三唑杂环衍生物的合成及其抗癫痫活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以7-烷氧基-4H-苯并[b][1,2,4]三唑并[4,3-d][1,4]噻嗪(Ⅵ)为先导化合物,应用扩环、缩环,电子等排和环裂解等原理对先导化合物进行结构改造,设计合成了7个系列(T1-T7)共113个三唑类化合物。
     所有化合物经IR、1H-NMR和MS等方法确证结构并对其进行了抗癫痫活性的评价。本文主要使用最大电休克发作实验(MES),评估化合物的抗癫痫活性,以旋转法来评估神经毒性。采取循序渐进的方案,淘汰活性低的化合物,对于活性突出的化合物进行了深入活性评价,得出其半数有效剂量EDso、半数中毒剂量TD50和保护指数PI值(PI=TD50/ED50)。并对部分化合物进行了化学物质诱导惊厥实验,以进一步考察化合物的广谱抗癫痫活性和推测其可能的作用机制。
     药理实验结果显示,设计合成的113个化合物大部分具有不同程度的抗癫痫活性。其中,最低有效剂量为300mg/kg,100mg/kg和30mg/kg的化合物百分比分别为34.6%,32.3%和23.8%,只有9.3%的化合物在300mg/kg的剂量下没有显示出活性。在这些化合物中,出现了具有一定开发价值的候选化合物。譬如化合物T1g的EDso为8.0mg/kg, PI值为15.0,其抗癫痫活性和安全性都要优于阳性药卡马西平、苯妥英钠和丙戊酸钠;化合物T4i的EDso等于19.7mg/kg, PI值达到34.8。虽然其活性要略低于卡马西平和苯妥英钠(强于丙戊酸钠),但由于其神经毒性很低,导致其具有很高的安全性,它的保护指数分别是丙戊酸钠、卡马西平和苯妥因钠的22、7.7和5.0倍。
     此外,化合物T1g, T3f, T4i和T7h在化学物质(包括戊四唑,3-巯基丙酸和荷包牡丹碱)诱发的惊厥实验中,表现出了较好的活性,表明了这些化合物在对电惊厥模型有效的同时,又对化学致惊厥模型有效。这在一定程度上说明该化合物具有广谱抗惊厥活性。同时,基于这几种化学物质诱发惊厥的原因,初步推测了它们在体内的作用机制,即这些化合物可能是通过增加GABA能神经递质水平或GABA的活性,以及调节GABAa受体而发挥抗惊厥活性的。
     总之,通过对先导化合物的结构改造,并对所合成的化合物进行抗惊厥活性的筛选,丰富了三唑类化合物抗癫痫活性的构效关系,得到一些药理性质优于临床药物的候选化合物,这一工作为开发出新抗癫痫药物奠定了基础。
In this study, eight series of triazole derivatives (T1-T7) were designed and synthesized using7-alkoxy-4H-benzo[b][1,2,4]triazolo[4,3-d][1,4]thiazine (Ⅵ) as leading compounds, based on ring-expanding/reducing, bioisosterism and dissociation of a fused ring system.
     All the structures of the synthesized compounds were characterized by1H-NMR, IR and MS. We use the maximal electroshock seizure test (MES) and the rotarod test to evaluate the anticonvulsant activity and neurotoxicity of these compounds, respectively. From the preliminary screens, the compounds holding promising potency were subjected to phase II trials for quantification of their anticonvulsant activity and neurotoxicity (indicated by ED50and TD50). In addition, some compounds were tested against convulsions induced by chemical substances with the aim to further investigate their anticonvulsant activity and speculating the possible mechanism of anticonvulsant activity.
     The pharmacological results showed that most of the target compounds showed the anticonvulsant activity in different levels in the MES screens. Among which, the percentage of compounds which were active at minimum dose of300,100and30mg/kg were34.6%,32.3%and23.8%respectively. Only9.3%of compounds prepared were found absence of anticonvulsant activity at300mg/kg. In this study, some candidate compounds with certain development value were obtained. For examp.le, compound T1g, with an EDso value of8.0mg/kg and a protective index (PI=TD50/ED50) value of15.0, showed better anticonvulsant activity and higher safety than clinical drugs carbamazepine, phenytoin sodium and valproic acid sodium; compound T4i, though showed weaker activity than carbamazepine and phenytoin sodium (better than valproic acid sodium) with an ED50value of19.7mg/kg, exhibited a very low neurotoxicity, providing this compound a big safety margin with a PI value of34.8. This value was22folds,7.7folds and5folds of that of valproic acid sodium, carbamazepine and phenytoin sodium, respectively.
     In addition, compounds T1g, T3f, T4i and T7h exhibited strong inhibitory activity in chemical (pentylenetetrazole,3-mercaptopropionic acid and bicuculline) induced seizures models, which further confirmed the broad-spectrum anticonvulsant activity of these compounds. Base on the known knowledge of the seizures induced by these chemical, the mechanism of anticonvulsant activity of enhancing GABAergic activity/level or modulating the GABAA receptor were suggested.
     In a word, a process screening novel potential anti-epilepsy drugs was stated in the paper. The structure-activity relationships of triazole derivatives as anti-epilepsy drugs were enriched and several compounds with better pharmacological properties than clinic drugs were found. This study lays the foundation for the development of new anti-epilepsy drugs.
引文
1. Fisher R S. Epileptic Seizures and Epilepsy:Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia,2005,46,470.
    2. Nybakken O. Greek and Latin in Scientific Terminology, Iowa State University Press, 1962.
    3. Martini F H. Fundamentals of Anatomy & Physiology,7th ed.; Pearson Education, Inc., San Francisco, CA,2006.
    4. Craig D I. Brain-Compatible Learning:Principles and Applications in Athletic Training J. Athl Training,2003,38,342.
    5. Elger C E. Epilepsy:A Comprehensive Textbook, Vol 1. Arch. Neurol.2008,65,1676.
    6. Morano G N, Seibyl J P. Technical Overview of Brain SPECT Imaging:Improving Acquisition and Processing of Data. J. Nucl. Med. Technol,2003,31,191.
    7. Bortz J J. Neuropsychiatric and Memory Issues in Epilepsy. Mayo Clin. Proc,2003,78, 781.
    8. Niedermeyer E. The Epilepsies:Diagnosis and Management; Urban & Schwarzenberg, Inc., Baltimore, Maryland,1990; 419.
    9. Browne T, Feldman R. Eds. Epilepsy Diagnosis and Management; Little, Brown & Company,1983.
    10. Stys P K, Waxman S G, Ransom B R. Ionic Mechanisms of Anoxic Injury in Mammalian CNS White Matter:Role of Na Channels and Na+-Ca2+ Exchanger. J. Neurosci,1992,12,430.
    11. Mayer S A, Claassen J, Mendelsohn F, et al. Refractory Status Epilepticus:Frequency, Risk Factors, and Impact on Outcome. Arch. Neurol.,2002,59,205.
    12. Towne A R, Pellock J M, et al. Determinants of Mortality in Status Epilepticus. Epilepsia.,1994,35,27.
    13. Jacobs M P, Leblanc G G, Brooks-Kayal, A, et al. Curing Epilepsy:Progress and Future Directions. Epilepsy Behav.,2009,14,438-445.
    14. Bialer M, White H S. Key Factors in the Discovery and Development of New Antiepileptic Drugs. Nat. Rev. Drug Discov.,2010,9,68-82.
    15. Patsalos P N, Sander J. W. A. S., Newer Antiepileptic Drugs:Towards an Improved Risk-Benefit Ratio. Drug Safety,1994,11,37.
    16. Scott D F. The History of Epileptic Therapy:An Account of how Medication was Developed; Parthenon Pub. Group,1993.
    11. Gross R A. Brief History of Epilepsy and its Therapy in the Western Hemisphere. Epilepsy Res.,1992,12,65.
    18. Porter R J, Rogawski M A. New Antiepileptic Drugs:From Serendipity to Rational Discovery,Epilepsia.,1992,33, S1.
    19.Brodie M J. Antiepileptic Drug Therapy the Story so Far. Seizure,2010,19,650.
    20. Bazil C W, Pedley T A. Advances in the Medical Treatment of Epilepsy. Annu. Rev. Med.,1998,49,135-162.
    21. Loscher W. Current Status and Future Directions in the Pharmacotherapy of Epilepsy. Trends Pharmacol. Sci.,2002,23,113.
    22. Shorvon S D, Farmer P J. Epilepsy in Developing Countries:A Review of Epidemiological, Sociocultural, and Treatment Aspects. Epilepsia,1988,29, S36.
    23. White H S. Preclinical Development of Antiepileptic Drugs:Past, Present, and Future Directions. Epilepsia,2003,44,2.
    24. Prunetti P, Perucca E. New and Forthcoming Anti-Epileptic Drugs. Curr. Opin. Neurol.,2011,24,159.
    25. Johannessen Landmark C, Patsalos P N. Drug Interactions Involving the New Second- and Third-Generation Antiepileptic Drugs. Expert Rev. Neurother.,2010,10, 119-140.
    26. LaRoche S M, Helmers S L. The New Antiepileptic Drugs:Scientific Review. JAMA (Chicago,111.).2004,291,605.
    27. Pellock J M. Carbamazepine Side Effects in Children and Adults. Epilepsia.1987,28, Suppl 3:S64-70
    28. Benbadis S R, Tatum W O. Advances in the Treatment of Epilepsy. Am. Fam. Physician.,2001,64,91-98.
    29. Wermuth C. Ed. The Practice of Medicinal Chemistry,3rd ed.; Academic Press,2008.
    30. Weaver D, Nogrady T. Medicinal Chemistry:A Molecular and Biochemical Approach; Oxford University Press,2005.
    31. Espinoza-Fonseca L M. The Benefits of the Multi-Target Approach in Drug Design and Discovery. Bioorg. Med. Chem.,2006,14,896-897.
    32. Meldrum B S, Rogawski M A. Molecular Targets for Antiepileptic Drug Development. Neurotherapeutics,2007,4,18-61.
    33. Hokkamp M, Meierkord H. Anticonvulsant, Antiepileptogenic, and Antiictogenic Pharmacostrategies. Cell Mol. Life Sci.,2007,64,2023-2041.
    34. Wulff H, Zhorov B S. K+ Channel Modulators for the Treatment of Neurological Disorders and Autoimmune Diseases. Chem. Rev.,2008,108,1744-1773.
    35. Chebib M, Johnston G A. GABA-Activated Ligand Gated Ion Channels:Medicinal Chemistry and Molecular Biology. J. Med. Chem.,2000,43,1427-1447.
    36. Meldrum B S. Identification and Preclinical Testing of Novel Antiepileptic Compounds. Epilepsia 1997,38, Suppl 9, S7-15.
    37. Lima L M, Barreiro E J. Bioisosterism:A Useful Strategy for Molecular Modification and Drug Design. Curr. Med. Chem.,2005,12,23-49.
    38. Lipinski C A, Lombardo F, Dominy B W, et al. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev.,2001,46,3-26.
    39. Lipinski C A. Lead- and Drug-Like Compounds:The Rule-of-Five Revolution. Drug Discov. Today:Technologies,2004,1,337.
    40. Pajouhesh H, Lenz G R. Medicinal Chemical Properties of Successful Central Nervous System Drugs. NeuroRx.,2005,2,541-553.
    41. Stella V J. A Case for Prodrugs:Fosphenytoin. Adv. Drug Deliv. Rev.,1996,19,311.
    42. Kupferberg H J. Pharm. Weekbl Sci,.1992,14,132
    43. Purpura D P, Penry J K, Tower D, et al. Eds., In, Experimental Models of Epilepsy-a Manual for the laboratory Worker,1972. Raven Press, New York.
    44. Loscher W, Schmidt D. Epilepsy Res.,1988,2,145.
    45. Striano P, Striano S. New and Investigational Antiepileptic Drugs. Expert Opin. Investig. Drugs,2009,18,1875-1884.
    46. Schachter S C. Currently Available Antiepileptic Drugs. Neurotherapeutics,2007,4, 4-11.
    47. Sabers A, Gram L. Newer Anticonvulsants:Comparative Review of Drug Interactions and Adverse Effects. Drugs,2000,60,23-33.
    48. Longo L P, Johnson B. Addiction:Part I. Benzodiazepines--Side Effects, Abuse Risk and Alternatives. Am. Fam. Physician,2000,61,2121-2128.
    49. Wheless J W, Vazquez B. Rufmamide:A Novel Broad-Spectrum Antiepileptic Drug. Epilepsy Curr.,2010,10,1-6.
    50. Schmidt D. Adverse Effects of Valproate. Epilepsia,1984,25, S44.
    51. Lindhout D, Omtzigt J G. Teratogenic Effects of Antiepileptic Drugs:IM.p.lications for the Management of Epilepsy in Women of Childbearing Age. Epilepsia,1994,35 Suppl 4,S19-28.
    52. Shackleton D P, Kasteleijn-Nolst Trenite D G, de Craen A J, et al. Living with Epilepsy:Long-Term Prognosis and Psychosocial Outcomes. Neurology,2003, 61, 64-70.
    53. Tao J X, Qian S, Baldwin M, et al. SUDEP, Suspected Positional Airway Obstruction, and Hypoventilation in Postictal Coma. Epilepsia,2010,51,2344-2347.
    54. Sirven J, Whedon B, Caplan D, et al. The Ketogenic Diet for Intractable Epilepsy in Adults:Preliminary Results. Epilepsia,1999,40,1721-1726.
    55. Kossoff E H, Zupec-Kania B A, Rho J M. Ketogenic Diets:An Update for Child Neurologists. J. Child Neurol.,2009,24,979-988.
    56. Kemeny A A. Surgery for Epilepsy. Seizure,2001,10,461.
    [1]Korolkovas A, Burckhalter J H. In, Essentials of Medicinal Chemistry, John Wiley and Sons, New York,1976, pp.12
    [2]Silverman R B. The Organic Chemistry of Drug Design and Drug Action. Academic Press, Inc., San Diego,1992, pp.4,28,325.
    [3]Alam O, Mullick P, Verma S P, et al. Synthesis, anticonvulsant and toxicity screening of newer pyrimidine semicarbazone derivatives. Eur J Med Chem,2010,45, 2467-2472.
    [4]Karakurt A, Ozalp M, Isik S, et al. Synthesis, anticonvulsant and antimicrobial activities of some new 2-acetylnaphthalene derivatives. Bioorg. Med. Chem.,2010, 18,2902-2911.
    [5]Deng X Q, Wei C X, Li F N, et al. Design and synthesis of 10-alkoxy-5, 6-dihydro-triazolo[4,3-d]benzo[f][1,4]oxazepine derivatives with anticonvulsant activity. Eur. J. Med. Chem.,2010,45,3080-3086.
    [6]Unverferth K, Engel J, Hofgen N, et al. Synthesis, anticonvulsant activity, and structure-activity relationships of sodium channel blocking 3-aminopyrroles. J. Med. Chem.,1998,41,63-73.
    [7]Bruno-Blanch, L, Galvez J, Garcia-Domenach R. Topological virtual screening:a way to find new anticonvulsant drugs from chemical diversity. Bioorg. Med. Chem. Lett.,2003,13,2749-2754.
    [8]Estrada E; Pena A. In silico studies for the rational discovery of anticonvulsant compounds. Bioorg. Med. Chem.,2000,8,2755-2770.
    [9]Stefan H, Feuerstein TJ, Novel anticonvulsant drugs. Pharmacol. Ther.,2007,113, 165-183.
    [10]Joseph B, Darro F, Behard A, et al.3-Aryl-2-quinolone derivatives:synthesis and characterization of in vitro and in vivo antitumor effects with eM.p.hasis on a new therapeutical target connected with cell migration. J Med Chem,2002,45,2543-2555.
    [11]Xiao Z, Waters N C, Woodard C L, et al. Design and synthesis of pfmrk inhibitors as potential anti-malarial agents. Bioorg Med Chem Lett,2001,11,2875-2878.
    [12]Nishi T, Kimura Y, Nakagawa K. Research and development of cilostazol:antiplatelet agent. Yakugaku Zasshi,2000,120,1247-1260.
    [13]Otsubo K, Morita S, Uchida M, et al. Synthesis and antiulcer activity of opticalisomers of 2-(4-chlorobenzoylamino)-3-[2(1H)quinolinon-4-yl] propionic acid (rebamipide). Chem Pharm Bull,1991,39,2906-2909.
    [14]Bell A S, CaM.p.bell S F, Roberts D A, et al.7-Heteroaryl-1,2,3,5-tetrahy-droimidazo[2,1-b]quinazolin-2(1H)-one derivatives with cardiac stimulant activity. J Med Chem,1989,32,2042-2049.
    [15]Fujioka T, Teramoto S, Mori T, et al. Novel positive inotropic agents:S-ynthesis and biological activities of 6-(3-amino-2-hydroxypropoxy)-2(1H)-quinolinone derivatives. J Med Chem,1992,35(20),3607-3612.
    [16]Oshiro Y, Sakurai Y, Sato S, et al.4-dihydro-2(1H)-quinolinone as a novel antidepressant drug:synthesis and pharmacology of 1-[3-[4-(3-chlo-rophenyl)-1-piperazinyl]propyl]-3,4-dihydro-5-methoxy-2(1H)-quinolinone and its derivatives. J Med Chem,2000,43,177-189.
    [17]Xu M X, Duan W H, Zheng H. Studies of drugs for osteoporosis (3):synthesis of quinolinone derivatives and their treatment of osteoporosis. Yao Xue Xue Bao,1995, 30,792-795.
    [18]Quan Z S, Wang J M, Lee W Y, et al. Synthesis of 6-alkyloxyl-3,4-dihydro-2(1H)-quinoliones and their Anticonvulsant Activities. Bull. Kor. Chem. Soc., 2005,26,1757-1760.
    [19]Xie Z F, Chai K Y, Piao H R, et al. Synthesis and anticonvulsant activity of 7-alkoxyl-4,5-dihydro-[1,2,4]triazole[4,3-a]quinolines. Bioorg. Med. Chem. lett.,2005, 15,4803-4805.
    [20]Cui L J, Xie Z F, Piao H R, et al. Synthesis and anticonvulsant activity of 1-substituted-7-benzyloxy-4,5-dihydro-[1,2,4]triazole[4,3-a]quinoline. Biol. Pharm. Bull.,2005,28,1216-1220.
    [21]Zhang L, Guan L P, Sun X Y, et al. Synthesis and Anticonvulsant activity Evaluation of 6-Alkoxy-[1,2,4] triazolo[3,4-a]phthalazines. Chem Biol Drug Des, 2009,73,313-319.
    [22]Zhang L Q, Guan L P, Wei C X, et al. Synthesis and Anticonvulsant Activity of Some 7-Alkoxy-2H-1,4-benzothiazin-3(4H)-ones and 7-Alkoxy-4H-[1,2,4]triazolo [4,3-d]benzo[b][1,4]thiazines. Chem. Pharm. Bull,2010,58,326-331.
    [23]Deng X Q, Xiao C R, Wei C X, et al. Synthesis and Anticonvulsant Activity of 5-Substituted-[1,2,4]triazolo[4,3-a]quinazolines. Chinese Journal of Organic Chemistry,2011,31(12),2082.
    [1]Achgill, R K. Call LW. Process for the preparation of tricylagol. GB 2,027,700 A, February 27,1980.
    [2]Rutkauskas K, Kantminiene K, Beresnevieius Z J. Synthesis and Cyclization of N-{2-[(2-Carboxyethyl)sulfanylphenyl]}-β-alanines. Polish J. Chem.,2008,82, 2341-2347
    [3]Cai J, Li M D, Zhang J Y, et al. Synthesis of 3-amino·6·methoxy-3, 4-dihydro-2H-[1]benzopyran-4-one hydrochloride, an important intermediate of PD128907, Chinese Journal of New Drugs,2006,15,987-89.
    [4]Shtacher G, Erez M, Cohen S. Selectivity in New β-Adrenergic Blocking Agents. (3-Amino-2-hydroxypropoxy)benzamides, Journal of Medicinal Chemistry,1973,16, 516-19.
    [5]Grunewald G L, Dahanukar V H, Ching P, Criscione K R. Effect of Ring Size or an Additional Heteroatom on the Potency and Selectivity of Bicyclic Benzylamine-Type Inhibitors of Phenylethanolamine N-Methyltransferase. J. Med. Chem.1996,39, 3539-3546
    [6]Abdel-Hafez A A, Elsherief H A, Jo M, et al. Synthesis and evaluation of anti-HIV-1 and anti-HSV-1 activities of 4H-[1,2,4]-triazolo[1,5-a]pyrimidin-5-one derivatives. Arzneimittelforschung,2002,52,833-9.
    [7]Henichart J P, Houssin R, Bernier J L. Synthesis of 6-phenyl and 6-styrylthiazolo[3,2-b][1,2,4]triazole. J. Heterocyclic Chem.1986,23,1531-1533.
    [8]Smicius R, Burbuliene M M, Jakubkiene V, et al. Convenient way to 5-Substituted 4-amino-2,3-dihydro-4H-1,4-triazole-3-thiones. J Heterocyclic Chem,2007,44, 279-84.
    [9]Krall R J, Penry J K, White B G, et al. Antiepileptic drug development:Ⅱ. Anticonvulsant drug screening. Epilepsia,1978,19:409-428.
    [10]Poter R J, Cereghino J J, Gladding G D, et al. Antiepileptic drug development program. Clev Clin J Med,1984,51:293-305.
    [11]Castel-Branco M M, Alves G L, Figueiredo I V, et al. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods Find Exp Clin Pharmacol,2009,31,101-106.
    [12]Hester J B Jr, Von Voigtlander P.6-Aryl-4H-s-triazolo[4,3-a][1,4] benzodiazepines. Influence of 1-substitution on pharmacological activity. J Med Chem,1979,22, 1390-1398.
    [13]Hester J B Jr, Rudzik A D, Von Voigtlander P.2,4-Dihydro-6-phenyl-(1H)-triazolo[4,3-a][1,4]benzoidiazepin-l-ones with antianxiety and antidepressant activity. J Med Chem,1980,23,402-405.
    [14]Loscher W, Nolting B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Res, 1991,9,1-10.
    [15]Hamilton M A, Russo R C, Thurston R C.Trimmed Spearman-Karber method for estimating median lethal concentration in toxicity bioassays. Env Sci Technol,1977, 7,714-719.
    [1]Achgill R K, Call L W. Process for the preparation of tricylagol. GB 2,027,700 A, February 27,1980.
    [2]Voitenko Z V, Egorova T V, Kovtunenko V A. TRIAZOLO-AND TETRAZOLOISOINDOLES. Chemistry of Heterocyclic Compounds,2002,38,9
    [3]Abdel-Hafez A A, Elsherief H A, Kurokawa M Jo M, et al. Synthesis and evaluation of anti-HIV-1 and anti-HSV-1 activities of 4H-[1,2,4]-triazolo[1,5-a]pyrimidin-5-one derivatives. Arzneimittelforschung,2002,52,833-9.
    [4]White H S. Preclinical development of antiepileptic drugs:past, present, and future directions. Epilepsia,2003,44 (Suppl.7),2-8.
    [5]Levy R H, Mattson R H, Meldrum B S. (Eds.), Raven Press:New York,1995, p 99-110.
    [6]Loscher W, Nolting B. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Res,1991,9,1-10
    [7]Kupferberg H J. Antiepileptic Drug Development Program:A Cooperative Effort of Government and Industry. Epilepsia,1989,30, S51
    [8]Okada R, Negishi N, Nagaya H. The role of the nigrotegmental GABAergic pathway in the propagation of pentylenetetrazol-induced seizures. Brain Res.1989,480,383-387
    [9]Gale K. GABA and epilepsy:basic concepts from preclinical research. Epilepsia, 1992,33,S3-S12.
    [10]Loscher W.3-Mercaptopropionic acid:convulsant properties, effects on enzymes of the gamma-aminobutyrate system in mouse brain and antagonism by certain anticonvulsant drugs, aminooxyacetic acid and gabaculine. Biochem. Pharmacol., 1979,28,1397-1407.
    [11]Macdonald R L, Barker J L. Specific antagonism of GABA-mediated postsynaptic inhibition in cultured mammalian spinal cord neurons:a common mode of convulsant action. Neurology,1978,28,325-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700