耐高温氰酸酯树脂基透波复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能透波复合材料属光电磁和结构功能复合材料范畴,为“结构一防热一透波”一体化功能材料,是航天器“眼睛”的重要组成部分。随着航空航天工业的飞速发展,飞行器的飞行马赫数在不断提高,对透波材料提出了更高的性能要求,即具有突出的耐热性、优异的介电性能、良好的成型工艺性和力学性能。
     树脂性能是决定复合材料的重要性能(介电性能、耐热性、耐湿性)的关键因素,所以,先进透波材料的研制应以高性能树脂为基体。
     基于氰酸酯树脂(CE)和磷酸铝(AlPO_4)优良的综合性能,本文采用“复合技术”,设计并制备了新型高性能复合树脂(AlPO_4/CE),全面深入地探讨了复合树脂的界面性质、AlPO_4含量与复合树脂性能的关系;为进一步改善AlPO_4/CE的力学性能和耐湿性,制备了基于环氧改性甲基苯基有机硅树脂(E-Si)、AlPO_4和CE的三元复合材料,研究了E-Si的含量对AlPO_4/CE复合材料性能的影响;采用化学合成法合成了磷酸铝胶(s-AlPO_4),制备了玻璃布增强s-AlPO_4/CE复合材料,重点讨论了复合材料的力学性能和介电性能。通过本文的研究,初步建立了设计与制备新型高性能树脂及其透波复合材料的新理论和新方法。
     研究了不同偶联剂对磷酸铝/CE性能的影响,制备了AlPO_4/CE和AlPO_4(KH-550)/CE复合材料,研究了复合材料的热性能、介电性能和吸湿性能。研究结果表明,不同偶联剂对磷酸铝/CE的固化行为以及磷酸铝和CE之间的界面作用力影响不同。AlPO_4(KH-550)和AlPO_4(KH-560)对CE固化反应的催化作用以及与CE间的界面作用力稍高于AlPO_4(H-2),所以AlPO_4(KH-550)/CE复合材料的综合性能最佳。AlPO_4(KH-550)/CE复合材料的性能与AlPO_4(KH-550)含量密切相关。
     AlPO_4(KH-550)加入到CE中使材料的热分解机理从两步变为三步。随着AlPO_4(KH-550)含量的增加,材料的导热系数和贮存模量逐渐增大,tanδ不断下降,Tg降低,吸水率几乎不变。由适当含量AlPO_4(KH-550)组成的AlPO_4(KH-550)/CE复合材料具有比纯CE树脂更佳的综合性能。
     将兼具突出耐热性和韧性的环氧改性甲基苯基有机硅树脂(E-Si)加入到AlPO_4/CE复合材料中,设计、制备了E-Si/AlPO_4/CE三元复合材料,系统研究了三元复合材料的性能,并与CE树脂和二元复合材料的性能进行了对比。研究结果表明,与二元复合材料和CE树脂相比,三元复合材料的冲击强度大幅度提高,当E-Si含量为15%时,三元复合材料的冲击强度增幅达50%。三元复合材料的初始热分解温度提高,热分解过程仍为三步,但第一最大分解速率峰向低温方向移动,Yc降低。在介电损耗正切值保持不变的情况下,三元复合材料介电常数、平衡吸水率、扩散系数均低于二元复合材料的相应值。
     采用研磨法,以磷酸、氢氧化铝和水为反应物制备了磷酸铝胶(S-AlPO_4),其为多种磷酸铝的混合体系,pH值为3-4,具有很强的粘接性。与CE/EW-210二元复合材料相比,磷酸铝胶增加了材料的界面效应,从而提高了材料的力学性能。含15%S-AlPO_4的复合材料的冲击强度、弯曲强度、弯曲模量以及层间剪切强度分别提升了38%、6%、32%和45%。三元S-AlPO_4/CE/EW-210复合材料的热膨胀系数仅约为CE/EW-210的50%。15%AlPO_4/CE/EW-210具有最小的ε值(3.353)和最大的tanδ值(0.0133)。S-AlPO_4的加入改变了CE/EW-210复合材料的损耗峰形状,但其对Tg无负面影响。
Advanced wave-transparent composites are“structural-heat resistant-wave transparent”composites, which are the main components of“eyes”for spacecrafts. With the repaid developments of aviation and aerospace industries, the Mach number of spacecrafts is increasing, so the wave-transparent composites should have more and higher properties, they are outstanding thermal resistance, excellent dielectric property, good processing characteristics and mechanical properties.
     Property of the matrix is the key factor of determining the main properties (such as dielectric, thermal and moisture properties) of a composite, so high performance matrix should be employed for developing advanced wave-transparent composites.
     Based on outstanding integrate properties of both cyanate ester (CE) and phosphate aluminum (AlPO_4), a novel kind of composite (AlPO_4/CE) was designed and prepared in this thesis by employing the“composite technology”, the effects of the interfacial nature and AlPO_4 content on the properties of the new composite are discussed; in order to improve the toughness and moisture-resistance of AlPO_4/CE composite, a ternary composite made up of epoxidized methyl phenyl silicone epoxy (E-Si), AlPO_4 and CE were developed, the influence of E-Si content on properties of AlPO_4/CE are evaluated; a mixture of some kinds of aluminum phosphates with a pH value of 3-4 and good adhesion, s-AlPO_4, was synthesized by grinding phosphoric acid, aluminum hydroxide and water, and glass fiber cloth reinforced composites (s-AlPO_4/CE/EW-210) were prepared, then the mechanical and dielectric properties of s-AlPO_4/CE/EW-210 composites were emphasized. By the investigations of this thesis, new theory and technology for developing new kinds of high performance resins and wave-transparent composites are set up preliminarily.
     Three kinds of coupling agents (KH-550, KH-560 and H-2) were used to surface treat AlPO_4. The chemical nature of coupling agents on the properties of aluminum phosphate/CE composites were discussed, Results show that different coupling agents have different effects on the curing behavior and the interfacial adhesion of aluminum phosphate/CE composites. AlPO_4(KH-550) and AlPO_4(KH-560) have bigger effects than AlPO_4(H-2),so AlPO_4(KH-550)/CE has the optimum properties among three composites. The properties of AlPO_4(KH-550)/CE composites are closely related with AlPO_4(KH-550) content. The thermal-decomposition of AlPO_4(KH-550)/CE composites can be divided into 3 steps, while that of CE resin is 2 steps. With the increase of AlPO_4(KH-550) content in composites,both the thermal conductivity and storage modulus increase, but dielectric loss (tanδ) and glass transition temperature (Tg) decrease,while water absorption almost does not change. AlPO_4(KH-550)/CE composite with desirable AlPO_4(KH-550) content has better properties than CE resin.
     Comparing to AlPO_4/CE composite, E-Si/AlPO_4/CE composites have effectively improved impact strength, for example, the impact strength of the ternary composite with 15wt% E-Si is improved about 50%. In addition, the ternary composite has higher initial decomposition temperature; its thermal decomposition still has 3 steps, but the first temperature of the maximum decomposition temperature shifts to low temperature, and the char yield (Yc) decreases. On the other hand, the dielectric constant and water absorption of E-Si/AlPO_4/CE composites are lower than AlPO_4/CE composites.
     Comparing to CE/EW-210 composites,S-AlPO_4/CE/EW-210 composites show higher mechanical properties due to increased the interfacial effect by the addition of S-AlPO_4. For example, the impact strength, flexible strength and modulus as well as interfacial shear strength of S-AlPO_4/CE/EW-210 composite with 15% S-AlPO_4 increase about 38%, 6%, 32% and 45%, respectively, while the thermal expansion coefficient of the latter is only about 50% of that of the former. In addition, the ternary composite has the lowest dielectric constantε(3.353)and highest tanδ(0.0133). Although the addition of S-AlPO_4 into CE/EW-210 changes the shapes of damping factor in dynamic mechanical analyses, which does not decline Tg values.
引文
[1] Jiang Y G., Zhang C R, Cao F, Wang S Q, Hu H F, Qi G J. Ablation and radar-wave transmission performances of the nitride ceramic matrix composites. Science in China, Series E: Technological Sciences 2008; 51(1): 40-45
    [2]唐宗熙,张其助,王玉功.微波介质基片介电常数测量.北京:中国计量出版社,1991: 310
    [3] Crum S. Wireless devices set new criteria for high frequency materials. Electronic Packaging Producing 1999; 39(4):32-35
    [4]仝毅,周馨我.微波透波材料的研究进展.材料导报1997; 11(3): 1-4
    [5]房红强,梁国正,周文胜,杨洁颖,王结良. PTFE /GF透波复合材料成型工艺与性能研究.中国塑料2005; 19(2): 58-61
    [6]王百亚,王秀云,张炜.一种航天器用外热防护涂层材料研究.固体火箭技术2005; 28(3): 216-218
    [7]石毓钱,胡晓兰,梁国正.飞行器天线罩的雨蚀及防护.化工新型材料2000; 29(1): 7-10
    [8]夏文干.高功率高透波材料的研究.高科技纤维与应用2003; 28(2): 39-41
    [9]陈平,程子霞.高频传输用FR-4环氧基玻璃布层压板的研究进展.哈尔滨理工大学学报1998; 3(5): 75-77
    [10]陈平,程子霞,朱岩松,等.低εr、低tanδFR-4印刷电路基板的研制.纤维复合材料2001; (1): 20-23
    [11]赵丽梅,夏华,等.双马来酰亚胺改性酚醛型环氧树脂的研究.功能材料2007; 3(38): 404-407
    [12] Leu T S. Structure and characterization for conterminously linked polymer of short-chain epoxy resin with triallyl isocyanurate and bismaleimide. Journal of Applied Polymer Science 2006; 102(3): 2470-2480
    [13]苏民社,刘军,王玉红. PPO/环氧玻璃布覆铜板的研制.纤维复合材料2002; 3: 20-24
    [14]许凯,张奎.含萘和脂环烃结构单元环氧树脂的固化反应及性质.高分子材料科学与工程2005; 21(4): 264-267
    [15]朱兴松,刘立柱,张国伟.环氧树脂/蒙脱土纳米复合材料的介电性能研究.绝缘材料2005; 2: 27-29
    [16]张明艳,孙婷婷,张晓虹.蒙脱土改性环氧树脂复合材料的制备及性能研究.电工技术学报2006; 21(4): 29-31
    [17] Yung K C, Wang J, Yue T M. Fabrication of epoxy-montmorillonite hybrid composites used for printed circuit boards via in-situ polymerization. Advanced Composite Materials 2006; 15(4): 371-384
    [18] Wang Y Z, Chen W Y, Yang C C. Novel epoxy nanocomposite of low Dk introduced fluorine-containing POSS structure. Journal of Polymer Science, Part B (Polymer Physics) 2007; 45(4): 502-510
    [19]郭中宝,刘杰民,范慧俐,陈敏,张彪.环氧改性有机硅树脂涂料耐温性能研究.化工新型材料2007; 35(4): 57-59
    [20] Kim S M, Yoon D Y, Nguyen C V, Han J, Jaffe R L. Experimental and theoretical study of structure-dielectric property relationships for polysilsesquioxanes. Materials Research Society Symposium-Proceedings 1998; 511: 39-47
    [21]闵春英,等.溶胶-凝胶法制备SiO2杂化有机硅树脂及其耐热性能研究.化学与黏合2006; 28(6): 372-375
    [22] Hwang H J, Li C H, Wang C S. Synthesis and properties of bismaleimide resin containing dicyclopentadiene or dipentene.VI. Polymer International 2006; 55(11): 1341-1349
    [23]马艳,陈宇飞,等.聚双马来酰亚胺的合成及改性的研究.绝缘材料2007; 40(1): 1-4
    [24]钟翔屿,洪义强,等.预聚工艺对双马来酰亚胺/氰酸酯共聚物介电性能的影响.航空材料学报2006; 26(3): 351-354
    [25] Liang G Z, Zhang Z P. BMI based composites with low dielectric loss. Polymer Bulletin 2007; 59(2): 269-278
    [26] Gu A J, Liang G Z. Novel high performance copper clad laminates based on bismaleimide/aluminium borate whisker hybrid matrix. Journal of Applied Polymer Science 2007; 103(2): 1325-1331
    [27]杨洁颖,梁国正,王结良,任鹏刚.氰酸酯/线性酚醛/环氧树脂三元体系的研究.航空学报2003; 24(5): 62-66
    [28] Gu A J. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties. Composites Science and Technology 2006; 66(11-12): 1749-1755
    [29] Lin R H, Lin C W, Lee A C, Chen Y H, Yen F S. Highly crosslinked nanocomposites of aromatic dicyanates/SiO2 via the sol-gel method. Journal of Applied Polymer Science 2007; 103(2): 1359-1366
    [30]钟翔屿,包建文,李晔,陈祥宝. 5528氰酸酯树脂基玻璃纤维增强复合材料性能研究.纤维复合材料2007; 3: 3-7
    [31]胡朝霞,印杰.以CBTDA为单体的脂环族聚酰亚胺的合成及其性能.上海交通大学学报2005; 39(11): 1821-1825
    [32] Hasegawa M, Horiuchi M. Polyimides containing trans-1,4-cyclohexane unit (II). Low-K and low-CTE semi-and wholly cycloaliphatic polyimides. High Performance Polymers 2007; 19(2): 175-193
    [33] Mathews A S, et al. Fully aliphatic polyimides-Influence of adamantane and siloxane moieties. Macromolecular Symposia 2007; 249-250: 344-349
    [34] Wu S M, Teruaki H K, et al. Synthesis and characterization of semiaromatic polyimides containing POSS in main chain derived from double-decker-shaped silsesquioxane. Macromolecules 2007; 40(6): 5698-5706
    [35]周成飞.聚酰亚胺泡沫塑料开发研究概述.橡塑技术与装备2005; 31(6): 22-25
    [36] Wang H W, Dong R X, Liu C L, Chang H Y. Effect of clay on properties of polyimide-clay nanocomposites. Journal of Applied Polymer Science 2007; 104(1):318-326
    [37] Mo T C, Wang H W. Synthesis and characterization of polyimide-silica nanocomposites using novel fluorine-modified silica nanoparticles. Journal of Applied Polymer Science 2007; 104(2): 888-894
    [38]陈义旺,聂华荣,谌烈康燕镗.接枝聚合制备具有超低介电常数聚酰亚胺纳米复合物材料.高分子学报2005; 6: 807-810
    [39] Chen H G, Xie L. Ultra-low-κpolyimide hybrid films via copolymerization of polyimide and polyoxometalates. Journal of Materials Chemistry 2007; 17(13): 1258-1261
    [40] Kobayashi, Mitsuaki A, Hiroshi. Insulation material for use in high-frequency electronic parts.US, 6887525. 2002-11-26
    [41] Ichinose, Eiju Y, Yohzoh I, Hidenobu. Thermosetting polyimide resin composition process for producing polyimide resin, and polyimide resin. US, 6887967. 2003-01-23
    [42]严浩,齐汇民,黄荣发.新颖含硅芳基多炔树脂的合成与性能.石油化工2004; 33(9): 880-884
    [43]张凡,黄鹏程.含苯炔及苯基硅亚甲基结构的新型聚合物的合成及固化反应的研究.有机硅材料2005; 19(3): 5-8
    [44]黄发荣,等.芳炔封端的聚硅醚苯并噁嗪树脂及其制备方法.CN, 1626565A. 2005-06-15
    [45] Ogasawara T, Ishikawa T. Thermal response and ablation characteristics of carbon fiber reinforced composite with novel silicon containing polymer MSP. Journal of Composite Materials 2002; (2):143-157
    [46]霍刚.热固性聚苯醚树脂在高频印制电路板上的应用.中国塑料2000; 14(5): 14-17
    [47] Katayose T, Yoshiyuki I, Hiroji O. Curable polyphenylene ether and cyanurate resin composition and a cured resin composition obtainable therefrom. US, P5352745
    [48] Meng J R, Liang G Z, Zhao L. Study on epoxy matrix modified with poly(2,6-dimethyl,4-phenylene ether) for application to copper clad laminate. Composites Science and Technology 2002; 62(6): 783-789
    [49] Huang S I, Chen T H, Chen H. Study on the composites of two sized silica filled in PTFE. Journal of Reinforced Plastics and Composites 2006; 25(10): 1053-1058
    [50]李仰平,周庆,刘翔.复合聚四氟乙烯耐电弧烧蚀及其介电性能的试验研究.绝缘材料2006; 9(2):36-40
    [51] Aleksandra M N, Vladanka P U, et al. The influence of heat treatmet and finishing on the mechanical and dielectric properties of glass fabri-epoxy resin laminar composites. Journal of Materials Science: Materials in Electronics 2003; 14 (2): 75-79
    [52]郭玉明,颜鸿斌,凌英等.低密度烧性防热透波多功能复合材料的研究.玻璃钢/复合材料2001; 5: 33-36
    [53]胡连成,黎义,于翘.俄罗斯航天透波材料现状考察.宇航材料工艺1994; 24(1):48-51
    [54] Salehi K A, Mahinfalah M, Bashiaadeh R, et al. Temperature effects on Kevlar/hybrid and carbon fiber composite sandwiches under impact loading. Composite Structures 2007; 78(2): 197-206
    [55] Kromm F X, Lorriot T, Coutand B, et al. Tensile and creep properties of ultra high molecular weight PE fibres. Polymer Testing 2003; 2(4): 463-470
    [56] Moon S I, Jang J. Effect of polybutadiene interlayer on interfacial adhesion and impact properties in oxygen-plasma-treated UHMPE fiber/epoxy composites. Composites-Part A: Applied Science and Manufacturing 1999; 30 (9):1039-1044
    [57]李成功,傅恒志,于翘,等.航空航天材料,北京:国防工业出版社,2002;102
    [58] Wei J H,Wen F L. Effect of silane coupling agent on swelling behaviors and mechanical properties of thermosensitive hybrid gels. Journal of Applied Polymer Science 2009; 111(4): 2025-2034
    [59]陈平,陈辉,赛锡高,等.环氧树脂体系固化反应及其复合材料介电性能高分子通报2003; 4:1-4
    [60]陈平,于祺,路春.纤维增强聚合物基复合材料的界面研究进展.纤维复合材料2005; 3:53-59
    [61] Xu H P,Dang Z M,et al. Enhanced dielectric properties and positive temperature coefficient effect in the binary polymer composites with surface modified carbon black. Journal of Materials Chemistry 2008; 18(2): 229-234
    [62] Correa C A,Razzino C A,Hage J E. Role of maleated coupling agents on the interface adhesion of polypropylene-wood composites. Journal of Thermoplastic Composite Materials 2007; 20(3): 323-339
    [63]孙宝华,王兴华,高禹.影响玻璃纤维不饱和聚酯树脂复合材料透波性能因素的研究.纤维复合材料2002;13(2):13-16
    [64] Li H Y,Liu W B, et al. Surface modification of self-healing poly(urea-formaldehyde) microcapsules using silane-coupling agent. Applied Surface Science 2008; 255(5): 1894-1900
    [65]杜仕国.复合材料用硅烷偶联剂的研究进展.玻璃钢/复合材料1996; 4: 32-36
    [66]甘树榜,吴叙勤,张元民.硅烷偶联剂在玻纤增强塑料界面上的增强机理.华东化工学院学报1985;11(1):41-46
    [72]薛茹君,吴玉程.硅烷偶联剂表面修饰纳米氧化铝.应用化学2007; 24(11): 1236-1239
    [73]张志强,马琦,张宝柱,张智敏.有机-无机杂化材料的制备技术和应用前景.应用化工2005; 34(7): 389-393
    [74]郭中宝,刘杰明,范慧俐,李晓月,王立.硅烷偶联剂对环氧改性有机硅树脂耐高温性能的影响.化学建材2006; 22(6):28-32
    [76] Chen C C,Don T M,Lin T H,Liao-Ping Cheng L P. A kinetic study on the autocatalytic cure reaction of a cyanate ester resin. Journal of Applied Polymer Science 2004; 92: 3066-3079
    [77] Florian H G,Malte H G. W,Bodo F,Wolfgang B,Karl S. Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Composites: Part A 2005; 36: 1525-1535
    [78]徐曼,曹晓珑,俞秉莉.纳米SiO2/环氧树脂复合体系性能研究—(Ⅱ)复合材料的介电特性和力学特性.高分子材料科学与工程2005; 21(1): 156-159
    [79] Kroschwitz, J.J. Encyclopedia of polymer science and engineering, vol.5. New York: Wiley; 1990: 146
    [80] Ristolainen N, Hippi U, Seppala J, etc. Properties of polypropylene/Aluminum trihydroxide composites containing nanasized organoclay. Polymer Engineering and Science 2005; 45:1 568-1575
    [81]王海燕,党智敏,武晋萍,施昌勇. KH550硅烷偶联剂对复合材料结构和介电性能影响.功能材料2006; 37(7): 1091-1093
    [82] Mamunya Y P,Iurzhenko M V, et al. Dielectric and thermal-mechanical properties of hybrid organic-inorganic polymer systems based on isocyanate-containing oligomers. Journal of Non-Crystalline Solids 2007; 353(47~51): 4288- 4292
    [83]李文峰.改进的卤化氰一酚法合成氰酸酯研究.西北上业大学博士学位论文, 2004:9
    [84] Kornmann X,Rees M,Thomann Y,Necola A,Barbezat M,Thomann R. Epoxy-layered silicate nanocomposites as matrix in glass fibre-reinforced composites. Composites Science and Technology 2005; 65: 2259-2268
    [85] Jang K W,Kwon W S,Yim M J,Paik K W. Effects of silica filler and diluent onmaterial properties and reliability of nonconductive pastes (NCPs) for flip-chip applications. IEEE Transactions on Components and Packaging Technologies 2004; 27(3): 608-615
    [86] Idicula M,Malhotra S K,Joseph K,Thomas S. Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Composites Science and Technology 2005; 65(7-8): 1077-1087
    [87]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化工出版社, 2002
    [88] Matsuoka S. In Relaxation phenomena in polymers, Hanser, C. ed. Spring Verlag: Munich; 1992
    [89] Hwang H J,Li C,Hwang C S. Dielectric and thermal properties of dicyclopentadiene containing bismaleimide and cyanate ester. Part IV. Polymer 2006; 47(4): 1291-1299
    [90] Jelena D J,Milutin N G. The thermo gravimetric analysis of some polysiloxanes. Polymer Degradation and Stability 1998; 61: 87-93
    [91]张招贵,陈水生,李国斌.环氧改性聚硅氧烷的合成及其应用.印染助剂2006; 23(4): 14-16
    [92]马悦欣,刘冲,周楠.甲基苯基硅树脂及其复合材料的性能研究.化学与黏合2007; 29(6): 390-394
    [93] Kosar I,Ullah K S,Kim J K,Munir A. Study on the low -velocity impact behavior of CFRP with nanoclay-filled epoxy matrix. Advanced Materials Research, v 47-50 Part 2, Multi-functional Materials and Structures-International Conference on Multifunctional Materials and Structures 2008; 1205-1208
    [94]方建波,吴盾,刘春林. SAN/高胶粉/有机硅共混物的制备与性能研究.工程塑料应用2008; 36(7): 28-31
    [95]吕生华,李芳,周志威,杨权荣.环氧及酚醛树脂增韧改性氰酸酯树脂研究.工程塑料应用2006; 34(3):5-8
    [96] Yang C Z,Gu A J,et al. Novel modification of cyanate ester by epoxidized polysiloxane. Journal of Applied Polymer Science 2007; 105(4): 2020-2026
    [97]吴人洁.高聚物的表面与界面.第1版.北京:科学出版社1998.299-301
    [98] Sunil K K,David A,Frank R J. Moisture absorption by cyanate ester modified epoxy resin matrices.Part V: effect of resin structure. Composites: Part A 2005; 36(6): 764-771
    [99] Sunil K K,David A,Frank R J. Mechanisms of moisture absorption by cyanate ester modified epoxy resin matrices: the clustering of water molecules. Polymer 2005; 46(8): 2732-2738
    [100] Shen C H,Springer G S. Moisture absorption and desorption of composite materials. Journal of Composite Materials 1976; 10: 2-6
    [101] D.W.范克需维伦著.许元泽.赵得禄.吴大诚译.聚合物的性质一性质的估算及其与化学结构的关系.北京:科学出版社.1981: 106
    [102]陈新文,许凤和. T300/5405复合材料的吸水特性研究.材料工程1999; (5): 6-8
    [103]和润忠,等.树脂基复合材料层板吸湿特性研究.第九届全国复合材料学术会议论文集北京: 1996; 453
    [104]黎义,张大海,等.航天透波多功能材料研究进展.宇航材料工艺2000; 30(5): 1-5
    [105]曹海琳,张杰,黄玉东,杨晓波.磷酸铬铝高温透波材料的制备和性能研究.宇航材料工艺2004; (2): 29-32
    [106] Jiang Y G,Zhang C Q,Cao F,et al. Ablation and radar-wave transmission performances of the nitride ceramic matrix composites. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2007 IEEE Antennas and Propagation Society International Symposium, AP-S 2007; 3960-3963
    [107] Chen G J , Wei M , et al. Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer 2008; 49(7): 1860-1870
    [108] Neema S,Khojin S A,Zhamu A,Zhong W H,Jana S,Gan Y X. Wettability of nano-epoxies to UHMWPE fibers. Journal of Colloid and Interface Science 2006; 299: 332-341
    [109] Hague A,Shamsuzzoha M,Hussain F,Dean D. S2-glass/epoxy polymer nanocomposites: manufacturing, structures, thermal and mechanical properties. Journal Composite Materials 2003; 37(10):1821-1837

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700