常温液相合成TiO_2纳米晶溶胶及其光催化薄膜制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2以其优异的光催化活性和物理化学特性,在环境污染治理方面已获得较为广泛的研究和应用。尤其在能源、环境问题日益突出的今天,TiO_2光催化材料的研究更具现实意义。薄膜是TiO_2的重要应用形式,能克服悬浮型粉体光利用效率低、易聚集、难回收等问题,并易于实现在玻璃、陶瓷及金属等不同基材上负载。近年来,随着TiO_2薄膜在太阳能电池柔性衬底、建筑物墙面、工程塑料等不耐热或难以加热材料表面应用需求的增加,其低温制备研究受到了关注,成为材料学、化学和环境科学等领域的研究热点。
     本文对TiO_2薄膜的低温制备及其光催化性能改善途径进行了研究。采用溶胶-凝胶方法,通过配方设计和工艺改进,合成出含有TiO_2晶粒的稳定溶胶(TiO_2纳米晶溶胶)。利用该溶胶在基材表面负载成膜,实现结晶TiO_2薄膜的低温制备。在此基础上,从构造多孔性结构、半导体复合、染料敏化等三方面,探索具有高光催化活性TiO_2薄膜的制备方法。论文主要研究内容及结论如下:
     (1)常温液相合成TiO_2纳米晶溶胶,实现结晶TiO_2薄膜低温制备。
     采用溶胶-凝胶方法,设计以水为主要溶剂的反应配方体系(钛酸丁酯:去离子水:无水乙醇:盐酸(摩尔比)=1:185:10:0.1),改进传统控制工艺,合成TiO_2溶胶。通过~(13)CNMR、XAFS等测试方法对钛酸丁酯的水解行为、溶胶粒子的物相结构等进行研究,结果表明在该配方体系下,钛酸丁酯充分水解,形成的水合钛离子缓慢聚合并自发定向排列,在液相中生长出锐钛矿型TiO_2晶粒,形成稳定的TiO_2纳米晶溶胶(平均粒径28.7 nm)。利用溶胶在基材表面负载成膜,在室温下制得具有良好光催化活性的结晶TiO_2薄膜。
     (2)低温下构造出多孔性TiO_2薄膜形貌,提高薄膜光催化活性。
     分别以球形苯丙乳液粒子和4,4'-二羟基二苯基丙烷(BPA)为模板,将其引入TiO_2纳米晶溶胶,待其负载成膜后,使用有机溶剂将薄膜中的模板选择性溶解去除,实现TiO_2多孔薄膜的低温制备(室温或60℃干燥)。详细考察了配方、工艺等因素对薄膜表面形貌的影响,探讨了多孔薄膜的制备机理,并对薄膜的吸附及光催化等性能进行了研究。结果表明:
     在使用结构刚性的苯丙乳液粒子硬质模板时,通过控制模板粒子与TiO_2胶粒间的异相凝聚,有利于促进苯丙乳液粒子在薄膜中分散,形成具有一定壁厚的多孔结构。TiO_2溶胶与苯丙乳液的比例是影响薄膜孔结构的关键因素,涂膜液的陈化时间决定了孔的密集程度,采用超声波振荡辅助溶解,能快速有效地去除苯丙乳液粒子。优化的制备条件为:15 g TiO_2溶胶,0.2 g苯丙乳液,10 g H_2O,涂膜液陈化15 d,薄膜浸入甲苯后,超声波振荡10 min。
     在使用结构柔性的BPA软质模板时,TiO_2胶粒与BPA构成了两相体系,通过调节涂膜液中各组分含量对TiO_2与BPA在薄膜内部的分相过程进行控制,制备出孔隙分布均匀的TiO_2多孔薄膜。BPA浓度决定了它对TiO_2薄膜表面形貌的影响区域,随BPA浓度的降低,其影响逐渐由薄膜内部转向于极其表面的区域。TiO_2胶粒浓度和乙醇含量是制备多孔薄膜的关键,低TiO_2胶粒浓度和高乙醇含量有利于获得良好多孔性薄膜。涂膜液的优化组成为:4 g TiO_2溶胶,0.07 g BPA,10 g无水乙醇。
     多孔性增强了薄膜的吸附性能,增加了TiO_2与有机污染物的接触,通过吸附和光催化氧化的协同作用,有效提高了薄膜光催化活性。
     (3)低温下实现TiO_2-PEDT/PSS、TiO_2-SnO_2叠层式半导体结构的有效复合,提高薄膜光催化活性。
     分别采用有机半导体(PEDT/PSS,聚乙撑二氧噻吩,其中掺杂聚苯乙烯磺酸盐)和无机半导体(SnO_2)与TiO_2复合,低温下(60或100℃干燥)制备出以相应半导体薄膜为底层,TiO_2薄膜为表层的双层复合半导体薄膜。研究表明底层半导体与表层TiO_2形成异质结,两者能带发生交迭,TiO_2层光生电子向底层半导体注入,有效抑制了TiO_2光生电子、空穴的复合,提高了量子效率,薄膜光催化活性因此得到显著增强,相对于单一TiO_2薄膜,最大提高了将近3倍。
     (4)建立稳定TiO_2-CuTsPc复合敏化体系,拓展薄膜光响应波长。
     将水溶性的四磺酸酞菁铜(CuTsPc)作为敏化剂引入TiO_2溶胶中,通过静电吸引作用促使CuTsPc分子与TiO_2胶粒发生结合,获得CuTsPc敏化的TiO_2溶胶(TiO_2-CuTsPc溶胶)。利用溶胶室温负载于基材表面制得TiO_2-CuTsPc薄膜。考察了TiO_2-CuTsPc溶胶合成的水浴加热时间以及CuTsPc浓度等条件对薄膜中CuTsPc负载量的影响,研究了CuTsPc负载量与薄膜光催化性能的关系,并探讨了CuTsPc的负载机理。
     研究发现CuTsPc的负载能将薄膜的光响应波长拓展至600-700 nm,有效提高了薄膜的可见光催化活性。UV-Vis吸收光谱表明水浴加热时间越长,溶胶中CuTsPc浓度越高,CuTsPc在薄膜中的负载量就越大。随着薄膜中CuTsPc负载量的增大,薄膜的可见光催化活性先提高、后降低,当CuTsPc在20 gTiO_2溶胶中的添加量为0.036 g,并在80℃水浴加热8 h时,所制薄膜的可见光催化活性最高。CuTsPc分子在TiO_2胶粒表面的附着,使CuTsPc随TiO_2胶粒成膜均匀、牢固地负载于薄膜中,因此有利于敏化效果的发挥和薄膜的循环使用,经2~3次循环后,薄膜的可见光催化活性趋于稳定。
TiO_2 has been widely studied and applied in environment protection due to its excellent photocatalytic activity and physicochemical characteristics.Especially in the time when the pollution problem becomes more and more conspicuous,the study on TiO_2 catalyst has more practical significance.Film is an important application pattern of TiO_2 catalyst,which is more effectively to utilize light and easier to recycle compared with TiO_2 powder,and can be facilely deposited on a variety of substrates such as glass slide,porcelain bricks,metal panels,etc.Resently,in order to extend the application of TiO_2 film on heat-intolerant organic substrates and realize the large-area coating in the preparation of TiO_2 film,the research on its low-temperature preparation method has been attracting more and more attention and become a prosperous research area in the field of material,chemistry and environment science.
     In this paper,the low-temperature preparation of TiO_2 film and the approaches to improve its photocatalysis have been studied.By means of sol-gel method,TiO_2 sol containing nanometer crystal grains(called TiO_2 nano-crystal sol)was synthesized via improving formula and control process,and thus crystalline TiO_2 film could be prepared from the TiO_2 nano-crystal sol without any high-temperature treatment. Based on this,the preparation methods of TiO_2 film with higher photocatalysis were explored from three aspects such as constructing porous structure,coupled semiconductor and dye sensitization.The main research contents and results are as follows:
     (1)Synthesized TiO_2 nano-crystal sol in aqueous solution at room temperature, realized low-temperature preparation of crystalline TiO_2 film.
     The reaction formula with water as primary solvent was designed(where more ratio of Ti(OC_4H_9)_4:H_2O:C_2H_5OH:HCl=1:185:10:0.1)and suited control process was improved to synthesize TiO_2 nano-crystal sol through sol-gel method.~(13)CNMR and XAFS were adopted to analyse the hydrolyzation behavior of Ti(OC_4H_9)_4 and the crystal structure of TiO_2 colloidal particle.The results showed that Ti(OC_4H_9)_4 hydrolyzes completely and no organic radicals were linked to Ti atoms in the final sol. Hydrate titanium ions polymerized slowly and bonded orientedly,and thus anatase TiO_2 crystal grains grew in the aqueous solution,and stable TiO_2 nano-crystal sol was formed subsequently(Mean particle diameter is 28.7 nm).The resultant sol was coated on the substrate,and crystalline TiO_2 film with well photocatalytic activity was obtained at low temperature.
     (2)Fabricated porous surface morphology of crystalline TiO_2 film at low temperature,increased photocatalytic activity of the film.
     Styrene-acrylate spheres and 4,4'-isopropylidenediphenol(BPA)were used as templates to control the surface morphology of TiO_2 film and added into TiO_2 nano-crystal sol respectively.The film was prepared from resultant solution,and then the template was preferentially extracted by organic solvent.So the porous anatase TiO_2 film was obtained at low temperature(dried at room temperature or 60℃).The influence of the formula and control process on the morphology of the film was investigated and the preparation mechanism of porous TiO_2 film was discussed.The adsorption properity as well as photocatalytic performance were also studied.Results are as follows:
     When rigid styrene-acrylate spheres was used as a template,suitable control of heterocoagulation between styrene-acrylate spheres and TiO_2 colloidal particle was favorable to the dispersion of styrene-acrylate spheres in the film as well as the formation of porous structure with certain wall thickness.The mass ratio of TiO_2 sol and styrene-acrylate emulsion affected the morphology of the pores;the aging time was a dominant factor for the formation of the dense pores on the surface; styrene-acrylate spheres could be eliminated effectively by the ultrasonic oscillation. The appropriate proportion was:15 g TiO_2 sol+0.2 g styrene-acrylate emulsion+10 g H_2O;the solutions are aged for 15 d,and the film was soaked into toluene and vibrated by ultrasonic for 10 min.
     When flexible BPA was used as a template,the resultant solution was a two phase mixture consisting of BPA and TiO_2 colloidal particles.The control of phase separation of these two substances in film could be achieved via adjusting the dosage of the components in the solution,and thus TiO_2 film with homogeneous and continuous porous structure was obtained.With the decrease of BPA concentration, the effect region of BPA was changed from the inside region of the film to the surface region of the film.Low concentration of TiO_2 colloidal particle and high content of ethanol was propitious to form porous structure.The appropriate proportion was:4 g TiO_2 sol+0.07 g BPA+10 g C_2H_5OH.
     The porosity enhanced the adsorption properity of the film,and more TiO_2 particles could contact with the pollutant molecule.So the photocatalytic activity was increased via the adsorption followed by photocatalytic oxidation.
     (3)Designed laminated coupled semiconductor at low temperature,increased photocatalytic activity of the film.
     Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid)(PEDT/PSS,an organic semiconductor)and SnO_2 were used to increase the photocatalytic activity of TiO_2 film respectively.The dual-layer coupled semiconductor film was prepared at low temperature(dried at 60 or 100℃),which used corresponding semiconductor film as an underlayer and TiO_2 film as a surface layer.The spectroscopy study on the film indicated that these dual-layer structure formed heterojunction,and there was an overlapping band in the coupled semiconductor film.The underlayer semiconductor induced a better charge separation due to electron transfer from TiO_2 layer to underlayer semiconductor,and thus the recombination of photon-generated electron-hole pair was suppressed.Hence,the photocatalytic activity of coupled semiconductor film was increased significantly compared with TiO_2 film,and the highest could increase about 3 times.
     (4)Established TiO_2-CuTsPc sensitizing system at low temperature,extended the light response region of the film.
     Copper(Ⅱ)phthalocyanine tetrasulfonic acid(CuPcTs)was added into TiO_2 sol, and phthalocyanine sensitized TiO_2 sol(TiO_2-CuTsPc sol)was synthesized via the adsorption of CuTsPc on the TiO_2 colloidal particles due to electrostatic attraction. TiO_2-CuTsPc film was then prepared by coating the resultant sol on the substrate at room temperature.The influence of water bath time and the CuTsPc concentration on the CuPcTs loading in the film were investigated,and the relationship between CuPcTs loading and photocatalysis was studied,Furthermore,the loading mechanism of CuTsPc was also discussed.
     The results showed that the sensitization of CuTsPc could extend the light response region of the film to 600-700 nm,and thus increase the visible-light photocatalytic activity of the film.UV-Vis absorption spectra indicated that prolonging the time in water bath or raising the CuPcTs concentration in TiO_2 sol were helpful for increasing the amount of CuPcTs supported in TiO_2 film.The visible-light photocatalytic activity of the film was increased with the amount of CuPcTs,but too much CuPcTs would decrease the photocatalytic activity.When 0.036 g CuPcTs was added into 20 g TiO_2 sol and the mixture was heated in the water bath at 80℃for 8 h,the photocatalytic activity could reach the highest.CuPcTs could be loaded in the film uniformly and firmly via adsorption on the TiO_2 colloidal particles,and this ensured the stability for repeated use of TiO_2-CuTsPc film.The photocatalytic activity of the film became stable after being used 2~3 times.
引文
[1] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358):37-38.
    [2] Linsebigler A L, Lu G Q, Yates J T Jr. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results. Chem. Rev., 1995, 95(3):735-758.
    [3] Xu Y, Langford C H. A comparison of acetophenone photoxidation in aqueous media via direct photolysis and TiO_2 photocatalysis. J. Adv. Oxid. Technol., 1997, 2(3):408-414.
    [4] Hoffmann M R, Martin S T, Choi W Y, Bahnemannt D W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1):69-96.
    [5] Choi W Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics. J. Phys. Chem., 1994, 98(51): 13669-13679.
    [6] Xu A W, Gao Y, Liu H Q. The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO_2 nanoparticles. J. Catal., 2002, 207(2):151-157.
    [7] Serpone N, Lawless D, Disdier J. Spectroscopic, photoconductivity, and photocatalytic studies of TiO_2 colloids: Naked and with the lattice doped with Cr~(3+), Fe~(3+), and V~(5+) cations. Langmuir, 1994,10(3): 643-652.
    [8] Yamashita H, Harada M, Misaka J, Takeuchi M, Ikeue K, Anpo M. Degradation of propanol diluted in water under visible light irradiation using metal ion - imp lanted titanium dioxide photocatalysts. J. Photochem. Photobiol. A-Chem., 2002,148 (1-3):257-261.
    [9] Iwasaki M, Hara M, Kawada K, Tada H, Ito S. Cobalt ion-doped TiO_02 photocatalyst response to visible light. J. Colloid Interface Sci., 2000, 224(1):202-204.
    [10] Sato S. Photocatalytic activity of NOx-doped TiO_2 in the visible light region. Chem. Phys. Lett., 1986,123(1-2):126-128.
    [11] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen- doped titanium oxides. Science, 2001,293(5528):269-271.
    [12] Ihara T, Miyoshi M, Iriyama Y, Matsumoto 0, Sugihara S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. Appl. Catal. B-Environ., 2003,42(4):403-409.
    [13] Nosaka Y, Matsushita M, Nishino J, Nosaka A Y. Nitrogen-doped titanium oxide photo-catalysts for visible response prepared by using orgnic compounds. Sci. Technol. Adv. Mater., 2005, 6(2):143-148.
    [14] Khan S U M, Al-Shahry M, Inger-Jr W B. Efficient photochemical water splitting by a chemically modified n-TiO_2. Science, 2002, 297(5590):2243-2245.
    [15] Umebayashi T, Yatnaki T, Itoh H, Asai K. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett., 2002, 81(3):454-456.
    [16] Yamaki T, Sumita T, Yamamoto S. Formation of TiO_(2-x)F_x compounds in fluorine-implanted TiO_2 J. Mater. Sci. Lett., 2002, 21(1):33-35.
    [17] Yu J C, Yu J G, Ho W K, Jiang Z T, Zhang L Z. Effects of F" doping on the photocatalytic activity and microstructures of nanocrystalline TiO_2 powders. Chem. Mater., 2002, 14(9):3808-3816.
    [18] Amao Y, Yamada Y, Aoki K. Preparation and properties of dye-sens itized solar cell us ing chlorophyll derivative immobilized TiO_2 film electrode. J. Photochem. Photobiol. A-Chem., 2004,164(1-3):47- 51.
    [19] Ohmori Y, Itoh E, Miyairi K. Photovoltaic properties of phthalocyanine based p-n diode evaporated onto titanium dioxide. Thin Solid Films, 2006, 499(1-2):369-373.
    [20] Chatterjee D, Mahata A. Demineralization of organic pollutants on the dye modified TiO_2 semiconductor particulate system using visible light. Appl. Catal. B-Environ., 2001, 33(2): 119-125.
    [21] Cherian S, Wamser C C. Adsorption and photoactivity of tetra(4-carboxyphenyl)-porphyrin (TCPP) on nanoparticulate TiO_2. J. Phys. Chem. B., 2000, 104(15):3624-3629.
    
    [22] Srikanth K, Marathe V R, Manoj K. Role of electronic structure of ruthenium polypyridyl dyes in the photoconversion efficiency of dye-sensitized solar cells: Semiempirical investigation. Int. J. Quantum Chem., 2002, 89(6):535-549.
    [23] Zhang F L, Zhao J C, Shen T, Hidaka H, Pelizzetti E, Serpone N. TiO_2-assisted photodegradation of dye pollutants. II. Adsorption and degradation kinetics of eosin in TiO_2 dispersions under visible light irradiation. Appl. Catal. B-Environ., 1998, 15(1-2): 147-156.
    [24] Wu T, Liu G, Zhao J, Hidaka H, Serpone N. Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO_2 dispersions. J. Phys. Chem. B., 1998,102 (30):5845-5851.
    [25] Liu G, Wu T, Zhao J, Hidaka H, Serpone N. Photoassisted degradation of dye pollutants. 8. Irreversible degradation of alizarin red under visible light radiation in air-equilibrated aqueous TiO_2 dispersions. Environ. Sci. Technol., 1999,33(12):2081-2087.
    [26] Mele G, Ciccarella G, Vasapollo G, Garcia-Lopez E, Palmisano L, Schiavello M. Photocatalytic degradation of 4-nitrophenol in aqueous suspension by using polycrystalline TiO_2 samples impregnated with Cu(II)-phthalocyanine. Appl. Catal. B-Environ., 2002, 38(4):309~319.
    [27] Iliev V, Tomova D, Bilyarska L, Prahov L, Petrov L. Phthalocyanine modified TiO_2 or WO_3-catalysts for photooxidation of sulfide and thiosulfate ions upon irradiation with visible light. J. Photochem. Photobiol. A-Chem., 2003, 159(3): 281-287.
    [28] He J, Hagfeldt A, Lindquist S-E, Grennberg H, Korodi F, Sun L, Akermark B. Phthalocyanine-sensitized nanostructured TiO_2 electrodes prepared by a novel anchoring method. Langmuir, 2001,17(9):2743-2747.
    [29] Morandeira A, Lopez-Duarte I, Martinez-Diaz M V, O'Regan B, Shuttle C, Haji-Zainulabidin N A, Torres T, Palomares E, Durrant J R. Slow electron injection on Ru-phthalocyanine sensitized TiO_2. J. Am. Chem. Soc, 2007, 129(30):9250-9251.
    [30] Hagfeldt A, Graetzel M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev., 1995, 95(1):49-68.
    [31] Hirai T, Suzuki K, Komasawa I. Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles. J. Coll. Inter. Sci., 2001,244(2):262-265.
    [32] Ho W, Yu J C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO_2 nanoparticles. J. Mol. Catal. A-Chem., 2006, 247(1-2): 268-274.
    
    [33] Liu Z, Sun D D, Guo P, Leckie J 0. An efficient bicomponent TiO_2/SnO_2 nanofiber photocatalyst fabricated by electrospinning with a side-by-side dual spinneret method. Nano Lett., 2007, 7(4): 1081-1085.
    [34] Marci G, Augugliaro V, Lopez-Munoz M J, Martin C, Palmisano L, Rives V, Schiavello M, Tilley R J D, Venezia A M. Preparation characterization and photocatalytic activity of poly crystalline ZnO/TiO_2 systems. 2. Surface, bulk characterization, and 4-nitrophenol photodegradation in liquid-solid regime. J. Phys. Chem. B., 2001,105(5):1033-1040.
    [35] Pan J H, Lee W I. Preparation of highly ordered cubic mesoporous WO_3/TiO_3 films and their photocatalytic properties. Chem. Mater., 2006, 18(3):847-853.
    [36] Ho W, Yu J C, Lin J, Yu J, Li P. Preparation and photocatalytic behavior of MoS_2 and WS_2 nanocluster sensitized TiO_2. Langmuir, 2004, 20(14):5865-5869.
    [37] Cheng P, Li W, Zhou T, Jin Y, Gu M. Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation. J. Photochem. Photobiol. A-Chem., 2004, 168(1-2):97-101.
    [38] Sasaki T, Koshizaki N, Yoon J-W, Beck K M. Preparation of Pt/TiO_2 nanocomposite thin films by pulsed laser deposition and their photoelectrochemical behaviors. J. Photochem. Photobiol. A-Chem., 2001, 145(1-2):11-16.
    
    [39] Sung-Suh H M, Choi J R, Hah H J, Koo S M, Bae Y C. Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO_2 under visible and UV light irradiation. J. Photochem. Photobiol. A-Chem., 2004, 163(1-2):37-44.
    
    [40] Zhao W, Chen C, Li X, Zhao J, Hidaka H, Serpone N. Photodegradation of
    sulforhodamine-B dye in platinized titania dispersions under visible light irradiation: influence of platinum as a functional co-catalyst. J. Phys. Chem. B., 2002,106(19):5022-5028.
    [41] Raillard C, Hequet V, Cloirec P L, Legrand J. Photocatalytic oxidation of volatile organic compounds present in airborne environment adjacent to sewage treatment plants. Water Sci. Technol., 2004, 49(1): 111 -114.
    [42] Stallings W E, Lamb H H. Synthesis of nanostructured titania powders via hydrolysis of titanium isopropoxide in supercritical carbon dioxide. Langmuir, 2003,19(7):2989-2994.
    [43] Cheng H, Ma J, Zhao Z, Qi L. Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater., 1995, 7(4):663-671.
    [44] Wang C, Deng Z-X, Li Y. The synthesis of nanocrystalline anatase and rutile titania in mixed organic media. Inorg. Chem., 2001, 40(20):5210-5214.
    [45] Kominami H, Takada Y, Yamagiwa H, Kera Y, Inoue M, Inui T. Synthesis of thermally stable nanocrystalline anatase by high-temperature hydrolysis of titanium alkoxide with water dissolved in organic solvent from gas phase. J. Mater. Sci. left., 1996,15(3): 197-200.
    [46] Kominami H, Kato J-I, Murakami S-Y, Ishii Y, Kohno M, Yabutani K-I, Yamamoto T, Kera Y, Inoue M. Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities. Catal. Today, 2003, 84(3-4): 181-189.
    [47] Doherty S, Fitzmaurice D. Preparation and characterization of transparent nanocrystalline TiO_2 films possessing well-defined morphologies. J. Phys. Chem., 1996, 100(25): 10732-10738.
    [48] O' Regan B, Graetzel M. A low-cost, high efficiency solar cells based on dye-sensitized colloidal TiO_2. Nature, 1991, 353(6343):737-739.
    [49] Stathatos E, Lianos P, Falaras P, Siokou A. Photocatalytically deposited silver nanoparticles on mesoporous TiO_2 films. Langmuir, 2000,16(5):2398-2400.
    [50] Shimizu K, Imai H, Hirashima H, Tsukuma K. Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Film, 1999, 351(1-2):220-224.
    [51] Gutierrez-Tauste D, Zumeta 1, Vigil E, Hernandez-Fenollosa M A, Domenech X Ayll6n J A.New low-temperature preparation method of the TiO_2 porous photoelectrode for dye-sensitized solar cells using UV irradiation.J.Photochem.Photobiol.A-Chem.,2005,175(2-3):165-171.
    [52]Zhang D S,Yoshida T,Minoura H.Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface.Adv.Mater.,2003,15(10):814-817.
    [53]Wark M,Tschirch J,Barrels O,Bahnemann D,Rathousky J.Photocatalytic activity of hydrophobized mesoporous thin films of TiO_2.Microporous Mesoporous Mat.,2005,84(1-3):247-253.
    [54]Guo B,Liu Z L,Hong L,Jiang H.Sol gel derived photocatalytic porous TiO_2thin films.Surf Coat.Technol.,2005,198(1-3):24-29.
    [55]Yusuf M M,Imai H,Hirashima H.Preparation of mesoporous YiO_2 thin films by surfactant templating.J.Non-Cryst.Solids,2001,285(1-3):90-95.
    [56]Yu J G,Zhao X J,Zhao Q N.Effect of surface structure on photocatalytic activity of TiO_2 thin films prepared by sol-gel method.Thin Solid Films,2000,379(1-2)i7-14.
    [57]Liu K,Fu H,Shi K,Xiao F,Jing L,Xin 13.Preparation of large-pore mesoporous nanocrystalline TiO_2 thin films with tailored pore diameters.J.Phys.Chem.B.,2005,109(40):18719-18722.
    [58]Hsu C-S,Lin C-K,Chan C-C,Chang C-C,Tsay C-Y.Preparation and characterization of nanocrystalline porous TiO_2/WO_3 composite thin films.Thin Solid Films,2006,494(1-2):228-233.
    [59]Kotani Y,Matsuda A,Kogure T,Tatsumisago M,Minami Y.Effects of addition of poly(ethylene glycol)on the formation of anatase nanocrystals in SiO_2-TiO_2gel films with hot water treatment.Chem.Mater.,2001,13(6):2144-2149.
    [60]胡行方,快素兰,于 云,Truong V-V.大面积3D有序介孔二氧化钛薄膜光子晶体制备与性能研究.无机材料学报,2005,20(6):1463-1466.
    [61]Tatsuma T,Lkezawa A,Ohko Y,Miwa T,Matsue T,Fujishima A.Microstructured TiO_2 templates for the preparation of size-controlled bryopsis protoplasts as cell models.Adv.Mater.,2000,12(9):643-646.
    [62]Subramanian G,Manoharan V N,Thorne J D,Pine D J.Ordered macroporous materials by colloidal assembly:A possible route to photonic bandgap materials.Adv.Mater.,1999,11(15):1261-1265.
    [63]Kuai S,Badilescu S,Bader G,Bruning R,Hu X,Truong V-V.Preparation of large-area 3D ordered macroporous titania films by silica colloidal crystal templating.Adv.Mater.,2003,15(1):73-75.
    [64]Li Y,Zhang S,Yu Q,Yin W.The effects of activated carbon supports on the structure and properties of TiO_2 nanoparticles prepared by a sol-gel method.Appl.Surf Sci.,2007,253(23):9254-9258.
    [65]Aramendia M A,Colmenares J C,Lopez-Fernandez S,Marinas A,Marinas J M,Urbano F J.Screening of different zeolite-based catalysts for gas-phase selective photooxidation of propan-2-ol.Catal.Today,2007,129(1-2):102-109.
    [66]Menesi J,Korosi L,Bazso E,Zollmer V,Richardt A,Dekany I.Photocatalytic oxidation of organic pollutants on titania-clay composites.Chemosphere,2008,70(3):538-542.
    [67]Chung K-S,Jiang Z,Gill B-S,Chung J-S.Oxidative decomposition of o-dichlorobenzene over V_2O_5/TiO_2 catalyst washcoated onto wire-mesh honeycombs.Appl.Catal.A-Gen.,2002,237(1-2):81-89.
    [68]Bouazza N,Lillo-R6denas M A,Linares-Solano A.Enhancement of the photocatalytic activity of pelletized TiO_2 for the oxidation of propene at low concentration.Appl.Catal.B-Environ.,2008,77(3-4):284-293.
    [69]Dagan G,Tomkiewicz M.TiO_2 aerogels for photocatalytic decontamination of aquatic environments.J.Phys.Chem.,1993,97(49):12651-12655.
    [70]Tomkiewicz M,Dagan G,Zhu Z.Morphology and photocatalytic activity of TiO_2 aerogels.Res.Chem.Intermed.,1994,20(7):701-710.
    [71]Dagan G,Tomkiewicz M.Preparation and characterization of TiO_2 aerogels for use as photocatalysts.J.Non-Cryst.Solids,1994,175(2-3):294-302.
    [72]Gao X,Wachs I E.Titania-silica as catalysis:molecular structure characteristics and physico-chemical properties.Catal.Today,1999,51(2):233-254.
    [73]Yoda S,Suh D J,Sato T.Adsorption and photocatalytic decomposition of benzene using silica-titania and titania aerogels:Effect of supercritical drying. J.Sol-Gel Sci.Technol.,2001,22(1-2):75-81.
    [74]Anderson C,Bard A J.Improved photo catalytic activity and characterization of mixed TiO_2/SiO_2 and TiO_2/Al2O_3 materials.J.Phys.Chem.B.,1997,101(14):2611-2616.
    [75]Van Dyk A C,Heyns A M.Dispersion Stability and Photo-activity of Rutile (TiO_2)Powders.J.Colloid Interface Sci.,1998,206(2):381-391.
    [76]Mandzy N,Grulke E,Druffel T.Breakage of TiO_2 agglomerates in electrostatically stabilized aqueous dispersions.Powder Technol.,2005,160(2):121-126.
    [77]赵金伟,袁 敏,刘孝恒.强悬浮性纳米Ti02的制备、表征及光催化活性研究(Ⅱ)光催化活性研究.光谱学与光谱分析,2005,25(10):1677-1679.
    [78]Gad-Allah T A,Kato S,Satokawa S,Kojima T.Role of core diameter and silica content in photocatalytic activity of TiO_2/SiO_2/Fe_3O_4 composite.Solid State Sci.,2007,9(8):737-743.
    [79]Watson S,Beydoun D,Areal R.Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO_2 crystals onto a magnetic core.J.Photochem.Photobiol.A-Chem.,2002,148(1-3):303-313.
    [80]Lee S-W,Drwiega J,Wu C-Y,Mazyck D,Sigmund W M.Anatase TiO_2nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic photocatalyst.Chem.Mater.,2004,16(6):1160-1164.
    [81]Wang J,Yang P,Fan M,Yu W,Jing X,Zhang M,Duan X.Preparation and characterization of novel magnetic ZrO_2/TiO_2/Fe_3O_4 solid superacid.Mater.Lett.,2007,61(11-12):2235-2238.
    [82]Ahmed M S,Attia Y A.Aerogel materials for photocatalytic detoxification of cyanide wastes in water.J.Non-Cryst.Solids,1995,186(2):402-407.
    [83]Rosenberg I,Brock J R,Heller A.Collection optics of TiO_2 photocatalyst on hollow glass microbeads floating on oil slicks.J.Phys.Chem.,1992,96(16):3423-3428.
    [84]Hosseini S N,Borghei S M,Vossoughi M,Taghavinia N.Immobilization of TiO_2 on perlite granules for photocatalytic degradation of phenol.Appl.Catal. B-Environ.,2007,74(1-2):53-62.
    [85]He D,Yang L,Kuang S,Cai Q.Fabrication and catalytic properties of Pt and Ru decorated TiO_2-CNTs catalyst for methanol electrooxidation.Electrochem.Commun.,2007,9(10):2467-2472.
    [86]Matthews,R W.Photooxidation of organic impurities in water using thin films of titanium dioxide.J.Phys.Chem.,1987,91(12):3328-3333.
    [87]Fujishima A,Rao T N,Tryk D A.Titanium dioxide photocatalysis.J.Photochem.Photobiol.C-Photochem.Rev.,2000,1(1):1-21.
    [88]Sunada K,Watanabe T,Hashimoto K.Bactericidal activity of copper-deposited TiO_2 thin film under weak UV light illumination.Environ.Sci.Technol.,2003,37(20):4785-4789.
    [89]Danion A,Disdier J,Guillard C,Jaffrezic-Renault N.Malic acid photocatalytic degradation using a TiO_2-coated optical fiber reactor.J.Photochem.Photobiol.A-Chem.,2007,190(1):135-140.
    [90]Danion A,Disdier J,Guillard C,Paisse O,Jaffrezic-Renault N.Photocatalytic degradation of imidazolinone fungicide in TiO_2-coated optical fiber reactor.Appl.Catal.B-Environ.,2006,62(3-4):274-281.
    [91]Machida M,Norimoto W K,Kimura T.Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary ware.J.Am.Ceram.Soc.2005,88(1):95-100.
    [92]张宗权,吴俊林,袁胜利,季淑莉,杨宗立.TiO_2纳米光催化不锈钢和钛纤维丝条及其制备方法.中国专利.CN03134239.6.
    [93]Wang R,Hasimoto K,Fujishima A,Chikuni M,Kojima E,Kitamura A,Shimohigoshi M,Watanabe T.Light-induced amphiphilic surfaces.Nature,1997,388(6640):431-432.
    [94]Lee S Y,Park J,Joo H.Visible light-sensitized photocatalyst immobilized on beads by CVD in a fluidizing bed.Sol.Energy Mater.Sol.Cells,2006,90(13):1905-1914.
    [95]Mills A,Elliott N,Parkin I P,O'Neill S A,Clark R J.Novel TiO_2 CVD films for semiconductor photocatalysis.J.Photochem.Photobiol.A-Chem.,2002,151(1-3):171-179.
    [96]Evans P,Pemble M E,Sheel D W.Precursor-directed control of crystalline type in atmospheric pressure CVD growth of TiO_2 on stainless steel.Chem.Mater.,2006,18(24):5750-5755.
    [97]Lee J J.Application of inductively coupled plasma to CVD and PVD.Surf Coat.Technol.,2005,200(1-4):31-34.
    [98]Kitano M,Funatsu K,Matsuoka M,Ueshima M,Anpo M.Preparation of nitrogen-substituted TiO_2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation.J.Phys.Chem.B.,2006,110(50):25266-25272.
    [99]Wei Q F,Huang F L,Hou D Y,Wang Y Y.Surface functionalisation of polymer nanofibres by sputter coating of titanium dioxide.Appl.Surf Sci.,2006,252(22):7874-7877.
    [100]武朋飞,李谋成,沈嘉年,肖美群,刘 东.阳极氧化二氧化钛薄膜的光电化学防腐蚀特性.中国腐蚀与防护学报,2005,1(25):53-55.
    [101]Wu J,Zhang T.Photodegradation of rhodamine B in water assisted by titania films prepared through a novel procedure.J.Photochem.Photobiol.A-Chem.,2004,162(1):171-177.
    [102]Birch J R,Burleigh T D.Oxides formed on titanium by polishing,etching,anodizing,or thermal oxidizing.Corrosion,2000,56(12):1233-1241.
    [103]Deki S,Aoi Y,Hiroi O,Kajimani A.Titanium(Ⅳ)oxide thin films prepared from aqueous solution.Chem.Lett.,1996,6(5):433-434.
    [104]赵文宽,方佑龄.光催化活性TiO_2薄膜的低温制备.物埋化学学报,2002,18(4):368-371.
    [105]Yamabi S,Imai H.Synthesis of rutile and anatase films with high surface areas in aqueous solutions containing urea.Thin Solid Films,2003,434(1-2):86-93.
    [106]Yanagida S,Nakajima A,Kameshima Y,Yoshida N,Watanabe T,Okada K.Preparation of a crack-free rough titania coating on stainless steel mesh by electrophoretic deposition.Mater.Res.Bull.,2005,40(8):1335-1344.
    [107]Tsutomu M,Yujiro K.Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO_2 layers.Journal of the Electrochemical Society,2004,151(11):1767-1773.
    [108]黄晖,罗宏杰,姚熹.水热法制备TiO_2薄膜的研究.物理学报,2002,51(8):1881-1886.
    [109]Lindstrom H,Holmberg A,Magnusson E,Lindquist S-E,Malmqvist L,Hagfeldt A.A new method for manufacturing nanostructured electrodes on plastic substrates.Nano Lett.,2001,1(2):97-100.
    [110]Burda C,Chen X B,Narayanan R,EI-Sayed M A.Chemistry and properties of nanocrystals of different shapes.Chem.Rev.,2005,105(4):1025-1102.
    [111]王德宪.溶胶-凝胶法的化学原理简述.玻璃,1989,25(1):35-38.
    [112]Sakai N,Wang R,Fujishima A,Watanabe T,Hashimoto K.Effect of ultrasonic treatment on highly hydrophilic TiO_2 surfaces.Langmuir,1998,14(20):5918-5920.
    [113]Imai H,Morimoto H,Tominaga A,Hirashima I4.Structural changes in sol-gel derived SiO_2 and TiO_2 films by exposure to water vapor.J.Sol-Gel Sci.Technol.,1997;10(1):45-54.
    [114]Imai H,Morimoto H,Awazu K.Alternative modification methods for sol-gel coatings of silica,titania and silica-titania using ultraviolet irradiation and water vapor.Thin Solid Films,1999,351(1-2):91-94.
    [115]肜建娜,赵修建,刘保顺,何鑫.锐钛矿型TiO_2水溶胶的低温制备及其表征.无机化学学报,2006,26(3):546-550.
    [116]戈磊,徐明霞,孙 明.低温制备纳米晶TiO_2薄膜及其光催化性能.硅酸盐学报,2006,34(5):536-540.
    [117]彭人勇,吕新莲.光催化活性纳米TiO_2溶胶的低温制备及其表征.环境科学与技术,2006,29(9):22-23,48.
    [118]Xie Y,Yuan C.Photocatalytic activity and recycle application of titanium dioxide sol for X-3B photodegradation.J.Mol.Catal.A-Chem.,2003,206(1-2):419-428.
    [119]Okubo M,Lu Y,Wang Z.Production of soft core/hard shell composite polymer particles by the stepwise heterocoagulation method with heat treatment.Colloid Polym.Sci.,1998,276(9):833-837.
    [120]Geuzens E,Vanhoyland G,D'Haen J,Mullens S,Luyten J,Van.Bael M K,Van den Rul H,Mullens J.J.European Ceram.Soc.,2006,26(15):3133-3138.
    [121]Vogel R,Hoyer P,Wellrr H.Quantum-sized PbS,CdS,Ag_2S,Sb_2S_3,and Bi_2S_3particles as sensitizers for various nanoporous wide-bandgap semiconductors.J.Phys.Chem.,1994,98(12):3183-3188.
    [122]潘锋,张俊英,郝维昌,王天民,郑树凯.SnO_2掺杂TiO_2静电自组装薄膜的制备及性能.稀有金属材料与工程,2005,34(5):734-737.
    [123]曹亚安,孟庆臣,宋庆,舒永春,赵俊岩,姚江宏,白玉白,许京军.苯封四聚苯胺/TiO_2/ITO薄膜电极光致界面电荷转移.高等学校化学学报,2005,26(9):1677-1681.
    [124]Murakoshi K,Kogure R,Wada Y,Yanagida S.Fabrication of solid-state dye-sensitized TiO_2 solar cells combined with polypyrrole.Sol.Energy Mater.Sol.Cells,1998,55(1-2):113-125.
    [125]Rammelt U,Hebestreit N,Fikus A,Plieth W.Investigation of polybithiophene/n-TiO_2 bilayers by electrochemical impedance spectroscopy and photoelectrochemistry.Electrochim.Acta,2001,46(15):2363-2371.
    [126]郝彦忠,蔡春立.纳米结构TiO_2/聚3-己基噻吩多孔膜电极光电性能研究.物理化学学报,2005,21(12):1395-1398.
    [127]Book K,Bassler H,Elschner A,Kirchmeyer S.Hole injection from an ITOPEDT anode into the hole transporting layer of an OLED probed by bias induced absorption.Org.Electron.,2003,4(4):227-232.
    [128]Kamat P V,Bedja I,Hotchandani S,Patterson L K.Photosensitization of nanocrystalline semiconductor films.Modulation of electron transfer between excited ruthenium complex and SnO2 nanocrystallites with an externally applied bias.J.Phys.Chem.,1996,100(12):4900-4908.
    [129]Nasr C,Kamat P V,Hotchandani S.Photoelectrochemistry of composite semiconductor thin films.Photosensitization of the SnO_2/TiO_2 coupled system with a ruthenium polypyridyl complex,J.Phys.Chem.B.,1998,102(49):10047-10056.
    [130]Levy B,Liu W,Gilbert S E.Directed photocurrents in nanostructured TiO_2/SnO_2 heterojunction diodes,J.Phys.Chem.B.,1997, 101(10):1810-1816.
    [131]Miyauchi,M.;Nakajima,A.;Watanabe,T.;Hashimoto.K.Photoinduced hydrophilic conversion of TiO_2/WO_3 layered thin films.Chem.Mat.,2002,14(11):4714-4720.
    [132]Gracia F,Holgado J P,Caballero A,Gonzalez-Elipe A R.Structural,optical,and photoelectrochemical properties of M~(n+)-TiO_2 model thin film photocatalysts.J Phys Chem B,2004,108(45):17466-17476.
    [133]鲁文升,肖光参,李旦振,付贤智,王绪绪.Pt/InVO_4/TiO_2可见光催化剂的制备及性能研究.无机化学学报,2005,21(10):1495-1499.
    [134]杜新民,高航.Ti(OBu)_4的水解聚合过程研究.特种玻璃,1990,7(3):35-39.
    [135]Sadtler Research Laboratories Inc.The sadtler standard NMR spectra.Philadelphia:Creative Chemists Science,1970& 1974.
    [136]Liu H,Yang W,Ma Y,Cao Y,Yao J,Zhang J,Hu T.Synthesis and characterization of titania prepared by using a photoassisted sol-gel method.Langmuir,2003,19(7):3001-3005.
    [137]杨儒,李敏,张敬畅,胡天斗,张静.锐钛矿型纳米TiO_2粉体的精细结构及光催化降解苯酚的活性.催化学报,2003,24(8):629-634.
    [138]Grunes L A.Study of K edges of 3d transition metals in pure and oxide from by X-ray absorption spectroscopy.Phys.Rev.B.,1983,27(4):2111-2131.
    [139]Gregor R B,Standstorm D R,Wong J,Schultz P.Investigation of TiO_2-SiO_2glasses by X-ray absorption spectroscopy,d.Non-Cryst.Solids.1983,55(1):27-43.
    [140]郑燕青,施尔畏,李汶军,陈之战,仲维卓,胡行方.水热条件下二氧化钛晶体同质变体的形成.中国科学(E),2001,31(3):204-207.
    [141]Cernigoj U,Stangar U L,Treble P,Krasovec U O,Gross S.Photocatalytically active TiO_2 thin films produced by surfactant-assisted sol-gel processing.Thin Solid Films,2006,495(1-2):327-332.
    [142]Annadurai G,Juang R-S,Lee D-J.Use of cellulose-based wastes for adsorption of dyes from aqueous solutions.J.Hazard.Mater,2002,92(3):263-274.
    [143]Kim D S,Park Y S.Photocatalytic decolorization of rhodamine B by immobilized TiO_2 onto silicone sealant.Chem.Eng.J.,2006,116(2):133-137.
    [144]Kadirvelu K,Karthika C,Vennilamani N,Pattabhi S.Activated carbon from industrial solid waste as an adsorbent for the removal of Rhodamine-B from aqueous solution:Kinetic and equilibrium studies.Chemosphere,2005,60(8):1009-1017.
    [145]何俣,朱永法,喻方.玻璃珠负载中孔TiO_2纳米薄膜光催化研究.无机材料学报,2004,19(2):385-390.
    [146]Serpone N,Lawless D,Khairutdinov R.Size effects on the photophysical properties of colloidal anatase TiO_2 particles:Size quantization versus direct transitions in this indirect semiconductor.J.Phys.Chem.,1995,99(45):16646-16654.
    [147]Chadwick M D,Goodwin J W,Lawson E J,Mills P D A,Vincent B.Surface charge properties of colloidal titanium dioxide in ethylene glycol and water.Colloid Surf A-Physicochem.Eng.Asp.,2002,203(1-3):229-236.
    [148]Jang I B,Sung J H,Choi H J,Chin I.Synthesis and characterization of titania coated polystyrene core-shell spheres for electronic ink.Synth.Met.,2005,152(1-3):9-12.
    [149]赵彦保,周静芳,张治军.PS/MA-TiO_2复合纳米微球作为润滑油添加剂的研究.高分子材料科学与工程,2001,17(3):80-82,86.
    [150]董战峰,杜予民,樊李红,闻燕,刘慧,王小慧.壳聚糖/明胶/TiO_2三元复合膜的制备与功能特性.功能高分子学报,2004,17(1):61-66.
    [151]刘付胜聪,肖汉宁,李玉平.聚丙烯酸在纳米TiO_2表面吸附行为的研究.高等学校化学学报,2005,26(4):742-746.
    [152]Santhiya D,Subramanian S,Natarajan K A,Malghan S G.Surface chemical studies on the competitive adsorption of poly(acrylic acid)and poly(vinyl alcohol)onto alumina.J.Colloid Interface Sci.,1999,216(1):143-153.
    [153]申乾宏,蔡振钱,高基伟,杨辉.一种室温下制备多孔锐钛矿型TiO_2薄膜的方法.催化学报,2007,28(2):153-157.
    [154]Hu M Z-C,Payzant E A,Byers C H.Sol-Gel and ultrafine particle formation via dielectric tuning of inorganic salt-alcohol-water solutions.J.Colloid Interface Sci.,2000,222(1):20-36.
    [155]Chen H-I,Chang H-Y.Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents.Colloid Surf.A-Physicochem.Eng.Asp.,2004,242(1-3):61-69.
    [156]邱剑勋,王承遇,陶瑛,柳鸣.TiO_2与ZnFe_2O_4薄膜禁带宽度测定及对光催化效率的影响.材料导报,2003,17(3):81-82,51.
    [157]包淑娟,张校刚,刘献明,辛凌云,屈建平.磁载WO_3TiO_2/SiO_2/Fe3O_4复合光催化剂的制备及其光催化活性.催化学报,2003,24(12):909-913.
    [158]张雪凤,常鹏北,孙建科,金建新,张智强.气化法制备二氧化锡纳米粉末结晶机理研究.功能材料,2007,38(3):488-491.
    [159]Hattori A,Tokihisa Y,Tada H,Ito S.Acceleration of oxidations and retardation of reductions in photocatalysis of a TiO_2/SnO_2 bilayer-type catalyst.J.Electrochem.Soc.,2000,147(6):2279-2283.
    [160]Hattori A,Tokihisa Y,Tada H,Tohge N,Ito S,Hongo K,Shiratsuchi R,Nogami G.Patterning effect of a Sol-Gel TiO_2 overlayer on the photocatalytic activity of a TiO_2/SnO_2 bilayer-type photocatalyst.J.Sol-Gel Sci.Technol.,2001,22(1-2):53-61.
    [161]Vinodgopal K,Bedja I,Kamat P V.Nanostructured semiconductor films for photocatalysis,photoelectrochemical behavior of SnO_2/TiO_2 composite systems and its role in photocatalytic degradation of a textile azo dye.Chem.Mater.,1996,8(8):2180-2187.
    [162]Lvov Y M,Kamau G N,Zhou D-L,Rusling J F.Assembly of electroactive ordered multilayer films of cobalt phthalocyanine tetrasulfonate and polycations.J.Colloid Interface Sci.,1999,212(2):570-575.
    [163]Chatterjee D,Mahata A.Visible light induced photodegradation of organic pollutants on dye adsorbed TiO_2 surface.J.Photochem.Photobiol.A-Chem.,2002,153(1-3):199-204.
    [164]Ranjit K T,Willner I,Bossmann S,Braun A.Iron(Ⅲ)phthalocyanine-modified titanium dioxide:a novel photocatalyst for the enhanced photodegradation of organic pollutants.J.Phys.Chem.B.,1998,102(47):9397-9403.
    [165]Ozoemena K,Kuznetsova N,Nyokong T.Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metallophthatocyanines.J.Photochem.Photobiol.A-Chem.,2001,139(2-3):217-224.
    [166]李晓佩,陈锋,张金龙.酞菁改性的介孔TiO_2的制备及其可见光光催化活性.催化学报,2007,28(3):229-233.
    [167]Mills A,Crow M,Wang J,Parkin I P,Boscher N.Photocatalytic oxidation of deposited sulfur and gaseous sulfur dioxide by TiO_2 films.J Phys Chem C,2007,111(14):5520-5525.
    [168]Yu J,Zhao L,Cheng B.Facile preparation of monodispersed SiO_2/TiO_2composite microspheres with high surface area.Mater.Chem.Phys.,2006,96(2-3):311-316.
    [169]Deng H,Mao H,Lu Z,Xu H.Influence of molecular aggregation and orientation on the photoelectric properties of tetrasulfonated gallium phthalocyanine self-assembled on a microporous TiO_2 electrode.Thin Solid Films,1998,315(1-2):244-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700