α,β-脱氢氨基酸衍生物的合成及还原方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
官能团化的烯胺在有机化学领域占有十分重要的地位,它们在药物设计及多种具有生物活性物质的合成中扮演了不容忽视的角色。α,β-脱氢氨基酸和α-烯胺酮(后者也被称为α,β-脱氢氨基酸衍生物)作为这个大家庭的成员,不仅其骨架结构频繁出现在天然产物及具有生物活性的物质结构中,而且它们能够参与多种有机反应,是有机合成领域有用的合成子。鉴于二者在有机化学中的广泛应用,对其合成方法的研究也越发重要。
     根据文献报道的成熟的合成方法,我们从经济易得的原料出发制备了研究反应所需的多种带有不同取代基的α-溴代羰基化合物和N-烷氧基酰胺。
     本论文以α-溴代羰基化合物和N-烷氧基酰胺为反应底物,利用N-O键在碱性条件下易于断裂的特点,通过优化反应条件找到了一锅法制备α,β-脱氢氨基酸和α-烯胺酮的温和有效的方法。运用此方法,我们得到了一系列结构丰富的以一种构型为主的产物,发现了该类反应的一些反应规律。通过单晶X射线衍射、NOE实验以及文献调研确定这些化合物为Z式构型。
     最后我们对合成的一系列α,β-脱氢氨基酸衍生物碳碳双键的还原进行了方法学研究,发现了操作简便、反应条件温和、价廉高效的TMSCl/KI/MeCN还原体系。利用该体系还原α,β-脱氢氨基酸衍生物的反应尚未见报道,我们对其可能的反应机理进行了推测。多种不同结构的α,β-脱氢氨基酸衍生物在此还原体系下以非常好的收率得到了相应的还原产物,这些新化合物的结构得到了核磁波谱的确证。
Functionalized enamines have played a very important role in the drug design and synthesis of a variety of different structures which possess biological activities. As members of this family,α,β-dehydroamino acids andα-ketoenamines (also referred to asα,β-dehydroamino acid derivatives) occur as frequent frameworks in natural products and biologically active compounds. They can participate in various organic reactions and thus they are useful synthons in organic synthesis. In virtue of the wide application ofα,β-dehydroamino acids andα-ketoenamines in organic chemistry, there is still a need to develop facile and practical synthetic methods for their preparation.
     According to the process already reported in the literature, theα-bromo ketones and hydroxamates with various different substituents were prepared from inexpensive starting materials.
     Herein we disclose a mild and efficent one-pot synthetic strategy for the preparation ofα,β-dehydroamino acid derivatives through the reactions ofα-bromocarbonyl compounds with hydroxamates due to the easy cleavage of nitrogen-oxygen bond under basic conditions. A series of compounds with a single isomer were predominately generated via this method, and thus some rules of this reaction has been found out. The geometry of the products has been confirmed as Z-configuration based on single-crystal X-ray analysis, NOE experiment and a comparison with the previous literature.
     The reduction of carbon-carbon double bond ofα,β-dehydroamino acid derivatives was investigated. It was found that TMSCl/KI/MeCN was a simple, efficient, mild and inexpensive reductive system and it was used to reduceα,β-dehydroamino acid derivatives for the first time. Variousα,β-dehydroamino acid derivatives were reduced in excellent yields under this condition. The structures of these new compounds were confirmed by NMR spectra.
引文
[1]孔毅,杨婉,吴梧桐,我国氨基酸类药物研究进展,药物生物技术,2007,14:230–234
    [2] Noda, K.; Shimohigashi, Y.; Izumiya, N. The Peptides Analysis Synthesis Biology. Gross, E.; Meienhofer, J.; Ed. New York, Academic Press, 1983, 285
    [3]杜灿屏,刘鲁生,张恒,21世纪有机化学发展战略,北京:化学工业出版社,2002,184
    [4] Lanigan, G. W.; Payne, A. L.; Smith, L. W.; Wood, P. M.; Petterson, D. S. Phomopsin A Production by Phomopsis Leptostromiformis in Liquid Media. Appl. Environ. Microbiol. 1979, 37, 289–292
    [5] Plate, R.; Akkerman, M. A. J.; Ottenheijm, H. C. J. Conversion of N-hydroxytryptophan intoα-Functionalised Tryptophans. An Approach to the Aporidesmin Seriers. J. Chem. Soc. Perkin Trans. 1 1987, 2481–2490
    [6] Bonauer, C.; Walenzyk, T.; Kning, B.α,β-Dehydroamino Acids. Synthesis 2006, 1, 1–20
    [7] Bierbaum, G. Antibiotische Peptide-Lantibiotika. Chemotherapie J. 1999, 8, 204–209
    [8]陶美凤,胡志浩,硫醚抗生素生物合成的遗传学,国外医药抗生素分册,1997,18,178–184
    [9] Armstrong, R.W.; Moran, E. J. Stereoselective Synthesis of a Azabicyclo[3.l.0]hex-2-ylidene Dehydroamino Acid Derivative Related to the Azinomycin Antitumor Antibiotics. J. Am. Chem. Soc. 1992, 114, 371–372
    [10] Coleman, R. S.; Kong, J. S.; Richardson, T. E. Synthesis of Naturally Occurring Antitumor Agents: Stereocontrolled Synthesis of the Azabicyclic Ring System of the Azinomycins. J. Am. Chem. Soc. 1999, 121, 9088–9095
    [11] Coleman, R. S.; Li, J.; Navarro, A. Total Synthesis of Azinomycin A. Angew. Chem. Int. Ed. 2001, 40, 1736–1739
    [12] Hashimoto, M.; Matsumoto, M.; Terashima, S. Synthetic Studies of Carzinophilin. Part 1: Synthesis of 2-methylidene-1-azabicyclo[3.1.0]hexane Systems Related to Carzinophilin. Tetrahedron 2003, 59, 3019–3040
    [13] Hashimoto, M.; Matsumoto, M.; Terashima, S. Synthetic Studies of Carzinophilin. Part 2: Synthesis of 3,4-dibenzyloxy-2-methylidene-1- azabicyclo [3.1.0]hexane Systems Corresponding to the C1–C17 Fragment of Carzinophilin. Tetrahedron 2003, 59, 3041–3062
    [14] Hashimoto, M.; Matsumoto, M.; Yamada, K.; Terashima, S. Synthetic Studiesof Carzinophilin. Part 4: Chemical and Biological Properties of Carzinophilin Analogues. Tetrahedron 2003, 59, 3089–3097
    [15]万佐玺,强胜,李扬汉,链格孢菌寄主选择性毒素的研究现状,湖北民族学院学报,2001,19:19–22
    [16] Bland J M, Edwards V, Eaton S R, et al, Natural Peptidic Compounds as Leads for Novel Pesticides. Pestic. Sci. 1993, 39, 331–340
    [17] Goodall, K.; Parsons, A. F. A New and Efficient Preparation ofα,β-Dehydroamino Acids. Tetrahedron Lett. 1995, 36, 3259–3260
    [18] Li, K. W.; Wu, J.; Xing, W.; Simon, J. A. Total Synthesis of the Antitumor Depsipeptide FR-901,228. J. Am. Chem. Soc. 1996, 118, 7237–7238
    [19] Somekh, L.; Shanzer, A. Stereospecific Synthesis ofα,β-Dehydroamino Acids fromβ-Hydroxyα-Amino Acid Derivatives. J. Org. Chem. 1983, 48, 907–90
    [20] Miller, M. J. Isourea-Mediated Preparation of Dehydroamino Acids. J. Org. Chem. 1980, 45, 3131–3132
    [21] Stohlmeyer, M. M.; Tanaka, H.; Wandless, T. J. A Stereospecific Elimination to Form Dehydroamino Acids: Synthesis of the Phomopsin Tripeptide Side Chain. J. Am. Chem. Soc. 1999, 121, 6100–6101
    [22] Poisel, H.; Schmidt, U. Synthesis ofα,β-Dehydroamino Acid Esters and N-tert-Butoxycarbonylα,β-Dehydroamino Acids. Angew. Chem. Int. Ed. 1976, 15, 294–295
    [23] Kolasa T. An Effective Synthesis ofα,β-Dehydroamino Acid Derivatives from N-Acyl-N-hydroxy-α-Amino Acid Esters. Synthesis 1983, 7, 539
    [24] Maekawa, K.; Kanno, Y.; Kubo, K.; Igarashi, T.; Sakurai, T. Heterocyclic Compounds A Novel Ring-Opening Reaction of (Z)-2-Methyl-4-arylmethylene-5(4H)-oxazolone Derivatives with Acylhydrazines. Heterocycles 2004, 63, 1273-1280
    [25] Sch?llkopf, U.; Gerhart, F.; Schr?der, R.; Hoppe, D. Synthesen Mitα-Metallierten Isocyaniden, XVI1)β-Substituierteα-Formylamino- Acryls?ure?thylester ausα-Metallierten Isocyanessigestern und Carbonyl- Verbindungen (Formylaminomethylenierung von Carbonylverbindungen) Liebigs Ann. Chem. 1973, 766, 116–129
    [26] Schmidt, U. H.; Griesser, V. Leitenberger, A. Lieberknecht, R. Mangold, R. Meyer, B. Riedl, Diastereoselective Formation of (Z)-Diadehydroamino acid esters. Synthesis 1992, 487–490
    [27] Trost, B. M.; Dake, G. R. Nucleophilicα-Addition to Alkynoates. A Synthesis of Dehydroamino Acids. J. Am. Chem. Soc. 1997, 119, 7595–7596
    [28] Nagano, T.; Kinoshita, H. A New and Convenient Method for the Synthesis of Dehydroamino Acids and Various Nitro Compounds. Bull. Chem. Soc. Jpn.2000, 73, 1605–1613
    [29] Chen, D.; Guo, L.; Liu, J.; Kirtane, S.; Cannon, J. F.; Li, G. Functionalization ofα,β-Unsaturated Esters and Ketones: A Facile and Highly Stereoselective One-Pot Approach to N-Protectedα,β-Dehydroamino Acid Derivatives. Org. Lett. 2005, 7, 921–924
    [30] Zhou, H.; van der Donk, W. A. Synthesis of 2-Amino-3-Fluoroacrylic Acid Containing Peptides. Org. Lett. 2001, 3, 593–596
    [31] Zhou, H.; van der Donk, W. A. Biomimetic Stereoselective Formation of Methyllanthionine. Org. Lett. 2002, 4, 1335–1338
    [32] Burk, M. J.; Allen, J. G.; Kiesman, W. F.; Stoffan, K. M. A Convenient Cross-Coupling Route toα,β,γ,δ-Unsaturated Amino Acids. Tetrahedron Lett. 1997, 38, 1309–1312
    [33] Danion-Bougot, R.; Danion, D. Francis, G. Synthesis and Reactivity of Protectedβ-Bromoα-Iminoacids; A Convenient Route to Structurally Diversified Aminoacids. Tetrahedron Lett. 1990, 31, 3739–3742
    [34] Miossec, B.; Danion-Bougot, R.; Danion, D. Inter- or Intramolecular Coupling ofβ-Haloamine Acids with Alkynes. Synthesis 1994, 1171–1174
    [35] Silva, N. O.; Abreu, A. S.; Ferreira, P. M. T.; Monteiro, L. S.; Queiroz, M. R. P. Synthesis Using Suzuki Cross Couplings of Sulfur Analogues of Dehydrotryptophan with a Definite Stereochemistry. Eur. J. Org. Chem. 2002, 15, 2524–2528
    [36] Hoerrner, R. S.; Askin, D.; Volante, R.P.; Reider, P. J. A Highly Enantioselective Asymmetric Hydrogenation Route toβ-(2R,3S)- Methyltryptophan. Tetrahedron Lett. 1998, 39, 3455–3458
    [37] Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S. High Yielding Synthesis of Heterocyclicβ-Substituted Alanine Derivatives. Tetrahedron Lett. 1999, 40, 4099–4102
    [38] Abreu, A. S.; Silva, N. O.; Ferreira, P. M. T.; Queiroz, M. R. P. Synthesis of Novel Amino Acids and Dehydroamino Acids Containing the Benzo[b]thiophene Moiety. Eur. J. Org. Chem. 2003, 8, 1537–1544
    [39] Bull, S. D.; Davies, S. G.; O'Shea, M. D. Stereoselective Conjugate Addition of Organocuprates to a Dehydroalanine Derived Diketopiperazine. J. Chem. Soc., Perkin Trans. 1, 1998, 3657–3665
    [40] Bull, S. D.; Davies, S. G.; Garner, A. C.; O'Shea, M. D. Conjugate Additions of Organocuprates to a 3-Methylene-6-Isopropyldiketopiperazine Acceptor for the Asymmetric Synthesis of Homochiralα-Amino Acids. J. Chem. Soc., Perkin Trans. 1, 2001, 3281–3287
    [41] Sibi, M. P.; Asano, Y.; Sausker, J. B. Enantioselective Hydrogen Atom TransferReactions: Synthesis of N-Acyl-α-Amino Acid Esters. Angew. Chem. Int. Ed. 2001, 7, 1293–1296
    [42] Miyabe, H.; Asada, R.; Takemoto, Y. Synthesis ofα,α-Disubstituted Amino Acids Based on Tandem Reaction of Dehydroamino Acid Derivatives. Tetrahedron 2005, 61, 385–393
    [43] Singh, J.; Kronenthal, D. R.; Schwinden, M.; et al. Efficient Asymmetric Synthesis of the Vasopeptidase Inhibitor BMS-189921. Org. Lett. 2003, 5, 3155–3158
    [44] Manzoni, L.; Colombo, M.; Scolastico, C. The First Example of Ring-Closing Olefin Metathesis of Dehydroamino Acids: An Application to the Synthesis of Azabicyclo[X.Y.0]alkanes. Tetrahedron Lett. 2004, 45, 2623–2625
    [45] Horikawa, H.; Nishitani, T.; Iwasaki, T.; Mushika, Y.; Inoue, I.; Miyoshi, M. A Synthesis of 2-Aminonorbornene-2-Carboxylic Acid Derivatives by Diels-Alder Reaction Usingα,β-Dehydroalaninates as a Dienophile. Tetrahedron Lett. 1980, 21, 4101–4104
    [46] Adams, L. A.; Aggarwal, V. K.; Bonnert, R. V.; Bressel, B.; Cox, R. J.; Shepherd, J.; de Vicente, J.; Walter, M.; Whittingham, W. G.; Winn, C. L. Diastereoselective Synthesis of Cyclopropane Amino Acids Using Diazo Compounds Generated in Situ. J. Org. Chem. 2003, 68, 9433–9440
    [47] Adams, L. A.; Charmant, J. P. H.; Cox, R. J.; Walter, M.; Whittingham, W. G. Efficient Synthesis of Protected Cyclopropylβ-Aspartylphosphates. Org. Biomol. Chem. 2004, 2, 542–553
    [48] Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; Porcelloni, M. Application of Chiral Sulfides to Catalytic Asymmetric Aziridination and Cyclopropanation with In Situ Generation of the Diazo Compound. Angew. Chem. Int. Ed. 2001, 40, 1433–1436
    [49] Ung, A. T.; Schafer, K.; Lindsay, K. B.; Pyne, S. G.; Amornraksa, K.; Wouters, R.; Van der Linden, I.; Biesmans, I.; Lesage, A. S. J.; Skelton, B. W.; White, A. H. Synthesis and Biological Activities of Conformationally Restricted Cyclopentenyl-Glutamate Analogues. J. Org. Chem. 2002, 67, 227–233
    [50] Pyne, S. G.; Schafer, K.; Skelton, B. W.; White, A. H. Synthesis of Novel Conformationally Restricted L-Glutamate Analogues. Chem. Commun. 1997, 2267–2268
    [51] Bartels, A.; Peter, G. J.; Liebscher, J. Enantiomerically Pure Pyruvate Derivatives by Epoxidation of Ylidenediketopiperazines. Tetrahedron Lett. 1995, 36, 3673–3674
    [52] Bartels, A.; Jones, P. G.; Liebscher, J. Stereoselective Epoxidation and Bromo/Alkoxide Addition with 3-ylidenepyrazine-2,4-diones. Synthesis 2003, 67–72
    [53] Schmidt, U.; Lieberknecht, A.; Wild, J. Didehydroamino Acids (DDAA) and Didehydropeptides (DDP). Synthesis 1988, 159–172
    [54] Tang, W.; Zhang, X. New Chiral Phosphorus Ligands for Enantioselective Hydrogenation. Chem. Rev. 2003; 103, 3029–3070
    [55] Alcaraz, L.; Macdonald, G.; Ragot, J.; Lewis, N. J.; Taylor, R. J. K. Synthetic Approaches to the Manumycin A, B and C Antibiotics: The First Total Synthesis of (+)-Manumycin A. Tetrahedron 1999, 55, 3707–3716
    [56] Chang, L. C.; Bhat, K. P. L.; Pisha, E.; Kennelly, E. J. Fong, H. H. S.; Pezzuto, J. M.; Kinghorn, A. D. Activity-Guided Isolation of Steroidal Alkaloid Antiestrogen-Binding Site Inhibitors from Pachysandra procumbens. J. Nat. Prod. 1998, 61, 1257–1262
    [57] Eervinka, O. In The chemistry of enamines, Part 1; Vol. 1; Rappoport, Z., Ed.; Wiley: New York, 1994, 612–637
    [58] Srinivasan, M.; Perumal, S.; Selvaraj, S. A Facile Steroselective Synthesis of (Z) -1,3-Diayl-2-(N-Methylanilino)-2-Propen-1-ones. ARKIVOC 2006, 10, 21–27
    [59] Sant, K. V.; South, M. S. Formation ofα-Enaminoketones fromα-Azidoketones: An Elimination of Molecular Nitrogen fromα-Azidoketones. Tetrahedron Lett. 1987, 28, 6019–6020
    [60] Padwa, A.; Eisenhardt, W. Aziridine Series. Reactions of trans-1,3-dibenzoyl-2- phenylaziridine and Related Systems. J. Org. Chem. 1970, 35, 2472–2478
    [61] Weigel, W.; Henning, H. G. A Novel Synthesis ofα- andβ-Morpholino Enones by Electron Transfer Sensitized Photooxidation of 2-Morpholinocyclopropanols. Chem. Commun. 1997, 1893–1894
    [62] Meyers, A. I.; Beverung, W. N. Aza-Steroids: Synthesis of an 18-Nor-9-aza-androst-13(14)-en-6-one and Related D-Hono-Derivatives. Chem. Commun. 1968, 877
    [63] Nakatsuka, S.; Tanino, H.; Kishi, Y. Biogenetic-type Synthesis of Penicillin-Cephalosporin Antibiotics. I. Stereocontrolled Synthesis of the Penam- and Cephem-ring Systems from an Acyclic Tripeptide Equivalent. J. Am. Chem. Soc. 1975, 97, 5008–5010
    [64] Nicolaou, K. C.; Zak, M.; Rahimipour, S.; Estrada, A. A.; Lee, S. H.; O'Brate, A.; Giannakakou, P.; Ghadiri, M. R. Discovery of a Biologically Active Thiostrepton Fragment. J. Am. Chem. Soc. 2005, 127, 15042–15044
    [65] Harburn, J. J.; Lofius, G. C.; Marples, B. A. Synthesis of Novel Steroidal Inhibitors of HIV-1 Protease. Tetrahedron 1998, 54, 11907–11924
    [66] Kohno, J.; Nishio, M.; Kawano, K.; Nakanishi, N.; Suzuki, S. I.; Uchida, T.; Komatsubara, S. TMC-1 A, B, C and D, New Antibiotics of the Manumycin Group Produced by Streptomyces sp.: Taxonomy, Production, Isolation,Physico-Chemical Properties, Structure Elucidation and Biological Properties. J. Antibiot. 1996, 49, 1212–1217
    [67] Rich. D. H.; Bhatnagar, P.; Mathinaparanam, P.; Grant, J. A.; Tam, J. P. Synthesis of Tentoxin and Related Dehydro Cyclic Tetrapeptides. J. Org. Chem. 1978, 43, 296–302
    [68] Humphrey, J. M.; Chamberlin, A. R. Chemical Synthesis of Natural Product Peptides: Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides. Chem. Rev. 1997, 97, 2243–2266
    [69] Zhu, Y. T.; Gieselman, M. D.; Zhou, H.; Averin, O.; van der Donk, W. A. Biomimetic Studies on the Mechanism of Stereoselective Lanthionine Formation. Org. Biomol. Chem. 2003, 1, 3304–3315
    [70] Pégurier, C.; Morellato, L.; Chahed, E.; Andrieux, J.; Nicolas, J. P.; Boutin, J. A.; Bennejean, C.; Delagrange, P.; Langlois, M.; Mathé-Allainmat, M. Synthesis of New Arylalkoxy Amido Derivatives as Melatoninergic Ligands. Bioorg. Med. Chem. 2003, 11, 789–800
    [71] Schumann, E. L.; Heinzelman, R. V.; Greig, M. E.; Veldkamp, W. Hydroxylamine Chemistry. IV. O-Aralkylhydroxylamines. J. Med. Chem. 1964, 7, 329–334
    [72] Palacios, F.; Vicario, J.; Aparicio, D. Efficient Synthesis of 1-azadienes Derived fromγ-Aminoesters. Regioselective Preparation ofγ-Dehydroamino Acids, Vinylglycines, andγ-Amino Acids. J. Org. Chem. 2006, 71, 7690–7696
    [73] Rousseau, J. F.; Dodd, R. H. Synthesis of 3-Deaza-β-hydroxyhistidine Derivatives and Their Use for the Preparation of Substituted Pyrrolo[2,3-c]pyridine-5-Carboxylates via the Pictet-Spengler Reaction. J. Org. Chem. 1998, 63, 2731–2737
    [74] Fu, Y.; Hou, G. H.; Xie, J. H.; Xing, L.; Wang, L. X.; Zhou, Q. Lin. Synthesis of Monodentate Chiral Spiro Phosphonites and the Electronic Effect of Ligand in Asymmetric Hydrogenation. J. Org. Chem. 2004, 69, 8157–8160
    [75] Weis, M.; Waloch, C.; Seiche, W.; Breit, B. Self-Assembly of Bidentate Ligands for Combinatorial Homogeneous Catalysis: Asymmetric Rhodium-Catalyzed Hydrogenation. J. Am. Chem. Soc. 2006, 128, 4188–4189
    [76] Burk, M. J.; Feng, S. G.; Gross, M. F.; Tumas, W. Asymmetric Catalytic Hydrogenation Reactions in Supercritical Carbon Dioxide. J. Am. Chem. Soc. 1995, 117, 8277–8278
    [77] Xue, D.; Chen, Y. C.; Cui, X.; Wang, Q. W.; Zhu, J.; Deng, J. G. Transfer Hydrogenation of Activated CdC Bonds Catalyzed by Ruthenium Amido Complexes: Reaction Scope, Limitation, and Enantioselectivity. J. Org. Chem. 2005, 70, 3584–3591
    [78] Basu, B.; Bhuiyan, Md. M. H.; Das, P.; Hossain, I. Catalytic Transfer Reduction of Conjugated Alkenes and an Imine Using Polymer-Supported Formats. Tetrahedron Lett. 2003, 44, 8931–8934
    [79] Masahide, Y.; Ryuji, K.; Hiroshi, T.; Daigo, U.; Kazuaki, I.; Koutaro, J.; Tsutomu, S.; Toshiaki, Y. Redox-Photosensitized Aminations of 1,2-Benzo-1,3-cycloalkadienes, Arylcyclopropanes, and Quadricyclane with Ammonia. J. Org. Chem. 2003, 68, 7618-7624
    [80] Ikawa, T.; Sajiki, H.; Hirota, K. Highly chemoselective hydrogenation method using novel finely dispersed palladium catalyst on silk-fibroin: its preparation and activity. T etrahedron 2005, 61, 2217–2231
    [81] Kohler, E. P.; Kimball, R. H. The Reactions of Certain Gamma Ketonic Acids. I. Ketonic Beta Lactones. J. Am. Chem. Soc. 1934, 56, 729–731
    [82] Sivakumar, P. M.; Seenivasan, S. P.; Kumar, V.; Doble, M. Synthesis, Antimycobacterial Activity Evaluation, and QSAR Studies of Chalcone Derivatives. Bioorg. Med. Chem. Lett. 2007, 17, 1695–1700
    [83] Ricardo, M.; Diego, J. R.; Miguel Y. Easyα–Alkylation of Ketones with Alcohols through a Hydrogen Autotransfer Process Catalyzed by RuCl2(DMSO)4. Tetrahedron 2006, 62, 8988–9001
    [84] Ahluwalia, V. K.; Arora, K. K.; Kaur, G. Dihydrochalcones as Synthons for 2-Amino and 2-Mercapto-4-Aryl-5-Arylmethylthiazoles. Heterocycles 1985, 23, 2583–2588
    [85] Shotter, R. G.; Johnston, K. M.; Williams, H. J. Polyphosphoic Acid-Catalyzed Cyclisations of Aryl Styryl ketones. Tetrahedron 1973, 29, 2163–2166
    [86] Jacobs, T. L.; Singer, S. The Rearrangement of Aryl-Substituted Propynes to Allenes. J. Org. Chem. 1952, 17, 475–481
    [87] Lin, Z.; Schuster, G. B. Structure and Photophysical Properties of 2,6–Di–tert–Butyl–4–arylpyrylium 2–Naphthalenesulfonate Ion Pairs in Solution and in the Solid State. J. Org. Chem. 1994, 59, 1119–1125
    [88] Cordi, A. A.; Berque-Bestel, I.; Persigand, T.; Lacoste, J. M.; Newman-Tancredi, A.; Audinot, V.; Millan, M. J. Potential Antidepressants Displayed Combinedα2-Adrenoceptor Antagonist and Monoamine Uptake Inhibitor Properties. J. Med. Chem. 2001, 44, 787-805
    [89] Das, S.; Panigrahi, A. K.; Maikap, G. C. NaIO4–DMF: a novel reagent for the oxidation of organic halides to carbonyl compounds. Tetrahedron Lett. 2003, 44, 1375–1377
    [90] Larkin, J.; Murray, M. G.; Nonhebel, D. C.; Mitchell, A. D. Enol benzoates ofβ-diketones. J. Chem. Soc., Perkin Trans. 1, 1976, 380-383
    [91] Laatsch, H.; Pudleiner, H. Marine Bakterien, I: Synthese vonPentabrompseudilin, einem Phenylpyrrol aus Alteromonas luteoviolacea. Liebigs Ann. Chem., 1989, 863-881
    [92] Sisido, K.; Nozaki, H. The Preparations of Synthetic Estrogens. III.1 A New Isomer of 3-p-Anisyl-3,4-hexanediol. J. Am. Chem. Soc. 1948, 70, 3326–3329
    [93] Fink, Cynthia A.; Moskal, Michael; Firooznia, Fariborz; Hoyer, Denton; Symonsbergen, David; Wei, Dongchu; Qiao, Ying; Savage, Paula; Beil, Michael E.; Trapani, Angelo J.; Jeng, Arco Y. Design and synthesis of potent thiol-based inhibitors of endothelin converting enzyme-1. Bioorg. Med. Chem. Lett.; EN; 10; 17; 2000; 2037-2040
    [94] Yang, D.; Li, B.; Ng, F. F.; Yan, Y. L.; Qu, J.; Wu, Y. D. Synthesis and Characterization of Chiral N-O Turns Induced byα-Aminoxy Acids. J. Org. Chem. 2001, 66, 7303–7312
    [95] Baxter, A. D.; Bhogal, R.; Bird, J. B. et al. Mercaptoacyl Matrix Metalloproteinase Inhibitors: The Effect of Substitution at the Mercaptoacyl Moiety. Bioorg. Med. Chem. Lett. 1997, 7, 2765–2770
    [96] Kim; J. N.; Kim, K. M.; Ryu, E. K. Improved Synthesis of N-Alkoxyphthalimdes. Synth. Commun. 1992, 22, 1427–1432
    [97] Isowa, Y.; Takashima, T.; Ohmori, M. Kurita, Sato, H. M.; Mori, K. Synthesis of Nδ-Hydroxyornithine Bull. Chem. Soc. Jpn.
    [98] Francis A. Carey, Larry J. Hayes O-Nitrene and O-nitrenium cation intermediates in reactions of O-substituted hydroxylamines. J. Org. Chem. 1973, 38, 3107-3114
    [99] Pégurier, C.; Morellato, L.; Chahed, E.; Andrieux, J.; Nicolas, J. P.; Boutin, J. A.; Bennejean, C.; Delagrange, P.; Langlois, M.; Mathé-Allainmat, M. Synthesis of New Arylalkoxy Amido Derivatives as Melatoninergic Ligands. Bioorganic & Medical Chemistry 2003, 11, 789–800
    [100]郑秀芳,1H-2,3-苯并噁嗪结构化合物的合成及重排反应方法研究,天津大学,2007
    [101] Petersen, U. In Methoden der Organischen Chemie; Houben-Weyl, E4; G. Thieme Verlag: New York, 1983, 334
    [102] (a) Basha, A. Synthesis of N,N′-Disubstituted Ureas from Carbamates. Tetrahedron Lett. 1988, 29, 2525–2526 (b) Kn?lker, H. J.; Braxmeier, T.; Schlechtingen, G. Isocyanates, Part 2. Synthesis of Symmetrical and Unsymmetrical Ureas by DMAP-Catalyzed Reaction of Alkyl- and Arylamines with Di-tert-butyldicarbonate. Synlett 1996, 502–504 (c) Lamothe, M.; Perez, M.; Colovray-Gotteland, V.; Halazy, S. A Simple One-Pot Preparation of N,N’-Unsymmetrical Ureas from N-Boc Protected Primary Anilines and Amines. Synlett 1996, 507–508 (d) Thavonekham, B. A Practical Synthesis of Ureas from Phenyl Carbamates. Synthesis 1997, 1189–1194 (e) Matsumura, Y.;Satoh, Y.; Onomura, O.; Maki, T. A New Method for Synthesis of Unsymmetrical Ureas Using Electrochemically Prepared Trifluoroethyl Carbamates. J. Org. Chem. 2000, 65, 1549–1551 (f) Kitteringham, J.; Shipton, M. R.; Voyle, M. Amorphous Calcium Carbonate Stabilised by Poly(propylene imine) Dendrimers. Synth. Commun. 2000, 30, 1937–1938 (g) Shi, M.; Shen, Y.-M. Transition-Metal-Catalyzed Reactions of Propargylamine with Carbon Dioxide and Carbon Disulfide. J. Org. Chem. 2002, 67, 16–21
    [103] Romine, J. L.; Martin, S. W.; Meanwell, N. A.; Epperson, J. R. Synthesis of 3-Hydroxyrimidine-2,4-diones. Synthesis 1994, 846-850
    [104] Sheldrick, G. M.; Aca. Crystallogy. Sect. A: Found. Crystallogr A46, 1990, 467
    [105] Sheldrick, G. M.; SHELXL-97. Program for Crystal Structure Refinement, University of Gottingen, Gottinggen, Germany, chapter 11, 1997
    [106] Margarect, E. Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds. Acc. Chem. Res. 1990, 23, 120–126
    [107] (a) Shimohigashi, Y.; Nitz, T. J.; Stammer, C. H. E/Z-Configurational Assignmet of Dehydropeptides: Differential NOE Enhancement between the Vinyl and Amide Protons of anα,β-Dehydro Amino Acid Derivatives. Tetrahedron Lett. 1982, 23, 3235-3236 (b) Trost, B. M.; Dake, G. R. Nucleophilicα-Addition to Alkynoates. A Synthesis of Dehydroamion Acid. J. Am. Chem. Soc. 1997, 119, 7595-7596
    [108] Srinivasan, A. ; Stephenson, R. W.; Olsen, R. K. Conversion of Threonine Derivatives to Dehydroamino Acids by Elimination ofβ-Chloro and O-Tosyl Derivatives. J. Org. Chem. 1977, 42, 2256-2260
    [109] Trost, B. M.; Dake, G. R. Nucleophilicα-Addition to Alkynoates. A Synthesis of Dehydroamino Acids. J. Am. Chem. Soc. 1997, 119, 7595-7796
    [110] Schmidt, U.; Griesser, H.; Leitenberger, V.; Lieberknecht, A.; Mangold, R.; Bernd Riedl, R, M. Diastereoselective Formation of (Z)-Didehydroamino Acid Esters. Synthesis 1992, 487-490
    [111] Srinivasan, A.; Stephenson, R. W.; Olsen, R. K. Conversion of Threonine Derivatives to Dehydroamino Acids by Elimination ofβ-chloro and O-tosyl Derivatives. J. Org. Chem. 1977, 42, 2256-2260
    [112] Shin, C. The Independent Isolation of a Primary Enamine and the Tautomeric Imine. Bull. Chem. Soc. Jpn. 1971, 44, 1657-1660

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700