层层组装阻燃苎麻织物及其在苯并噁嗪层压板中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然麻类纤维,由于其具有密度低、力学性能好以及可自然降解等优势,已经在家纺和工业领域有着广泛的用途。尤其是近年来,将其作为力学增强体而制备的热固性树脂基复合材料,进一步拓展了其在航空航天、汽车、电子以及建筑等领域的应用。然而,麻类纤维的热稳定性能和阻燃性能均比较低,一直制约了其在高端领域的应用。本文基于苎麻织物特殊的化学组成和结构特点,采用层层组装的方法在其表面构建了膨胀型阻燃涂层,并将其应用于苯并嗯嗪树脂基复合材料层压板中。
     首先,设计并合成了含有萘基、2,2-二苯基丙烷基和新戊基三种不同主链结构的芳香二胺型苯并噁嗪树脂单体(分别简称为BAPNCP、BAPBACP和BAPNPGCP),采用傅里叶红外光谱(FT-IR)、核磁共振谱(1H NMR和13CNMR)和元素分析等方法确定了化学结构,研究了主链结构对苯并噁嗪树脂单体固化行为以及固化物阻燃性能的影响。结果表明,BAPNPGCP单体分子量在三者中是最低的,单位质量所含苯并噁嗪环的含量最高,从而其在开环固化过程中的固化焓也是最高的。有趣的是,BAPNPGCP固化物poly(BAPNPGCP)在热失重为5wt%时的温度及其在900℃时的残炭比poly(BAPBACP)的分别高出8℃和7wt%。同时,poly(BAPNPGCP)的总热释放量比poly(BAPBACP)的一半还低,表明了苯并噁嗪环含量对成碳和阻燃性能的显著影响。poly(BAPNCP)的热稳定性能和阻燃性能是三者中最高的,可能是高耐热性萘基和苯并嗯嗪环含量的协同作用。
     其次,利用氨基化碳纳米管(MWNT-NH2)的正电荷性和聚磷酸铵(APP)的负电荷性,通过层层组装技术在柔顺且多孔状的苎麻织物表面构建了MWNT-NH2/APP纳米阻燃涂层,并采用紫外-可见吸收光谱(UV-vis)、扫描电子显微镜(SEM)、衰减全反射傅里叶红外光谱(ATR-FTIR)和X射线能量分析光谱仪(EDX)等方法跟踪了组装过程。SEM观察显示,MWNT-NH2在苎麻织物表面任意取向,在微米尺度范围发生堆叠。ATR-FTIR和EDX分析表明,APP随组装层数的增加而逐步引入多层膜。与苎麻织物空白样相比,随着组装层数和MWNT-NH2悬浮液浓度的增加,处理后苎麻织物的热稳定性能、阻燃性能和残炭量显著提高。因此,MWNT-NH2与APP在柔顺且多孔状苎麻织物表面的结合,形成了贴体且膨胀型阻燃涂层,从而直接控制了热量传递过程以及纤维素衍生物的释放。
     第三,利用聚乙烯亚胺(PEI)的正电荷性和APP的负电荷性,通过层层组装技术在柔顺且多孔状的苎麻织物表面构建了自熄灭性PEI/APP多层膜,且采用ATR-FTIR、SEM、EDX和原子力显微镜(AFM)等方法跟踪了组装过程。ATR-FTIR和EDX分析表明,随着组装层数的增加,PEI和APP交替吸附于苎麻织物表面。与苎麻织物空白样相比,随着组装层数的增加,处理后苎麻织物在400~600℃温度范围的残炭显著提高,且其增加值明显高于表面涂层重量的净增值。同时,处理后样品的自熄灭能力也随着组装层数的增加而显著提高。调整PEI和APP两种聚电解质溶液的浓度搭配,很容易地控制了磷/碳(P/C)和磷/氧(P/O)比值以及涂层重量的净增值,从而有效地控制了最终苎麻织物的热稳定性和阻燃性能。
     最后,将纯的以及构建了MWNT-NH2/APP和PEI/APP阻燃涂层的苎麻织物作为增强体,以苯并噁嗪树脂作为基体制备了复合材料层压板(分别简称为BZ/ramie、BZ/ramie/MWNT/APP和BZ/ramie/PEI/APP),研究了阻燃整理后苎麻织物对复合材料阻燃性能和力学性能的影响。结果表明,与BZ/ramie相比,BZ/ramie/MWNT/APP和BZ/ramie/PEI/APP的热释放速率峰值和总热释放量显著降低,极限氧指数明显提高,垂直燃烧级别分别达到了V-0和V-1级。同时,在拉伸和弯曲外力作用下,阻燃涂层加强了纤维和纤维、纤维和基体之间的界面结合力,呈现出更高的强度和韧性。
As a kind of interesting natural cellulosic fibers, bast fiber shows promising applications as reinforcement of composites in many advanced fields (such as automotive, aerospace, military and construction industries, etc.) besides home textile, because of its biodegradability, low price, low density and excellent mechanical properties. However, the highly flammable nature limits its practical applications. In view of the special chemical composition and structure of ramie fabric, we have constructed intumescent flame retardant coating on ramie fabric, and then applied the flame retardant ramie fabric to prepare ramie fabric/polybenzoxazine laminates.
     Firstly, three kinds of novel aromatic diamine-based benzoxazines containing naphthalene, propane-2,2-diyldibenzene and neopentyl group in the backbone, respectively (designated as BAPNCP, BAPBACP and BAPNPGCP, respectively), have been synthesized and characterized. In addition, the effect of backbone structures on curing behaviors of the monomers and thermal and flammability properties of the resulting polymers were studied. The results indicated that BAPNPGCP displayed the highest enthalpy of the curing reaction associated with the ring-opening of benzoxazine, which was due to the effect of benzoxazine ring content per unit mass. Interestingly, the5wt%weight loss temperature and char residue at900℃for poly(BAPNPGCP) were8℃and7wt%higher than those of poly(BAPBACP). Meanwhile, the total heat release of poly(BAPNPGCP) was less than half that for poly(BAPBACP), indicating the substantial effect of benzoxazine ring content on flammability and char formation. Furthermore, it was found that poly(BAPNCP) gave the best thermal stability and flame retardancy, which was due to synergistic effect between naphthalene group and benzoxazine ring content.
     Secondly, a new flame retardant nanocoating has been constructed by the alternate adsorption of polyelectrolyte amino-functionalized multiwall carbon nanotube (MWNT-NH2) and ammonium polyphosphate (APP) onto flexible and porous ramie fabric, and the film growth was monitored by UV-visible spectrometry (UV-vis), scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and energy-dispersive X-ray analysis (EDX). SEM indicated that the adsorbed carbon nanotube coating was a randomly oriented and overlapped network structure, which is a promising candidate for flame retardancy applications. ATR-FTIR and EDX confirmed that the APP was successfully incorporated into the multilayers sequentially. Assessment of the thermal and flammability properties for the pristine and nanocoated ramie fabrics showed that the thermal stability, flame retardancy and residual char were enhanced as the concentration of MWNT-NH2suspension and number of deposition cycles increases. The enhancements are mostly attributed to the barrier effect of intumescent network structure, which is composed of MWNT-NH2and the absorbed APP.
     Thirdly, self-extinguishing multilayer coatings consisting of polyelectrolyte polyethylenimine (PEI) and ammonium polyphosphate (APP) have been constructed by layer-by-layer assembly technique onto flexible and porous ramie fabric, and the film growth was monitored by ATR-FTIR, SEM, EDX and Atomic force microscopy (AFM). ATR-FTIR and EDX directly confirmed that PEI and APP were successfully incorporated onto the surface of ramie fabric sequentially. Assessment of the thermal and flammability properties for the coated ramie fabrics showed that the char residue at temperature ranging from400to600℃during thermogravimetric analysis (TGA) and the self-extinguishing ability during vertical flame test were significantly enhanced as compared with the pristine sample, which showed strong dependency on the number of deposited layers, especially on the concentration collocation of both polyelectrolytes.
     Finally, we prepared polybenzoxazine matrix laminates reinforced with pristine and treated ramie fabrics with20bilayers of MWNT/APP or PEI/APP (designated as BZ/ramie, BZ/ramie/MWNT/APP and BZ/ramie/PEI/APP, respectively), and studied the influence of treated ramie fabric on mechanical and flame retardant properties for laminates. Compared to BZ/ramie, the total heat release and maximum peak values of BZ/ramie/MWNT/APP and BZ/ramie/PEI/APP decreased substantially, and the limiting oxygen index values were increased significantly. The burning ratings of BZ/ramie/MWNT/APP and BZ/ramie/PEI/APP during UL-94vertical flame test were V-0and V-1, respectively. Flexural and tensile tests indicated that multilayers of flame retardant coating can enhance interfacial adhesion between the matrix and reinforcement, so as to improve flexural strength, tensile strength and elongation at break.
引文
[1]Kalia, S.; Kaith, B. S.; Kaur, I., Pretreatments of natural fibers and their application as reinforcing material in polymer composites-A review. Polymer Engineering & Science 2009,49 (7),1253-1272.
    [2]Kozlowski, R.; Wladyka-Przybylak, M., Flammability and fire resistance of composites reinforced by natural fibers. Polymers for Advanced Technologies 2008,19 (6),446-453.
    [3]Fuqua, M. A.; Huo, S.; Ulven, C. A., Natural Fiber Reinforced Composites. Polymer Reviews 2012,52 (3-4),259-320.
    [4]Mohanty, A. K.; Misra, M.; Drzal, L. T., Surface modifications of natural fibers and performance of the resulting biocomposites:An overview. Composite Interface 2001,8 (5),313-343.
    [5]Faruk, O.; Bledzki, A. K.; Fink, H.-P.; Sain, M., Biocomposites reinforced with natural fibers:2000-2010. Progress in Polymer Science 2012,37 (11), 1552-1596.
    [6]兰红艳,张延辉.麻类纤维的性能及其应用[J].上海毛麻科技,2009,3,1-5.
    [7]Habibi, Y.; Lucia, L. A.; Rojas, O. J., Cellulose Nanocrystals:Chemistry, Self-Assembly, and Applications. Chemical Reviews 2010,110 (6),3479-3500.
    [8]Rong, M. Z.; Zhang, M. Q.; Liu, Y.; Yang, G. C; Zeng, H. M., The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Composites Science and Technology 2001,61 (10),1437-1447.
    [9]John, M. J.; Thomas, S., Biofibres and biocomposites. Carbohydrate Polymers 2008,71 (3),343-364.
    [10]Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y., Stretchable, porous, and conductive energy textiles. Nano Letters 2010,10 (2),708-714.
    [11]Wambua, P.; Ivens, J.; Verpoest, I., Natural fibres:can they replace glass in fibre reinforced plastics? Composites Science and Technology 2003,63 (9), 1259-1264.
    [12]Beukers, A. Lightness, the inevitable renaissance of minimum energy structures. Rotterdam:010 publishers,2005,72.
    [13]张璐,黄故.麻纤维增强热塑性复合材料及其开发应用[J].玻璃钢/复合材料,2010,3,81-83.
    [14]Rouison, D.; Sain, M.; Couturier, M., Resin transfer molding of natural fiber reinforced composites:cure simulation. Composites Science and Technology 2004,64 (5),629-644.
    [15]Rouison, D.; Sain, M.; Couturier, M., Resin transfer molding of hemp fiber composites:optimization of the process and mechanical properties of the materials. Composites Science and Technology 2006,66 (7-8),895-906.
    [16]de Medeiros, E. S.; Agnelli, J. A. M.; Joseph, K.; de Carvalho, L. H.; Mattoso, L. H. C, Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics. Polymer Composites 2005,26 (1),1-11.
    [17]Srivastav, A. K.; Behera, M. K.; Ray, B. C, Loading Rate Sensitivity of Jute/Glass Hybrid Reinforced Epoxy Composites:Effect of Surface Modifications. Journal Reinforced Plastics Composites 2007,26 (9),851-860.
    [18]Dhakal, H.; Zhang, Z.; Richardson, M., Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology 2007,67 (7-8),1674-1683.
    [19]Joseph, S.; Koshy, P.; Thomas, S., The role of interfacial interactions on the mechanical properties of banana fibre reinforced phenol formaldehyde composites. Composite Interface 2005,12 (6),581-600.
    [20]Jawaid, M.; Abdul Khalil, H. P. S.; Abu Bakar, A., Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites. Materials Science and Engineering:A 2010,527 (29-30),7944-7949.
    [21]Jawaid, M.; Khalil, H. P. S. A.; Bakar, A. A.; Khanam, P. N., Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Materials & Design 2011,32 (2),1014-1019.
    [22]Dansiri, N.; Yanumet, N.; Ellis, J. W.; Ishida, H., Resin transfer molding of natural fiber reinforced polybenzoxazine composities. Polymer Composites 2002, 23 (3),352-360.
    [23]Aziz, S. H.; Ansell, M. P., The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites:Part 1-polyester resin matrix. Composites Science and Technology 2004,64 (9), 1219-1230.
    [24]Mu, Q.; Wei, C; Feng, S., Studies on mechanical properties of sisal fiber/phenol formaldehyde resin in-situ composites. Polymer Composites 2009,30 (2), 131-137.
    [25]Idicula, M.; Malhotra, S. K.; Joseph, K.; Thomas, S., Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Composites Science and Technology 2005,65 (7-8),1077-1087.
    [26]Price, D.; Horrocks, A. R.; Akalin, M.; Faroq, A. A, Influence of flame retardants on the mechanism of pyrolysis of cotton (cellulose) fabrics in air. Journal of Analytical and Applied Pyrolysis 1997,40-41,511-524.
    [27]Tsafack, M. J.; Levalois-Grutzmacher, J., Flame retardancy of cotton textiles by plasma-induced graft-polymerization (PIGP). Surface and Coatings Technology 2006,201 (6),2599-2610.
    [28]Hapuarachchi, T. D.; Ren, G.; Fan, M.; Hogg, P. J.; Peijs, T., Fire Retardancy of Natural Fibre Reinforced Sheet Moulding Compound. Applied Composite Materials 2007,14 (4),251-264.
    [29]鲁小城,闫红强,王华清,程捷,方征平.阻燃苎麻/酚醛树脂复合材料的制备及性能[J].复合材料学报,2011,28(3),1-5.
    [30]鲁小城,闫红强,方征平.苎麻/酚醛树脂复合材料的阻燃改性[J].材料工程,2010,(z1),53-56.
    [31]Sapuan, S. M.; Maleque, M. A., Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials& Design 2005,26(1),65-71.
    [32]Monteiro, S. N.; Calado, V.; Rodriguez, R. J. S.; Margem, F. M., Thermogravimetric behavior of natural fibers reinforced polymer composites—An overview. Materials Science and Engineering:A 2012,557, 17-28.
    [33]Davoodi, M. M.; Sapuan, S. M.; Ahmad, D.; Ali, A.; Khalina, A.; Jonoobi, M., Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Materials & Design 2010,31 (10),4927-4932.
    [34]Horrocks, A. R.; Kandola, B. K.; Davies, P. J.; Zhang, S.; Padbury, S. A., Developments in flame retardant textiles -- a review. Polymer Degradation and Stability 2005,88 (1),3-12.
    [35]Yang, C. Q.; Wu, W., Combination of a hydroxy-functional organophosphorus oligomer and a multifunctional carboxylic acid as a flame retardant finishing system for cotton:Part Ⅰ. The chemical reactions. Fire and Materials 2003,27 (5),223-237.
    [36]Yang, Z.; Wang, X.; Lei, D.; Fei, B.; Xin, J. H., A durable flame retardant for cellulosic fabrics. Polymer Degradation and Stability 2012,97 (11),2467-2472.
    [37]Alongi, J.; Ciobanu, M.; Malucelli, G., Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes. Carbohydrate Polymers 2011,85 (3),599-608.
    [38]Alongi, J.; Malucelli, G., State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles. Journal of Materials Chemistry 2012,22 (41),21805-21809.
    [39]Yuan, H.; Xing, W.; Zhang, P.; Song, L.; Hu, Y., Functionalization of cotton with UV-cured flame retardant coatings. Industrial & Engineering Chemistry Research 2012,51 (15),5394-5401.
    [40]Li, Y.-C.; Schulz, J.; Mannen, S.; Delhom, C.; Condon, B.; Chang, S.; Zammarano, M.; Grunlan, J. C., Flame Retardant Behavior of Polyelectrolyte-Clay Thin Film Assemblies on Cotton Fabric. ACS Nano 2010, 4 (6),3325-3337.
    [41]Hong, K. H.; Liu, N.; Sun, G., UV-induced graft polymerization of acrylamide on cellulose by using immobilized benzophenone as a photo-initiator. European Polymer Journal 2009,45 (8),2443-2449.
    [42]Kato, K.; Uchida, E.; Kang, E.-T.; Uyama, Y.; Ikada, Y., Polymer surface with graft chains. Progress in Polymer Science 2003,28 (2),209-259.
    [43]Opwis, K.; Wego, A.; Bahners, T.; Schollmeyer, E., Permanent flame retardant finishing of textile materials by a photochemical immobilization of vinyl phosphonic acid. Polymer Degradation and Stability 2011,96 (3),393-395.
    [44]Tsafack, M. J.; Levalois-Grutzmacher, J., Plasma-induced graft-polymerization of flame retardant monomers onto PAN fabrics. Surface and Coatings Technology 2006,200 (11),3503-3510.
    [45]Chaiwong, C.; Tunma, S.; Sangprasert, W.; Nimmanpipug, P.; Boonyawan, D., Graft polymerization of flame-retardant compound onto silk via plasma jet. Surface and Coatings Technology 2010,204 (18-19),2991-2995.
    [46]Alongi, J.; Ciobanu, M.; Malucelli, G., Sol-gel treatments for enhancing flame retardancy and thermal stability of cotton fabrics:optimisation of the process and evaluation of the durability. Cellulose 2011,18 (1),167-177.
    [47]王娟,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状[J].化学工业与工程,2009,26(3):273-277.
    [48]Alongi, J.; Ciobanu, M.; Malucelli, G., Sol-gel treatments on cotton fabrics for improving thermal and flame stability:Effect of the structure of the alkoxysilane precursor. Carbohydrate Polymers 2012,87 (1),627-635.
    [49]Chiang, C; Chang, R., Synthesis, characterization and properties of novel self-extinguishing organic-inorganic nanocomposites containing nitrogen, silicon and phosphorus via sol-gel method. Composites Science and Technology 2008,68 (14),2849-2857.
    [50]Chiang, C.-L.; Ma, C.-C. M., Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polymer Degradation and Stability 2004,83 (2),207-214.
    [51]Messori, M.; Toselli, M.; Pilati, F.; Fabbri, E.; Fabbri, P.; Busoli, S.; Pasquali, L.; Nannarone, S., Flame retarding poly(methyl methacrylate) with nanostructured organic-inorganic hybrids coatings. Polymer 2003,44 (16),4463-4470.
    [52]Alongi, J.; Malucelli, G., State of the art and perspectives on sol-gel derived hybrid architectures for flame retardancy of textiles. Journal of Materials Chemistry 2012,22 (41),21805.
    [53]Cireli, A; Onar, N.; Ebeoglugil, M. F.; Kayatekin, I.; Kutlu, B.; Culha, O.; Celik, E., Development of flame retardancy properties of new halogen-free phosphorous doped SiO2 thin films on fabrics. Journal of Applied Polymer Science 2007,105 (6),3748-3756.
    [54]Brancatelli, G.; Colleoni, C; Massafra, M. R.; Rosace, G., Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polymer Degradation and Stability 2011,96 (4), 483-490.
    [55]Decher, G., Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites. Science 1997,277(5330),1232-1237.
    [56]Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. A., Biomedical Applications of Layer-by-Layer Assembly:From Biomimetics to Tissue Engineering. Advanced Materials 2006,18 (24),3203-3224.
    [57]Li, Y. C; Schulz, J.; Grunlan, J. C., Polyelectrolyte/Nanosilicate Thin-Film Assemblies:Influence of pH on Growth, Mechanical Behavior, and Flammability. ACS Applied Materials & Interfaces 2009,1 (10),2338-2347.
    [58]Li, Y.-C; Mannen, S.; Schulz, J.; Grunlan, J. C, Growth and fire protection behavior of POSS-based multilayer thin films. Journal of Materials Chemistry 2011,21 (9),3060-3069.
    [59]Carosio, F.; Laufer, G.; Alongi, J.; Camino, G.; Grunlan, J. C., Layer-by-layer assembly of silica-based flame retardant thin film on PET fabric. Polymer Degradation and Stability 2011,96(5),745-750.
    [60]Malucelli, G.; Carosio, F.; Alongi, J., α-Zirconium phosphate-based nanoarchitectures on polyester fabrics through layer-by-layer assembly. Journal of Materials Chemistry 2011,21 (28),10370-10376.
    [61]Li, Y. C.; Schulz, J.; Grunlan, J. C., Polyelectrolyte/Nanosilicate Thin-Film Assemblies:Influence of pH on Growth, Mechanical Behavior, and Flammability. ACS Applied Materials& Interfaces 2009,1 (10),2338-2347.
    [62]Laufer, G.; Carosio, F.; Martinez, R.; Camino, G.; Grunlan, J. C., Growth and fire resistance of colloidal silica-polyelectrolyte thin film assemblies. Journal of Colloid and Interface Science 2011,356 (1),69-77.
    [63]Carosio, F.; Alongi, J.; Malucelli, G., Layer by Layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends. Carbohydrate Polymers 2012,88 (4),1460-1469.
    [64]Alongi, J.; Carosio, F.; Malucelli, G., Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: Flammability and combustion behaviour. Cellulose 2012,19 (3),1041-1050.
    [65]Huang, G.; Yang, J.; Gao, J.; Wang, X., Thin Films of Intumescent Flame Retardant-Polyacrylamide and Exfoliated Graphene Oxide Fabricated via Layer-by-Layer Assembly for Improving Flame Retardant Properties of Cotton Fabric. Industrial & Engineering Chemistry Research 2012,51 (38), 12355-12366.
    [66]Huang, G.; Liang, H.; Wang, X.; Gao, J., Poly(acrylic acid)/Clay Thin Films Assembled by Layer-by-Layer Deposition for Improving the Flame Retardancy Properties of Cotton. Industrial & Engineering Chemistry Research 2012,51 (38),12299-12309.
    [67]Li, Y. C.; Mannen, S.; Morgan, A. B.; Chang, S. C.; Yang, Y. H.; Condon, B.; Grunlan, J. C., Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric. Advanced Materials 2011,23 (34),3926-3931.
    [68]Laufer, G.; Kirkland, C.; Morgan, A. B.; Grunlan, J. C., Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton. Biomacromolecules 2012,13 (9),2843-2848.
    [69]Holly, F. W.; Cope, A. C., Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine. Journal of the American Chemical Society 1944,66(11),1875-1879.
    [70]Agag, T.; Arza, C. R.; Maurer, F. H. J.; Ishida, H., Primary Amine-Functional Benzoxazine Monomers and Their Use for Amide-Containing Monomeric Benzoxazines. Macromolecules 2010,43 (6),2748-2758.
    [71]Velez-Herrera, P.; Doyama, K.; Abe, H.; Ishida, H., Synthesis and Characterization of Highly Fluorinated Polymer with the Benzoxazine Moiety in the Main Chain. Macromolecules 2008,41 (24),9704-9714.
    [72]Taden, A.; Sawaryn, C; Landfester, K., Benzoxazine Miniemulsions Stabilized with Multifunctional Main-chain Benzoxazine Protective Colloids. Macromolecules 2011,44 (14),5650-5658.
    [73]Ishida, H.; Jin, L.; Agag, T.; Yagci, Y., Methacryloyl-Functional Benzoxazine: Photopolymerization and Thermally Activated Polymerization. Macromolecules 2011,44(4),767-772.
    [74]Liu, C; Shen, D.; Sebastian, R. M. a.; Marquet, J.; Schohfeld, R., Mechanistic Studies on Ring-Opening Polymerization of Benzoxazines:A Mechanistically Based Catalyst Design. Macromolecules 2011,44 (12),4616-4622.
    [75]Sudo, A.; Kudoh, R.; Nakayama, H.; Arima, K.; Endo, T., Selective Formation of Poly(N,O-acetal) by Polymerization of 1,3-Benzoxazine and Its Main Chain Rearrangement. Macromolecules 2008,41 (23),9030-9034.
    [76]Agag, T.; Takeichi, T., Novel Benzoxazine Monomers Containing p-Phenyl Propargyl Ether:Polymerization of Monomers and Properties of Polybenzoxazines. Macromolecules 2001,34 (21),7257-7263.
    [77]Yagci, Y.; Kiskan, B.; Ghosh, N. N., Polybenzoxazine-based composites as high-performance materials. Polymer International 2011,60 (2),167-177.
    [78]Ishida, H.; Rodriguez, Y., Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer 1995,36 (16),3151-3158.
    [79]Chernykh, A; Liu, J.; Ishida, H., Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer 2006,47 (22),7664-7669.
    [80]Chernykh, A; Agag, T.; Ishida, H., Effect of Polymerizing Diacetylene Groups on the Lowering of Polymerization Temperature of Benzoxazine Groups in the Highly Thermally Stable, Main-Chain-Type Polybenzoxazines. Macromolecules 2009,42(14),5121-5127.
    [81]Andreu, R.; Espinosa, M. A.; Galia, M.; Cadiz, V.; Ronda, J. C; Reina, J. A., Synthesis of novel benzoxazines containing glycidyl groups:A study of the crosslinking behavior. Journal of Polymer Science Part A:Polymer Chemistry 2006,44(4),1529-1540.
    [82]Dogan Demir, K.; Kiskan, B.; Yagci, Y., Thermally Curable Acetylene-Containing Main-Chain Benzoxazine Polymers via Sonogashira Coupling Reaction. Macromolecules 2011,44 (7),1801-1807.
    [83]Agag, T.; Takeichi, T., Preparation, characterization, and polymerization of maleimidobenzoxazine monomers as a novel class of thermosetting resins. Journal of Polymer Science Part A:Polymer Chemistry 2006,44 (4),1424-1435.
    [84]Agag, T.; Takeichi, T., Synthesis and Characterization of Novel Benzoxazine Monomers Containing Allyl Groups and Their High Performance Thermosets. Macromolecules 2003,36 (16),6010-6017.
    [85]Jin Kim, H.; Brunovska, Z.; Ishida, H., Molecular characterization of the polymerization of acetylene-functional benzoxazine resins. Polymer 1999,40 (7), 1815-1822.
    [86]Kim, H. J.; Bruno vska, Z.; Ishida, H., Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers. Polymer 1999,40 (23),6565-6573.
    [87]Wu, C.-S.; Liu, Y.-L.; Hsu, K.-Y., Maleimide-epoxy resins:preparation, thermal properties, and flame retardance. Polymer 2003,44 (3),565-573.
    [88]Chaisuwan, T.; Ishida, H., Highly processible maleimide and nitrile functionalized benzoxazines for advanced composites applications. Journal of Applied Polymer Science 2010,117(5),2559-2565.
    [89]Jin, L.; Agag, T.; Ishida, H., Bis(benzoxazine-maleimide)s as a novel class of high performance resin:Synthesis and properties. European Polymer Journal 2010,46 (2),354-363.
    [90]Ishida, H.; Lee, Y. H., Synergism observed in polybenzoxazine and poly(s-caprolactone) blends by dynamic mechanical and thermogravimetric analysis. Polymer 2001,42 (16),6971-6979.
    [91]Jang, J.; Seo, D., Performance improvement of rubber-modified polybenzoxazine. Journal of Applied Polymer Science 1998,67 (1),1-10.
    [92]Takeichi, T.; Saito, Y.; Agag, T.; Muto, H.; Kawauchi, T., High-performance polymer alloys of polybenzoxazine and bismaleimide. Polymer 2008,49 (5), 1173-1179.
    [93]Ishida, H.; Allen, D. J., Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 1996,37 (20),4487-4495.
    [94]Rimdusit, S.; Ishida, H., Synergism and multiple mechanical relaxations observed in ternary systems based on benzoxazine, epoxy, and phenolic resins. Journal of Polymer Science Part B:Polymer Physics 2000,38 (13),1687-1698.
    [95]Sahoo, N. G.; Rana, S.; Cho, J. W.; Li, L.; Chan, S. H., Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science 2010,35 (7),837-867.
    [96]Chen, Q.; Xu, R.; Yu, D., Multiwalled carbon nanotube/polybenzoxazine nanocomposites:Preparation, characterization and properties. Polymer 2006,47 (22),7711-7719.
    [97]Wang, Y.-H.; Chang, C.-M.; Liu, Y.-L., Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines. Polymer 2012,53 (1),106-112.
    [98]Ghosh, N. N.; Kiskan, B.; Yagci, Y., Polybenzoxazines-New high performance thermosetting resins:Synthesis and properties. Progress in Polymer Science 2007,32(11),1344-1391.
    [99]Agag, T.; Takeichi, T., Polybenzoxazine-montmorillonite hybrid nanocomposites: synthesis and characterization. Polymer 2000,41 (19),7083-7090.
    [100]Takeichi, T.; Zeidam, R.; Agag, T., Polybenzoxazine/clay hybrid nanocomposites:influence of preparation method on the curing behavior and properties of polybenzoxazines. Polymer 2002,43 (1),45-53.
    [101]Kuo, S.-W.; Chang, F.-C, POSS related polymer nanocomposites. Progress in Polymer Science 2011,36 (12),1649-1696.
    [102]Lee, Y.-J.; Kuo, S.-W.; Su, Y.-C; Chen, J.-K.; Tu, C.-W.; Chang, F.-C, Syntheses, thermal properties, and phase morphologies of novel benzoxazines functionalized with polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 2004,45 (18),6321-6331.
    [103]Chen, Q.; Xu, R. W.; Zhang, J.; Yu, D. S., Polyhedral oligomeric silsesquioxane (POSS) nanoscale reinforcement of thermosetting resin from benzoxazine and bisoxazoline. Macromolecular Rapid Communications 2005,26 (23), 1878-1882.
    [104]Xu, R. W.; Du, W. J.; Shan, J. J.; Wu, Y. X.; Yu, D. S., Preparation and characterization of polybenzoxazine/trisilanol polyhedral oligomeric silsesquioxanes composites. Materials & Design 2010,31 (4),1720-1725.
    [105]Zhang, J.; Xu, R.; Yu, D., A novel poly-benzoxazinyl functionalized polyhedral oligomeric silsesquioxane and its nanocomposite with polybenzoxazine. European Polymer Journal 2007,43 (3),743-752.
    [106]Lin, C. H.; Chang, S. L.; Hsieh, C. W.; Lee, H. H., Aromatic diamine-based benzoxazines and their high performance thermosets. Polymer 2008,49 (5), 1220-1229.
    [107]Agag, T.; Jin, L.; Ishida, H., A new synthetic approach for difficult benzoxazines:Preparation and polymerization of 4,4'-diaminodiphenyl sulfone-based benzoxazine monomer. Polymer 2009,50 (25),5940-5944.
    [108]Lin, C. H.; Lin, H. T.; Sie, J. W.; Hwang, K. Y.; Tu, A. P., Facile, one-pot synthesis of aromatic diamine-based phosphinated benzoxazines and their fiame-retardant thermosets. Journal of Polymer Science Part A:Polymer Chemistry 2010,48 (20),4555-4566.
    [1]Ishida, H.; Rodriguez, Y., Curing kinetics of a new benzoxazine-based phenolic resin by differential scanning calorimetry. Polymer 1995,36 (16),3151-3158.
    [2]Chernykh, A.; Liu, J.; Ishida, H., Synthesis and properties of a new crosslinkable polymer containing benzoxazine moiety in the main chain. Polymer 2006,47 (22), 7664-7669.
    [3]Chernykh, A.; Agag, T.; Ishida, H., Effect of Polymerizing Diacetylene Groups on the Lowering of Polymerization Temperature of Benzoxazine Groups in the Highly Thermally Stable, Main-Chain-Type Polybenzoxazines. Macromolecules 2009,42(14),5121-5127.
    [4]Andreu, R.; Espinosa, M. A.; Galia, M.; Cadiz, V.; Ronda, J. C.; Reina, J. A., Synthesis of novel benzoxazines containing glycidyl groups:A study of the crosslinking behavior. Journal of Polymer Science Part A:Polymer Chemistry 2006,44(4),1529-1540.
    [5]Santhosh Kumar, K. S.; Reghunadhan Nair, C. P.; Radhakrishnan, T. S.;Ninan, K. N., Bis allyl benzoxazine:Synthesis, polymerisation and polymer properties. European Polymer Journal 2007,43 (6),2504-2514.
    [6]Kim, H. J.; Brunovska, Z.; Ishida, H., Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers. Polymer 1999,40 (23),6565-6573.
    [7]Dogan Demir, K.; Kiskan, B.; Yagci, Y., Thermally Curable Acetylene-Containing Main-Chain Benzoxazine Polymers via Sonogashira Coupling Reaction. Macromolecules 2011,44 (7),1801-1807.
    [8]Qi, H.; Ren, H.; Pan, G.; Zhuang, Y.; Huang, F.; Du, L., Synthesis and characteristic of polybenzoxazine with phenylnitrile functional group. Polymers for Advanced Technologies 2009,20 (3),268-272.
    [9]Ishida, H.; Ohba, S., Synthesis and characterization of maleimide and norbornene functionalized benzoxazines. Polymer 2005,46 (15),5588-5595.
    [10]Agag, T.; Takeichi, T., Preparation, characterization, and polymerization of maleimidobenzoxazine monomers as a novel class of thermosetting resins. Journal of Polymer Science Part A:Polymer Chemistry 2006,44 (4),1424-1435.
    [11]Liu, Y.-L.; Chou, C.-I., High performance benzoxazine monomers and polymers containing furan groups. Journal of Polymer Science Part A:Polymer Chemistry 2005,43 (21),5267-5282.
    [12]Rimdusit, S.; Bangsen, W.; Kasemsiri, P., Chemorheology and Thermomechanical Characteristics of Benzoxazine-Urethane Copolymers. Journal of Applied Polymer Science 2011,121 (6),3669-3678.
    [13]Agag, T.; Baqar, M.; Ishida, H.; Qurubuddin, S., Poly(benzoxazine-co-urethane)s: A new concept for phenolic/urethane copolymers via one-pot method. Polymer 2011,52(2),307-317.
    [14]Kimura, H.; Matsumoto, A.; Ohtsuka, K., New type of phenolic resin:Curing reaction of phenol-novolac based benzoxazine with bisoxazoline or epoxy resin using latent curing agent and the properties of the cured resin. Journal of Applied Polymer Science 2009,112 (3),1762-1770.
    [15]Jubsilp, C; Punson, K.; Takeichi, T.; Rimdusit, S., Curing kinetics of Benzoxazine-epoxy copolymer investigated by non-isothermal differential scanning calorimetry. Polymer Degradation and Stability 2010,95 (6),918-924.
    [16]Agag, T.; Takeichi, T., High-molecular-weight AB-type benzoxazines as new precursors for high-performance thermosets. Journal of Polymer Science Part A: Polymer Chemistry 2007,45 (10),1878-1888.
    [17]Takeichi, T.; Zeidam, R.; Agag, T., Polybenzoxazine/clay hybrid nanocomposites:influence of preparation method on the curing behavior and properties of polybenzoxazines. Polymer 2002,43 (1),45-53.
    [18]Garea, S. A.; Iovu, H.; Nicolescu, A.; Deleanu, C, A new strategy for polybenzoxazine-montmorillonite nanocomposites synthesis. Polymer Testing 2009,28 (3),338-347.
    [19]Agag, T.; Tsuchiya, H.; Takeichi, T., Novel organic-inorganic hybrids prepared from polybenzoxazine and titania using sol-gel process. Polymer 2004,45 (23), 7903-7910.
    [20]Fan, X. Y.; Yan, C.; Li, J. A.; Shen, S. Z., Study of Surface-Functionalized Nano-SiO(2)/Polybenzoxazine Composites. Journal of Applied Polymer Science 2011,120(3),1525-1532.
    [21]Agag, T.; Takeichi, T., Synthesis and characterization of benzoxazine resin-SiO(2) hybrids by sol-gel process:The role of benzoxazine-functional silane coupling agent. Polymer 2011,52 (13),2757-2763.
    [22]Chen, Q.; Xu, R.; Yu, D., Multiwalled carbon nanotube/polybenzoxazine nanocomposites:Preparation, characterization and properties. Polymer 2006,47 (22),7711-7719.
    [23]Wang, Y.-H.; Chang, C.-M.; Liu, Y.-L., Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines. Polymer 2012,53 (1),106-112.
    [24]Chen, Q.; Xu, R. W.; Zhang, J.; Yu, D. S., Polyhedral oligomeric silsesquioxane (POSS) nanoscale reinforcement of thermosetting resin from benzoxazine and bisoxazoline. Macromolecular Rapid Communications 2005,26 (23), 1878-1882.
    [25]Lee, Y.-J.; Huang, J.-M.; Kuo, S.-W.; Chen, J.-K.; Chang, F.-C., Synthesis and characterizations of a vinyl-terminated benzoxazine monomer and its blending with polyhedral oligomeric silsesquioxane (POSS). Polymer 2005,46 (7), 2320-2330.
    [26]Agag, T.; Jin, L.; Ishida, H., A new synthetic approach for difficult benzoxazines: Preparation and polymerization of 4,4'-diaminodiphenyl sulfone-based benzoxazine monomer. Polymer 2009,50 (25),5940-5944.
    [27]Lin, C. H.; Chang, S. L.; Hsieh, C. W.; Lee, H. H., Aromatic diamine-based benzoxazines and their high performance thermosets. Polymer 2008,49 (5), 1220-1229.
    [28]Leu, T.-S.; Wang, C.-S., Synthesis and properties of copolyimides containing naphthalene group. Polymer 2002,43 (25),7069-7074.
    [29]Qi, G.; Zhang, X. H.; Chen, S.; Chen, T.; Sun, X. K.; Liu, F., Synthesis of a soluble azomethine-containing bisphenol and the properties of its modified epoxy thermosets. Journal of Applied Polymer Science 2007,106 (3), 1632-1639.
    [30]Takeichi, T.; Kano, T.; Agag, T., Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets. Polymer 2005,46 (26),12172-12180.
    [31]Agag, T.; Geiger, S.; Alhassan, S. M.; Qutubuddin, S.; Ishida, H., Low-Viscosity Polyether-Based Main-Chain Benzoxazine Polymers:Precursors for Flexible Thermosetting Polymers. Macromolecules 2010,43 (17),7122-7127.
    [32]Agag, T.; Takeichi, T., Novel Benzoxazine Monomers Containing p-Phenyl Propargyl Ether:Polymerization of Monomers and Properties of Polybenzoxazines. Macromolecules 2001,34 (21),7257-7263.
    [33]Zhang, L.; Peng, H.; Sui, J.; Soeller, C; Kilmartin, P. A.; Travas-Sejdic, J., Self-Assembly of Poly(o-methoxyaniline) Hollow Microspheres. The Journal of Physical Chemistry C 2009,113 (21),9128-9134.
    [34]Baldwin, S.; Black, R. A.; Andreasen, A. A; Adams, S. L., Aromatic congener formation in maturation of alcoholic distillates. Journal of Agricultural and Food Chemistry 1967,15 (3),381-385.
    [35]Jin, L.; Agag, T.; Ishida, H., Bis(benzoxazine-maleimide)s as a novel class of high performance resin:Synthesis and properties. European Polymer Journal 2010,46(2),354-363.
    [36]Xu, L.; Fang, Z.; Song, P. a.; Peng, M., Functionalization of Carbon Nanotubes by Corona-Discharge Induced Graft Polymerization for the Reinforcement of Epoxy Nanocomposites. Plasma Processes and Polymers 2010,7 (9-10), 785-793.
    [37]Hsieh, C.-T.; Teng, H.; Chen, W.-Y.; Cheng, Y.-S., Synthesis, characterization, and electrochemical capacitance of amino-functionalized carbon nanotube/carbon paper electrodes. Carbon 2010,48 (15),4219-4229.
    [38]Moriguchi, I.; Teraoka, Y.; Kagawa, S.; Fendler, J. H., Construction of Nanostructured Carbonaceous Fihns by the Layer-by-Layer Self-Assembly of Poly(diallyldimethylammonium) Chloride and Poly(amic acid) and Subsequent Pyrolysis. Chemistry of Materials 1999,11 (6),1603-1608.
    [1]Kashiwagi, T.; Grulke, E.; Hiding, J.; Groth, K.; Harris, R.; Butler, K.; Shields, J.; Kharchenko, S.; Douglas, J., Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 2004, 45 (12), 4227-4239.
    [2]Kashiwagi, T.; Du, F.; Winey, K. I.; Groth, K. M.; Shields, J. R.; Bellayer, S. P.; Kim, H.; Douglas, J. F., Flammability properties of polymer nanocomposites with single-walled carbon nanorubes: effects of nanotube dispersion and concentration. Polymer 2005,46 (2), 471-481.
    [3]Cipiriano, B. H.; Kashiwagi, T.; Raghavan, S. R; Yang, Y.; Grulke, E. A.; Yamamoto, K.; Shields, J. R; Douglas, J. F., Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 2007,48 (20), 6086-6096.
    [4]Kashiwagi, T.; Du, F. M.; Douglas, J. F.; Winey, K. I.; Harris, R. H.; Shields, J. R., Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials 2005,4 (12),928-933.
    [5]Kashiwagi, T.; Grulke, E.; Hilding, J.; Harris, R.; Awad, W.; Douglas, J., Thermal Degradation and Flammability Properties of Poly(propylene)/Carbon Nanotube Composites. Macromolecular Rapid Communications 2002,23 (13),761-765.
    [6]Sarno, M.; Gorrasi, G.; Sannino, D.; Sorrentino, A.; Ciambelli, P.; Vittoria, V., Polymorphism and thermal behaviour of syndiotactic poly(propylene)/carbon nanotube composites. Macromolecular Rapid Communications 2004,25 (23), 1963-1967.
    [7]Beyer, G., Short communication:Carbon nanotubes as flame retardants for polymers. Fire and Materials 2002,26 (6),291-293.
    [8]Yu, H.; Liu, J.; Wang, Z.; Jiang, Z.; Tang, T., Combination of Carbon Nanotubes with Ni2O3 for Simultaneously Improving the Flame Retardancy and Mechanical Properties of Polyethylene. The Journal of Physical Chemistry C 2009,113 (30), 13092-13097.
    [9]Peeterbroeck, S.; Laoutid, F.; Taulemesse, J. M.; Monteverde, F.; Lopez-Cuesta, J. M.; Nagy, J. B.; Alexandre, M.; Dubois, P., Mechanical Properties and Flame-Retardant Behavior of Ethylene Vinyl Acetate/High-Density Polyethylene Coated Carbon Nanotube Nanocomposites. Advanced Functional Materials 2007, 17 (15),2787-2791.
    [10]Ma, H.-Y.; Tong, L.-F.; Xu, Z.-B.; Fang, Z.-P., Functionalizing Carbon Nanotubes by Grafting on Intumescent Flame Retardant:Nanocomposite Synthesis, Morphology, Rheology, and Flammability. Advanced Functional Materials 2008,18 (3),414-421.
    [11]Song, P.; Shen, Y.; Du, B.; Guo, Z.; Fang, Z., Fabrication of fullerene-decorated carbon nanotubes and their application in flame-retarding polypropylene. Nanoscale 2009,1 (1),118-121.
    [12]Song, P.; Zhao, L.; Cao, Z.; Fang, Z., Polypropylene nanocomposites based on C 60-decorated carbon nanotubes:Thermal properties, flammability, and mechanical properties. Journal of Materials Chemistry 2011,21 (21), 7782-7788.
    [13]Liu, Y.; Wang, X.; Qi, K.; Xin, J. H., Functionalization of cotton with carbon nanotubes. Journal of Materials Chemistry 2008,18 (29),3454-3460.
    [14]Anderson, R. E.; Guan, J. W.; Ricard, M.; Dubey, G.; Su, J.; Lopinski, G.; Dorris, G.; Bourne, O.; Simard, B., Multifunctional single-walled carbon nanotube-cellulose composite paper. Journal of Materials Chemistry 2010,20 (12),2400-2407.
    [15]Rouse, J. H.; Lillehei, P. T., Electrostatic Assembly of Polymer/Single Walled Carbon Nanotube Multilayer Films. Nano Letters 2002,3 (1),59-62.
    [16]Olek, M.; Ostrander, J.; Jurga, S.; Mohwald, H.; Kotov, N.; Kempa, K.; Giersig, M., Layer-by-Layer Assembled Composites from Multiwall Carbon Nanotubes with Different Morphologies. Nano Letters 2004,4 (10),1889-1895.
    [17]Lee, S. W.; Kim, B.-S.; Chen, S.; Shao-Horn, Y.; Hammond, P. T., Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications. Journal of the American Chemical Society 2008, 131 (2),671-679.
    [18]Lee, D.; Cui, T., Layer-by-Layer Self-Assembly of Single-Walled Carbon Nanotubes with Amine-Functionalized Weak Polyelectrolytes for Electrochemically Tunable pH Sensitivity. Langmuir 2011,27 (7),3348-3354.
    [19]Paloniemi, H.; Lukkarinen, M.; Aaritalo, T.; Areva, S.; Leiro, J.; Heinonen, M.; Haapakka, K.; Lukkari, J., Layer-by-layer electrostatic self-assembly of single-wall carbon nanotube polyelectrolytes. Langmuir 2006,22(1),74-83.
    [20]Decher, G., Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites. Science 1997,277 (5330),1232-1237.
    [21]Carosio, F.; Alongi, J.; Malucelli, G., Layer by Layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends. Carbohydrate Polymers 2012,88 (4),1460-1469.
    [22]Alongi, J.; Carosio, F.; Malucelli, G., Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: Flammability and combustion behaviour. Cellulose 2012,19 (3),1041-1050.
    [23]Li, Y. C.; Schulz, J.; Grunlan, J. C., Polyelectrolyte/Nanosilicate Thin-Film Assemblies:Influence of pH on Growth, Mechanical Behavior, and Flammability. ACS Applied Materials & Interfaces 2009,1 (10),2338-2347.
    [24]Li, Y.-C.; Schulz, J.; Mannen, S.; Delhom, C.; Condon, B.; Chang, S.; Zammarano, M.; Grunlan, J. C., Flame Retardant Behavior of Polyelectrolyte-Clay Thin Film Assemblies on Cotton Fabric. ACS Nano 2010, 4 (6),3325-3337.
    [25]Laufer, G.; Kirkland, C.; Cain, A. A.; Grunlan, J. C., Clay-Chitosan Nanobrick Walls:Completely Renewable Gas Barrier and Flame-Retardant Nanocoatings. ACS Applied Materials & Interfaces 2012,4 (3),1643-1649.
    [26]Li, Y. C.; Mannen, S.; Morgan, A. B.; Chang, S. C.; Yang, Y. H.; Condon, B.; Grunlan, J. C., Intumescent All-Polymer Multilayer Nanocoating Capable of Extinguishing Flame on Fabric. Advanced Materials 2011,23 (34),3926-3931.
    [27]Laufer, G.; Kirkland, C.; Morgan, A. B.; Grunlan, J. C., Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton. Biomacromolecules 2012,13 (9),2843-2848.
    [28]Laachachi, A.; Ball, V.; Apaydin, K.; Toniazzo, V.; Ruch, D., Diffusion of Polyphosphates into (Poly(allylamine)-montmorillonite) Multilayer Films:Flame Retardant-Intumescent Films with Improved Oxygen Barrier. Langmuir 2011,27 (22),13879-13887.
    [29]Kim, Y. S.; Davis, R.; Cain, A. A.; Grunlan, J. C, Development of layer-by-layer assembled carbon nanofiber-filled coatings to reduce polyurethane foam flammability. Polymer 2011,52 (13),2847-2855.
    [30]Li, Y.-C; Mannen, S.; Schulz, J.; Grunlan, J. C, Growth and fire protection behavior of POSS-based multilayer thin films. Journal of Materials Chemistry 2011,21 (9),3060-3069.
    [31]Zhu, Y.; Tour, J. M., Graphene nanoribbon thin films using layer-by-layer assembly. Nano Letters 2010,10 (11),4356-4362.
    [32]Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W. Han, S. M; Cui, Y., Stretchable, porous, and conductive energy textiles. Nano Letters 2010,10 (2),708-714.
    [33]Zhang, C; Price, L. M.; Daly, W. H., Synthesis and Characterization of a Trifunctional Aminoamide Cellulose Derivative. Biomacromolecules 2005,7 (1), 139-145.
    [34]Davies, P. J.; Horrocks, A. R.; Alderson, A, The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polymer Degradation and Stability 2005,88 (1),114-122.
    [35]Liu, S.; Ye, H.; Zhou, Y; He, J.; Jiang, Z.; Zhao, J.; Huang, X., Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TGA and FTIR. Polymer Degradation and Stability 2006,91 (8),1808-1814.
    [36]Yuan, H.; Xing, W.; Zhang, P.; Song, L.; Hu, Y., Functionalization of cotton with UV-cured flame retardant coatings. Industrial & Engineering Chemistry Research 2012,51 (15),5394-5401.
    [37]Lyon, R. E.; Walters, R. N., Pyrolysis combustion flow calorimetry. Journal of Analytical and Applied Pyrolysis 2004,71 (1),27-46.
    [38]Sevilla, M.; Fuertes, A. B., The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 2009,47 (9),2281-2289.
    [39]Brancatelli, G.; Colleoni, C; Massafra, M. R.; Rosace, G., Effect of hybrid phosphorus-doped silica thin films produced by sol-gel method on the thermal behavior of cotton fabrics. Polymer Degradation and Stability 2011,96 (4), 483-490.
    [1]Decher, G., Fuzzy Nanoassemblies:Toward Layered Polymeric Multicomposites. Science 1997,277(5330),1232-1237.
    [2]Srivastava, S.; Kotov, N. A., Composite Layer-by-Layer (LBL) Assembly with Inorganic Nanoparticles and Nanowires. Accounts of Chemical Research 2008,41 (12),1831-1841.
    [3]Cady, N. C; Behnke, J. L.; Strickland, A. D., Copper-Based Nanostructured Coatings on Natural Cellulose:Nanocomposites Exhibiting Rapid and Efficient Inhibition of a Multi-Drug Resistant Wound Pathogen, A. baumannii, and Mammalian Cell Biocompatibility In Vitro. Advanced Functional Materials 2011, 21 (13),2506-2514.
    [4]Carosio, F.; Alongi, J.; Malucelli, G., Layer by Layer ammonium polyphosphate-based coatings for flame retardancy of polyester-cotton blends. Carbohydrate Polymers 2012,88 (4),1460-1469.
    [5]Alongi, J.; Ciobanu, M.; Malucelli, G., Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes. Carbohydrate Polymers 2011,85 (3),599-608.
    [6]Baoxian, D.; Zhengping, F., The preparation of layered double hydroxide wrapped carbon nanotubes and their application as a flame retardant for polypropylene. Nanotechnology 2010,21 (31),315603.
    [7]Hyde, K.; Rusa, M.; Hinestroza, J., Layer-by-layer deposition of polyelectrolyte nanolayers on natural fibres:Cotton. Nanotechnology 2005,16 (7), S422-S428.
    [8]Zhang, L.; Zheng, M.; Liu, X.; Sun, J., Layer-by-Layer Assembly of Salt-Containing Polyelectrolyte Complexes for the Fabrication of Dewetting-Induced Porous Coatings. Langmuir 2010,27 (4),1346-1352.
    [9]Ren, K.; Ji, J.; Shen, J., Construction and enzymatic degradation of multilayered poly-1-lysine/DNA films. Biomaterials 2006,27(7),1152-1159.
    [10]Peng, C; Thio, Y. S.; Gerhardt, R. A.; Ambaye, H.; Lauter, V., pH-Promoted Exponential Layer-by-Layer Assembly of Bicomponent Polyelectrolyte/Nanoparticle Multilayers. Chemistry of Materials 2011,23 (20), 4548-4556.
    [11]Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y., Stretchable, porous, and conductive energy textiles. Nano Letters 2010,10 (2),708-714.
    [12]Davies, P. J.; Horrocks, A. R.; Alderson, A., The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polymer Degradation and Stability 2005,88 (1),114-122.
    [13]Yang, Z.; Wang, X.; Lei, D.; Fei, B.; Xin, J. H., A durable flame retardant for cellulosic fabrics. Polymer Degradation and Stability 2012,97 (11),2467-2472.
    [14]Ma, H.; Tong, L.; Xu, Z.; Fang, Z.; Jin, Y.; Lu, F., A novel intumescent flame retardant:Synthesis and application in ABS copolymer. Polymer Degradation and Stability 2007,92 (4),720-726.
    [15]Sekiguchi, Y.; Shafizadeh, F., The effect of inorganic additives on the formation, composition, and combustion of cellulosic char. Journal of Applied Polymer Science 1984,29 (4),1267-1286.
    [16]Yuan, H.; Xing, W.; Zhang, P.; Song, L.; Hu, Y., Functionalization of cotton with UV-cured flame retardant coatings. Industrial & Engineering Chemistry Research 2012,57 (15),5394-5401.
    [17]Song, P.; Zhao, L.; Cao, Z.; Fang, Z., Polypropylene nanocomposites based on C 60-decorated carbon nanotubes:Thermal properties, flammability, and mechanical properties. Journal of Materials Chemistry 2011,21 (21), 7782-7788.
    [18]Alongi, J.; Carosio, F.; Malucelli, G., Layer by layer complex architectures based on ammonium polyphosphate, chitosan and silica on polyester-cotton blends: Flammability and combustion behaviour. Cellulose 2012,19 (3),1041-1050.
    [19]Alongi, J.; Carosio, F.; Malucelli, G., Influence of ammonium polyphosphate-/poly(acrylic acid)-based layer by layer architectures on the char formation in cotton, polyester and their blends. Polymer Degradation and Stability 2012,97 (9),1644-1653.
    [20]Ma, H.-Y.; Tong, L.-F.; Xu, Z.-B.; Fang, Z.-P., Functionalizing Carbon Nanotubes by Grafting on Intumescent Flame Retardant:Nanocomposite Synthesis, Morphology, Rheology, and Flammability. Advanced Functional Materials 2008,18 (3),414-421.
    [1]Davies, P. J.; Horrocks, A. R.; Alderson, A., The sensitisation of thermal decomposition of ammonium polyphosphate by selected metal ions and their potential for improved cotton fabric flame retardancy. Polymer Degradation and Stability 2005,88 (1),114-122.
    [2]Sarno, M; Gorrasi, G.; Sannino, D.; Sorrentino, A.; Ciambelli, P.; Vittoria, V., Polymorphism and thermal behaviour of syndiotactic poly(propylene)/carbon nanotube composites. Macromolecular Rapid Communications 2004,25 (23), 1963-1967.
    [3]Alongi, J.; Ciobanu, M.; Malucelli, G., Novel flame retardant finishing systems for cotton fabrics based on phosphorus-containing compounds and silica derived from sol-gel processes. Carbohydrate Polymers 2011,85 (3),599-608.
    [4]Yang, Z.; Wang, X.; Lei, D.; Fei, B.; Xin, J. H., A durable flame retardant for cellulosic fabrics. Polymer Degradation and Stability 2012,97 (11),2467-2472.
    [5]Sekiguchi, Y.; Shafizadeh, F., The effect of inorganic additives on the formation, composition, and combustion of cellulosic char. Journal of Applied Polymer Science 1984,29 (4),1267-1286.
    [6]Yuan, H.; Xing, W.; Zhang, P.; Song, L.; Hu, Y., Functionalization of cotton with UV-cured flame retardant coatings. Industrial & Engineering Chemistry Research 2012,51 (15),5394-5401.
    [7]Song, P.; Zhao, L.; Cao, Z.; Fang, Z., Polypropylene nanocomposites based on C 60-decorated carbon nanotubes:Thermal properties, flammability, and mechanical properties. Journal of Materials Chemistry 2011,21 (21),7782-7788.
    [8]Lopattananon, N.; Payae, Y.; Seadan, M., Influence of fiber modification on interfecial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites. Journal of Applied Polymer Science 2008,110 (1),433-443.
    [9]Jawaid, M.; Khalil, H. P. S. A.; Bakar, A. A.; Khanam, P. N., Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Materials & Design 2011,32 (2),1014-1019.
    [10]Alince, B., The role of porosity in polyethylenimine adsorption onto cellulosic fibers. Journal of Applied Polymer Science 1990,39 (2),355-362.
    [11]Feng, X.; Pouw, K.; Leung, V.; Pelton, R, Adhesion of Colloidal Polyelectrolyte Complexes to Wet Cellulose. Biomacromolecules 2007,8 (7),2161-2166.
    [12]Laufer, G.; Kirkland, C.; Morgan, A. B.; Grunlan, J. C., Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton. Biomacromolecules 2012,13 (9),2843-2848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700