supercapacitor material of ultrahigh specific capacitances:spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J]. Advanced Materials.2010,22(3):347-351.
    [151]Mastragostino, M., Arbizzani, C., Soavi, F. Conducting polymers as electrode materials in supercapacitors [J]. Solid State Ionics.2002,148(2):493-498.
    [152]Wang, K., Wu, H.P., Meng, Y.N., Zhang, Y.J., Wei, Z.X. Integrated energy storage and electrochromic function in one flexible device:an energy storage smart window[J]. Energy & Environmental Science.2012,5(8); 8384-8389.
    [153]Gohosh, S., Inganas, O. Conducting polymer hydrogels as 3D electrodes:applications for supercapacitors[J]. Advanced Materials.1999,11(14):1214-1218.
    [154]Snook, G.A., Kao, P., Best, A.S. Conducting-polymer-based supercapacitor devices and electrodes [J]. Journal of Power Sources.2011,196(1):1-12.
    [155]Fan, L.Z., Maier, J. High-performance polypyrrole electrode materials for redox supercapacitor[J]. Elecrochemistry Communications.2006,8(6):937-940.
    [156]Sharma, P.K., Rastogi, A.C., Desu, S.B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor[J]. Elecrochemistry Communications.2008, 10(2):268-272.
    [157]Kim, B.C., Ko, J.M., Wallace G.G. A novel capacitor material based on nafion-doped polypyrrole. Journal of Power Sources.2008,177(2):665-668.
    [158]Sharma, R.K., Rastogi, A.C., Desu, S.B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor[J]. Electrochimica Acta.2008, 53(26):7690-7695.
    [159]Sun, X.F., Xu, Y.L., Wang, J. Electropolymerized composite film of polypyrrole and functionalized multi-walled carbon nanotubes:effect of functionalization time on capacitive performance [J]. Journal of Solid State Electrochemistry.2012,16(5):1781-1789.
    [160]Li, D., Huang, J.R., Kaner, B. Polyaniline nanofibers:a unqiue polymer nanostructure for versatile applications[J]. Accounts of Chemical Reaearch.2009,42(1):135-145.
    [161]Gupta, V., Miura, N. Electrochemically deposited polyaniline nanowires's network[J]. Journal of the American Chemical Society.2005,8(12):A620-A622.
    [162]Chen, H., Chen, J.S., Zhou, H.H., Jiao, S.Q., Chen, J.H., Kuang, Y.F. The application of nano-fibrous polyaniline in electrochemical capacitor[J]. Acta Physico-Chimica Sinica.2004, 20(6):593-597.
    [163]Zhang, A.Q., Zhang, Y., Wang, L.Z., Li, X.F. Electrosynthesis and capacitive performance of polyaniline-polypyrrole composite[J]. Polymer Composites.2010,32(1):1-5.
    [164]涂亮亮,贾春阳.导电聚合物超级电容器电极材料[J].化学进展.2010,22(8)1610-1618.
    [165]Patra, S., Munichandraiah, N. Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate[J]. Journal of Applied Polymer Science.2007, 106(2):1160-1171.
    [166]Bhat, D.K., Kumar, M.S. N and p doped poly(3,4ethylenedioxythiophene) electrode materials for symmetric redox supercapacitors[J]. Journal of Materials Science.2007, 42(19):8158-8162.
    [167]De, Y., Liu, Y., Wu, Z.G., Zhuo, R.F., Wang, J. Low-temperature hydrothermal synthesis and electrochemical properties of birnessite-type manganese dioxide nanosheets[J]. Advanced Materials Research.2013,800:393-397.
    [168]De, Y., Li, Y.H., Liu, Y, Zhuo, R.F., Wu, Z.G., Geng, B.S., Wang, J., Ren, P.Y., Yan, P.X, Geng, Z. Hydrothermal synthesis and electrochemical properties of hexagonal hydrohausmannite plates as supercapacitor electrode material[J]. Materials Letters.2014,117:62-65.
    [169]Liu, Y., De, Y., Zhuo, R.F., Li, S.K., Wu, Z.G., Wang, J., Ren, P.Y., Yan, P.X., Geng, Z.R. Hydrothermal synthesis and electrochemical properties of porous birnessite-type manganese dioxide nanosheets on graphene as a hybrid material for supercapacitors[J]. Journal of Power Sources.2013,242:78-85.
    [170]Liu, Y.; De, Y., Li, Y.H., Wu, Z.G., Zhuo, R.F., Li, S.K., Feng, J.J., Wang, J., Yan, P.X., Geng, Z.R. Manganese dioxide nanosheet arrays grown on graphene oxide as an advanced electrode material for supercapacitors[J]. Electrochimica Acta.2014,117:528-533.
    [171]Yan, D., Yan, P.X., Cheng, S., Chen, J.T., Zhuo, R.F., Feng, J.J., Zhang, GA. Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method[J]. Crystal Growth and Design.2008,9(1): 218-222.
    [172]Yan, D., Cheng, S., Zhuo, R.F., Chen, J.T., Feng, J.J., Feng, H.T., Li, H.J., Wu, Z.G, Wang, J., Yan, P.X. Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology.2009,20(10):105706-105715.
    [173]Yue, GH., Yan, EX., Yan, D., Qu, D.M., Fan, X.Y., Wang, M.X., Shang, H.T. Solvothermal route synthesis of single-crystalline a-MnO2 nanowires[J]. Journal of Crystal Growth.2006, 294(2):385-388.
    [174]Yan, D., Yan, P.X, Yue, G.H., Liu, J.Z., Chang, J.B., Yang, Q., Qu, D.M., Geng, Z.R., Chen, J.T., Zhang, G.A., Zhuo, R.F. Self-assembled flower-like hierarchical spheres and nanobelts of manganese oxide by hydrothermal method and morphology control of them[J]. Chemical Physics Letters.2007,440(1):134-138.
    [1]程爽.锰/钴氧化物超级电容器电极材料的制备和性能研究[博士论文].甘肃:兰州大学.2012.
    [2]Byreppa, K., Adschiri, T. Hydrothermal technology for nanotechnology[J]. Progress in Crystal Growth and Characterization of Materials,2007,53(2):117-166.
    [3]Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., Sun, Z.Z., Slesarev, A., Alemany, L.B., Lu, W., Tour, J.M. Improved synthesis of graphene oxide[J]. ACS Nano.2010, 4(8):4806-4814.
    [4]Pei, S.F., Cheng, H.M. The reduction of graphene oxide[J]. Carbon,2012,50(9):3210-3228.
    [5]袁国辉.电化学电容器[M].北京:化学工业出版社.2006.
    [6]Conway, B.E. Electrochemical supercapacitors:scientific fundamentals and technological applications [M]. New York:Kluwer Academic/Plenum Press.1999.
    [1]Chen, G.Z., Zhang, S.W. Manganese oxide based materials for supercapacitors[J]. Energy Materials,2008,3(3):186-200.
    [2]Xu, C.J., Kang, F.Y., Li, B.H., Du, H.D. Recent progress on manganese dioxide based supercapacitors[J]. Journal of Materials Research.2010,25(8):1421-1432.
    [3]Wei, W.F., Cui, X.W., Chen, W.X., Ivey. D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews.2011,40(21):1697-1721.
    [4]Zhou Y.K., Toupin, M., Belanger, D., Brousse, T., Favier, F. Electrochemical preparation and characterization of Birnessite-type layered manganese oxide films[J]. Journal of Physics and Chemistry of Solids.2006,67(5):1351-1354.
    [5]Athouel, L., Moser, F., Dugas, R., Crosnier, O., Belanger, D., Brousse, T. Variation of the MnO2 birnessite structure upon charge/discharge in an electrochemical supercapacitor electrode in aqueous Na2SO4 electrolyte [J]. The Journal of Physical Chemistry C.2008,112(18):7270-7277.
    [6]Tang, X.H., Li, H.J., Liu, Z.H., Yang, Z.P., Wang, Z.L. Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure[J]. Journal of Power Sources. 2011,196(2011)855-859.
    [7]Wang, G.P., Zhang, L., Zhang, J.J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews.2012,41(2):797-828.
    [8]田中青,林琳,黄伟九.层状二氧化锰制备及应用研究进展[J].中国粉体技术,2010,16(3):46-49.
    [9]Ming, B.S., Li, J.L., Kang, F.Y., Pang, G.Y., Zhang, Y.K., Chen, L., Xu, J.Y., Wang, X.D. Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials[J]. Journal of Power Sources.2012,198(15):428-431.
    [10]Tang, X.H., Liu, Z.H., Zhang, C.X., Yang, Z.P., Wang, Z.L. Synthesis and capacitive property of hierarchical hollow manganese oxide nanospheres with large specific surface area[J]. Journal of Power Sources.2009,193(2):939-943.
    [11]Vargas, O.A., Caballero, A., Heman, L., Morales, J. Improved capacitive properties of layered manganese dioxide grown as nanowires[J]. Journal of Power Sources.2011,196(6): 3350-3354.
    [12]Roberts, A.J., Slade, R.C.T. Synthesis of birnessite type MnO2 nanotubes and their application in aqueous supercapacitors[J]. ECS Transactions.2010,28(30):33-46.
    [13]Zhu, G, Li, H.J., Deng, L.J., Liu, Z.H. Low-temperature synthesis of δ-MnO2 with large surface area and its capacitance[J]. Materials Letters.2010,64(16):1763-1765.
    [14]Zhang, X., Yu, P., Zhang, H.T., Zhang, D.C., Sun, X.Z., Ma, Y.W. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications [J]. Electrochimica Acta.2013,89:523-529.
    [15]Yan, D., Yan, P.X., Cheng, S., Chen, J.T., Zhuo, R.F., Feng, J.J., Zhang, G.A. Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method[J]. Crystal Growth and Design.2008,9(1): 218-222.
    [16]Ogata, A., Komaba, S., Baddour-Hadjean, R., Pereira-Ramos, J.P., Kumagai, N. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochimica Acta.2008,53(7):3084-3093.
    [17]Juien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S., Pereira-Ramos, J.P. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics.2003,159(3):345-356.
    [18]Kang, L.P., Zhang, M.M., Liu, Z.H., Ooi, K. IR spectra of manganese oxides with either layered or tunnel structures[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2007,67(3):864-869.
    [19]Liu, Z.P., Ma, R.Z., Ebina, Y., Takada, K., Sasaki, T. Synthesis and delamination of layered manganese oxide nanobelts[J]. Chemistry of Materials.2007,19(26):6504-6512.
    [20]Zhu, H.T., Luo, J., Yang, H.X, Liang, J.K., Rao, GH., Li, J.B., Du, Z.M. Birnessite-type MnO2 nanowalls and their magnetic properties[J]. The Journal of Physical Chemistry C.2008, 112(44):17089-17094.
    [21]Beaudrouet, E., Salle, A.L.G.L., Guyomard, D. Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials [J]. Electrochimica Acta.2009, 54(4):1240-1248.
    [22]Yu, P., Zhang, X., Chen, Y., Ma, Y.W. Self-template route to MnO2 hollow structures for supercapacitors[J]. Materials Letters.2010,64(13):1480-1482.
    [23]Conway, B.E. Electrochemical supercapacitors:scientific fundamentals and technological applications[M]. New York:Kluwer Academic/Plenum Press.1999.
    [24]Xu, C.J., Du, H.D., Li, B.H., Kang, F.Y., Zeng, Y.Q. Capacitive behavior and charge storage mechanism of manganese dioxide in aqueous solution containing bivalent cations [J]. Journal of The Electrochemical Society.2009,156(1):A73-A78.
    [25]Pang, S.C., Anderson, M.A., Chapman, T.W. Novel electrode materials for thin-film ultracapacitors:comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide[J]. Journal of the Electrochemical Society.2000,147(2): 444-450.
    [1]Dhawan, A., Sharma, V., Parmar, D. Nanomaterials:a challenge for toxicologists[J]. Nanotoxicology.2008,3(1):1-9.
    [2]Wang, G.P., Zhang, L., Zhang, J.J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews.2012,41(2):797-828.
    [3]Zhang, Y., Feng, H., Wu, X,B., Wang, L.Z., Zhang, A.Q., Xia, T.C., Dong, H.C., Li, X.F., Zhang, L.S. Progress of electrochemical capacitor electrode materials:A review[J]. International Journal of Hydrogen Energy.2009,34(11):4889-4899.
    [4]Zhi, M., Xiang, C.C., Li, J.T., Li, M., Wu, N.Q. Nanostructured carbon-metal oxide composite electrodes for supercapacitors:a review[J]. Nanoscale.2013,5(1):72-88.
    [5]Yuan, C., Wu, H.B., Xie, Y., Lou, X.W. Mixed Transition-Metal Oxides:Design, Synthesis, and Energy-Related Applications[J]. Angewandte Chemie International Edition.2014, 53(18):1488-1504.
    [6]Peng, Y., Chen, Z., Wen, J., Xiao, Q.F., He, S.Y., Geng, H.B., Lu, Y.F. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes[J]. Nano Research.2011, 4(2):216-225.
    [7]Xia, H., Wang, Y., Lin, J., Lu, L. Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors [J]. Nanoscale research letters.2012,7(1):1-10.
    [8]Li, G.R., Feng, Z.P., Ou, Y.N., Wu, D.C., Fu, R.W., Tong, Y.X. Mesoporous Mn02/carbon aerogel composites as promising electrode materials for high-performance supercapacitors [J]. Langmuir.2010,26(4):2209-2213.
    [9]He, H., Klinowski, J., Forster, M., Lerf, A. A new structural model for graphite oxide[J]. Chemical Physics Letters.1998,287(1):53-56.
    [10]Jeong, H.K., Lee, Y.P., Lahaye, R.J.W.E., Park, M.H., An, K.H., Kim, I.J., Yang, C.W., Park, C.Y., Ruoff, R.S., Lee, Y.H. Evidence of graphitic AB stacking order of graphite oxides[J]. Journal of the American Chemical Society.2008,130(4):1362-1366.
    [11]Zhu, Y., Murali, S., Cai, W.W., Li, X.S., Suk, J.W., Potts, J.R., Ruoff. R.S. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced materials.2010, 22(35):3906-3924.
    [12]Wang, Y., Li, Z., Wang, J., Li, J.H., Lin, Y.H. Graphene and graphene oxide: biofunctionalization and applications in biotechnology[J]. Trends in biotechnology.2011, 29(5):205-212.
    [13]Wilson, N.R., Pandey, P.A., Beanland, R., Young, R.J., Kinloch, I.A., Gong, L., Liu, Z., Suenaga, K., Rourke, J.P., York, S.J., Slian, J. Graphene oxide:structural analysis and application as a highly transparent support for electron microscopy[J]. ACS Nano.2009,3(9):2547-2556.
    [14]Pyun, J. Graphene oxide as catalyst:application of carbon materials beyond nanotechnology[J]. Angewandte Chemie International Edition.2011,50(1):46-48.
    [15]Chen, S., Zhu, J., Wu, X., Han, Q.F., Wang, X. Graphene oxide-MnO2 nanocomposites for supercapacitors[J]. ACS Nano.2010,4(5):2822-2830.
    [16]Wang, L., Wang, D.L. Preparation and electrochemical characterization of MnOOH nanowire-graphene oxide[J]. Electrochimica Acta.2011,56(14):5010-5015.
    [17]Gund, G.S., Dubai, D.P., Patil, B.H., Shinde, S.S., Lokhande, C.D. Enhanced activity of chemically synthesized hybrid graphene oxide/Mn3O4 composite for high performance supercapacitors[J]. Electrochimica Acta.2013,92:205-215.
    [18]Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S. The chemistry of graphene oxide[J]. Chemical Society Reviews.2010,39(l):228-240.
    [19]Yan, D., Yan, P.X., Cheng, S., Chen, J.T., Zhuo, R.F., Feng, J.J., Zhang, G.A. Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method[J]. Crystal Growth and Design.2008,9(1): 218-222.
    [20]Yan, D., Cheng, S., Zhuo, R.F., Chen, J.T., Feng, J.J., Feng, H.T., Li, H.J., Wu, Z.G., Wang, J., Yan, P.X. Nanoparticles and 3D sponge-like porous networks of manganese oxides and their microwave absorption properties. Nanotechnology.2009,20(10):105706-105715.
    [21]Yan, D., Liu, Y., Wu, Z.G., Zhuo, R.F., Wang, J. Low-temperature hydrothermal synthesis and electrochemical properties of birnessit-type manganese dioxide Nanosheets[J]. Advanced Materials Research.2013,800:393-397.
    [22]Aboutalebi, S.H., Chidembo, A.T., Salari, M., Konstantinov, K., Wexler, D., Liu, H.K., Dou, S.X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors[J]. Energy & Environmental Science,2011,4(5):1855-1865.
    [23]Ogata, A., Komaba, S., Baddour-Hadjean, R., Pereira-Ramos, J.P., Kumagai, N. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochimica Acta.2008,53(7):3084-3093.
    [24]Julien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S., Pereira-Ramos, J.P. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics.2003,159(3):345-356.
    [25]Kang, L.P., Zhang, M.M., Liu, Z.H., Ooi, K. IR spectra of manganese oxides with either layered or tunnel structures [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2007,67(3):864-869.
    [26]Liu, Z.P., Ma, R.Z., Ebina, Y, Takada, K., Sasaki, T. Synthesis and delamination of layered manganese oxide nanobelts[J]. Chemistry of Materials.2007,19(26):6504-6512.
    [27]Zhang, Y., Sun, C., Lu, P., Li, K.Y., Song, S.Y., Xue, D.F. Crystallization design of MnO2 towards better supercapacitance[J]. CrystEngComm.2012,14(18):5892-5897.
    [1]Dreyer, D.R., Park, S., Bielawski, C.W., Ruoff, R.S. The chemistry of graphene oxide[J]. Chemical Society Reviews.2010,39(1):228-240.
    [2]Pumera, M. Graphene-based nanomaterials for energy storage[J]. Energy & Environmental Science.2011,4(3):668-674.
    [3]Sun, Y., Wu, Q., Shi, G. Graphene based new energy materials[J]. Energy & Environmental Science.2011,4(4):1113-1132.
    [4]Zhu, Y., Murali, S., Cai, W.W., Li, X.S., Suk, J.W., Potts, J.R., Ruoff. R.S. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials.2010, 22(35):3906-3924.
    [5]Zhang, L.L., Zhou, R., Zhao, X.S. Graphene-based materials as supercapacitor electrodes[J]. Journal of Materials Chemistry.2010,20(29):5983-5992.
    [6]Huang, Y., Liang, J., Chen, Y. An Overview of the Applications of Graphene-Based Materials in Supercapacitors[J]. Small.2012,8(12):1805-1834.
    [7]Zhang, X., Wang, B., Sunarso, J., Liu, S.M., Zhi, L.J. Graphene nanostructures toward clean energy technology applications [J]. Wiley Interdisciplinary Reviews:Energy and Environment. 2012,1(3):317-336.
    [8]Chabot, V., Higgins, D., Yu, A., Xiao, X.C., Chen, Z.W., Zhang, J.J. A review of graphene and graphene oxide sponge:material synthesis and applications to energy and the environment[J]. Energy & Environmental Science.2014.
    [9]Edwards R S, Coleman K S. Graphene synthesis:relationship to applications[J]. Nanoscale. 2013,5(1):38-51.
    [10]Zhu, J., He, J. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors[J]. ACS applied materials & interfaces.2012,4(3):1770-1776.
    [11]Yan, J., Fan, Z., Wei, T., Qian, W.Z., Zhang, M.L., Wei, F. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J]. Carbon.2010, 48(13):3825-3833.
    [12]Zhang, J., Jiang, J., Zhao, X.S. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets[J]. The Journal of Physical Chemistry C. 2011,115(14):6448-6454.
    [13]Yu, A., Sy, A., Davies, A. Graphene nanoplatelets supported MnO2 nanoparticles for electrochemical supercapacitor[J]. Synthetic Metals.2011,161(17):2049-2054.
    [14]Yan, D., Yan, P.X., Cheng, S., Chen, J.T., Zhuo, R.F., Feng, J.J., Zhang, G.A. Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method[J]. Crystal Growth and Design.2008,9(1): 218-222.
    [15]Ferrari A C. Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications.2007,143(l):47-57.
    [16]Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Pisencec, S., Jiang, D., Novoselov, K.S., Roth, S., Geim, A.K. Raman spectrum of graphene and graphene layers[J]. Physical review letters.2006,97(18):187401.
    [17]Ogata, A., Komaba, S., Baddour-Hadjean, R., Pereira-Ramos, J.P., Kumagai, N. Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery[J]. Electrochimica Acta.2008,53(7):3084-3093.
    [18]Julien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S., Pereira-Ramos, J.P. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics.2003,159(3):345-356.
    [19]Liu, Z.P., Ma, R.Z., Ebina, Y., Takada, K., Sasaki, T. Synthesis and delamination of layered manganese oxide nanobelts[J]. Chemistry of Materials.2007,19(26):6504-6512.
    [20]Peng, Y., Chen, Z., Wen, J., Xiao, Q.F., He, S.Y., Geng, H.B., Lu, Y.F. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes[J]. Nano Research.2011, 4(2):216-225.
    [21]Xu, B., Yue, S., Sui, Z., Zhang, X.T., Hou, S.S., Cao, G.P., Yang, Y.S. What is the choice for supercapacitors:graphene or graphene oxide?[J]. Energy & Environmental Science.2011, 4(8):2826-2830.
    [1]Yan,J., Fan, Z., Wei, T., Qian, W.Z., Zhang, M.L., Wei, F. Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes[J], Carbon.2010, 48(13):3825-3833.
    [2]Yu, A., Sy, A., Davies, A. Graphene nanoplatelets supported MnO2 nanoparticles for electrochemical supercapacitor[J]. Synthetic Metals.2011,161(17):2049-2054.
    [3]Wang, G.P., Zhang, L., Zhang, J.J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews.2012,41(2):797-828.
    [4]Arico, A.S., Bruce, P., Scrosati, B., Tarascon, J.M., Schalkwijk, W.V. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature materials.2005, 4(5):366-377.
    [5]Yu, G., Xie, X., Pan, L.J., Bao, Z.A., Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors[J]. Nano Energy.2013,2(2):213-234.
    [6]Huang, X., Qi, X.Y., Boey, F., Zhang, H. Graphene-based composites[J]. Chemical Society Reviews.2012,41(2):666-686.
    [7]Wu, Z.S., Zhou, G., Yin, L.C., Ren, W.C., Li, F., Cheng, H.M. Graphene/metal oxide composite electrode materials for energy storage[J]. Nano Energy.2012,1(1):107-131.
    [8]Sun, Y., Shi, G. Graphene/polymer composites for energy applications[J]. Journal of Polymer Science Part B:Polymer Physics.2013,51(4):231-253.
    [9]Yu, G.H., Hu, L.B., Liu, N., Wang, H.L., Vosgueritchian, M., Yang, Y., Cui, Y., Bao, Z.N. Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping[J]. Nano Letters.2011,11(10):4438-4442.
    [10]Xia, X.F., Hao, Q.L., Lei, W., Wang, W.J., Wang, H.L., Wang, X. Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: Synthesis and properties [J]. Journal of Materials Chemistry.2012,22(17):8314-8320.
    [11]Zheng, Y.Y., Du, Q.F., He, M.P., Deng, Z.W. Synthesis and electrochemical properties of graphite oxide/MnO2/conducting polymer ternary composite for supercapacitors[J]. Micro & Nano Letters, IET.2012,7(8):778-781.
    [12]Wang, W., Hao, Q., Lei, W., Xia, X., Wang, X. Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials[J]. RSC Advances.2012, 2(27):10268-10274.
    [13]Han, Y.Q., Ding, B, Tong, H., Zhang, X.G. Capacitance properties of graphite oxide/poly (3, 4-ethylene dioxythiophene) compositesfJ]. Journal of Applied Polymer Science.2011, 121(2):892-898.
    [14]Julien, C., Massot, M., Baddour-Hadjean, R., Franger, S., Bach, S., Pereira-Ramos, J.P. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics.2003,159(3):345-356.
    [15]郑乔文.水溶性聚3,4-乙烯二氧噻吩纳米材料的合成与应用[硕士论文].台湾:国立高雄应用科技大学.1998.
    [16]Antiohos, D., Folkes, G., Sherrell, P., Ashraf, S., Wallace, G.G., Aitchison, P., Harris, A.T., Chen, J., Minett, A.I. Compositional effects of PEDOT:PSS/single walled carbon nanotubes films on supercapacitor device performance [J]. Journal of Materials Chemsity.2011, 21(40):15987-15994.
    [17]Rios, E.C., Correa, A.A., Cristovan, F.H., Pocriflca, L.A., Rosario, A.V. Poly(3,4-ethylenedioxithiophene)/MnO2 composite electrodes for electrochemical capacitors [J]. Solid State Sciences.2011,13(11):1978-1983.
    [18]Plonska-Brzezinska, M.E., Lewandowski, M., Blaszyk, M., Molina-Ontoria, A., Lucinski, T., Echegoyen, L. Preparation and characterization of carbon nano-onion/PEDOT:PSS composites[J]. ChemPhysChem.2012,13(18):4134-4141.
    [19]Liu, F.J. Electrodeposition of manganeses dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)-polyaniline for supercapacitor[J]. Journal of Power Sources.2008,182(1):383-388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700