新型缩合反应在分子与细胞显像中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Click反应由于具有反应原料简单易得,产率高,反应条件简单和合成速度快速等优点,在药物开发和分子生物学的诸多领域中,已经被广泛关注,成为目前最为有用和吸引人的合成理念之一。
     基于1,2-氨基硫醇和2-氰基苯并噻唑的缩合反应是发生在萤火虫体内的典型的Click反应,此反应具有反应条件温、具有良好的生物兼容性等优点,将反应底物加以修饰可通过调节pH,双硫键还原和酶切等条件诱发缩合反应的发生。也可以将反应底物修饰上不同的活性基团来应用于不同的领域,是非常具有前景的应用体系。
     本论文基于这一缩合反应平台,修饰前体小分子,在不同的领域和体系内展开应用,主要分为三大部分:(1)以临床上使用的Gd-DOTA磁共振成像造影剂为前体小分子,以furin的底物为靶向基团,与1,2-氨基硫醇和2-氰基苯并噻唑缩合反应体系相结合,在体外缩合生成纳米粒子,合成新的磁共振成像剂,使其具有纳米材料造影剂优势的同时又具有靶向性。(2)以具有红色荧光的金属离子Eu代替具有磁共振成像的金属离子Gd,拓展了这一体系在双光子成像方面的应用。(3)运用Biotin-Streptavidin特异性结合体系,将Biotin修饰到缩合反应体系的前体小分子上,并连接与细胞凋亡相关的酶Caspase-3的底物作为靶向基团,在蛋白酶和还原剂的双重作用下,缩合生成表面富集Biotin的纳米粒子,加入SA-FITC后,荧光强度比未缩合的样品有明显的上升。
     本论文以新型缩合反应为平台,拓展了这一体系在不同成像方法中的应用,这些成像方法不仅能够提高成像效率,而且具有靶向基团,使这些检测手段具有靶向作用,为分子成像的研究提供了新的方向。
Click chemistry has been widely noted because of its easy availability of raw materials, high yields, simplicity, mild reaction conditions, and high reaction rates. In recent decades, click chemistry has become one of the most useful and attractive concept in medicine and molecular biology.
     The condensation reaction between2-cyanobenzothiazole (CBT) and D-cysteine is a classical click reaction happened in the body of firefly. This reaction has the advantage of mild reaction conditions and biocompatibility. Modification of the substrate can initiate the condensation reaction by changing the pH, reduction of disulfide bond, or enzyme cleavage. Fuctionalization of the monomer enables this reaction for broad biomedical applications.
     This dissertation is based on this condensation reaction platform. We modified the substrate, and developed this reaction for molecular imaging. It can be divided into two parts:(1) The probe is linked with clinical contrast agents Gd-DOTA and combined with the peptide RVRR which is the substrate of furin. After condensation, nanoparticles were formed and can be trapped into the cells. The advantage of this kind of contrast agents is not only the nanomaterials known for us but also the targeting.(2) The fluorescence metal ion Eu replaces the magnetic resonance imaging metal Gd to develop the application of this condensation reaction for two-photon imaging.(3) The probe is linked with biotin which can bind with streptavidin specificly and combined with the peptide DVED which can be recognized and cleaved by caspase-3. After condensation, nanoparticles were formed and enriched with biotin. After adding streptavidin-FITC, the fluorescent intensity has an obvious enhancement than uncondensated one.
     This dissertation is based on this condensation reaction platform, developed new applications in molecular imaging. These methods have the properties of not only enhancing the efficiency of molecular imaging but also targeting.
引文
1 Weissleder, R.& Mahmood, U. Molecular imaging. Radiology 219,316-333, (2001).
    2 Weissleder, R. Molecular imaging:Exploring the next frontier. Radiology 212,609-614, (1999).
    3 Cherry, S. R. In vivo molecular and genomic imaging:new challenges for imaging physics. Phys. Med. Biol.49, R13-R48, (2004).
    4 Vassaux, G. & Groot-Wassink, T. In vivo noninvasive imaging for gene therapy.J. Biomed. Biotechnol.,92-101, (2003).
    5 Wang, X. L. et al. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102,3478-3482, (2003).
    6 Zhang, L. Q. et al. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol. Ther.5,223-232, (2002).
    7 Carlsen, H., Moskaug, J. O., Fromm, S. H.& Blomhoff, R. In vivo imaging of NF-kappa B activity. J. Immunol.168,1441-1446, (2002).
    8 Hasegawa, S. et al. In vivo tumor delivery of the green fluorescent protein gene to report future occurrence of metastasis. Cancer Gene. Ther.7,1336-1340, (2000).
    9 Bouvet, M. et al. Real-time optical imaging of primary tumor growth and multiple metastatic events in a pancreatic cancer orthotopic model. Cancer Res.62,1534-1540, (2002).
    10 Yang, M. et al. Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. P. Nad. Acad. Sci. USA 99,3824-3829, (2002).
    11 Herschman, H. R. Molecular imaging:Looking at problems, seeing solutions. Science 302, 605-608, (2003).
    12 Massoud, T. F.& Gambhir, S. S. Molecular imaging in living subjects:seeing fundamental biological processes in a new light. Gene Dev.17,545-580, (2003).
    13 Sullivan, D. C.& Kelloff, G. Seeing into cells-The promise of in vivo molecular imaging in oncology. Embo. Rep.6,292-296, (2005).
    14 Gambhir, S. S. Molecular imaging of cancer with positron emission tomography. Nat. Rev. Cancer 2,683-693, (2002).
    15 Cho, Z. H. et al. Positron Ranges Obtained from Biomedically Important Positron-Emitting Radionuclides.J. Nucl. Med.16,1174-1176, (1975).
    16 Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry:Diverse chemical function from a few good reactions. Angew. Chem. Int. Edit.40,2004-+, (2001).
    17 Groot-Wassink, T. et al. Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol. Ther.9,436-442, (2004).
    18 Beekman, F. J. et al. U-SPECT-I:A novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. J. Nucl. Med.46,1194-1200, (2005).
    19 Kraft, S. L.& Gavin, P. Physical principles and technical considerations for equine computed tomography and magnetic resonance imaging. Vet. Clin. N Am-Equine 17,115-+, (2001).
    20 Nellist, P. D. et al. Direct sub-angstrom imaging of a crystal lattice. Science 305,1741-1741, (2004).
    21. Haacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic Resonance Imaging: Physical Principles and Sequence Design. Wiley:New York, (1999).
    22. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB. Gadolinium(III) chelates asMRI contrast agents:structure, dynamics and applications. Chem. Rev.,99,293-2352,(1999).
    23. Aime S, Botta M, Fasano M, Terreno E. Lanthanide(III) chelates for NMR biomedical applications. Chem. Soc. Rev.,27,19-29,(1998)..
    24. Bulte JW, Kraitchman DL. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed.17,484-499,(2004).
    25. Lorenz CH, Johansson LO. Contrast-enhanced coronary MRA.J. Magn. Reson. Imaging,10, 703-708,(1999).
    26. Lutz AM, Seemayer C, Corot C, Gay RE, Goepfert K, Michel BA, Marincek B, Gay S, Weishaupt D. Detection of synovial macrophages in an experimental rabbit model of antigeninduced arthritis:ultrasmall superparamagnetic iron oxideenhanced MR imaging. Radiology,233,149-157,(2004).
    27. Padhani AR. Dynamic contrast-enhanced MRI in clinical oncology:current status and future directions.J. Magn. Reson.Imaging,16,407-422,(2002).
    28. Dafni H, Gilead A, Nevo N, Eilam R, Harmelin A, Neeman M. Modulation of the pharmacokinetics of macromolecular contrast material by avidin chase:MRI, optical and inductively coupled plasma mass spectrometry tracking of triply labeled albumin. Magn. Reson. Med.,50,904-914,(2003).
    29. Kroft LJ, de Roos A. Blood pool contrast agents for cardiovascular MR imaging. J. Magn. Reson. Imaging,10,395-403(1999).
    30. de Lussanet QG, Langereis S, Beets-Tan RG, van Genderen MH, Griffioen AW, van Engelshoven JM, Backes WH. Dynamic contrast-enhanced MR imaging kinetic parameters and molecular weight of dendritic contrast agents in tumor angiogenesis in mice. Radiology, 235,65-72,(2005).
    31. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat. Med.,4,623-626,(1998).
    32. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE, Fraser SE, Meade TJ. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol.,18,321-325,(2000).
    33. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R. Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol.,18,410-414,(2000).
    34. Crich SG, Biancone L, Cantaluppi V, Duo D, Esposito G, Russo S, Camussi G, Aime S. Improved route for the visualization of stem cells labeled with a Gd-/Eu-chelate as dual (MRI and fluorescence) agent. Magn. Reson. Med,51,938-944, (2004)
    35 Khemtong, C., Kessinger, C. W.& Gao, J. M. Polymeric nanomedicine for cancer MR imaging and drug delivery. Chem. Commun.,3497-3510, (2009).
    36 Feng, J. comparison between Gd-DTPA and several bisamide derivatives as potential MRI contrast agents. Bioorganic &Medicinal Chemistry 11,3359-3366, (2003).
    37 Fatin-Rouge, N., Toth, E., Meuli, R.& Bunzli, J. C. G Enhanced imaging properties of a Gd-III complex with unusually large relaxivity. J. Alloy Compd.374,298-302, (2004).
    38 Bull, S. R., Guler, M. O., Bras, R. E., Meade, T. J.& Stupp, S. I. Self-assembled peptide amphiphile nanofibers conjugated to MRI contrast agents. Nano. Lett.5,1-4, (2005).
    39 Bull, S. R. et al. Magnetic resonance imaging of self-assembled biomaterial scaffolds. Bioconjugate Chem.,16,1343-1348, (2005).
    40 Anderson, E. A. et al. Viral nanoparticles donning a paramagnetic coat:Conjugation of MRI contrast agents to the MS2 capsid. Nano. Lett.,6,1160-1164, (2006).
    41 Langereis, S., de Lussanet, Q. G, van Genderen, M. H. P., Backes, W. H.& Meijer, E. W. Multivalent contrast agents based on gadolinium-diethylenetriaminepentaacetic acid-terminated poly(propylene imine) dendrimers for magnetic resonance imaging. Macromolecules 37,3084-3091, (2004).
    42 Talanov, V. S. et al. Dendrimer-based nanoprobe for dual modality magnetic resonance and fluorescence imaging. Nano. Lett.,6,1459-1463, (2006).
    43 Mulder, W. J. M. et al. A liposomal system for contrast-enhanced magnetic resonance imaging of molecular targets. Bioconjugate Chem.,15,799-806, (2004).
    44 Platas-Iglesias, C. et al. Zeolite GdNaY nanoparticles with very high relaxivity for application as contrast agents in magnetic resonance imaging. Chem-Eur. J.8,5121-5131, (2002).
    45 Toth, E. et al. Water-soluble gadofullerenes:Toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc. 127,799-805, (2005).
    46 Sitharaman, B. et al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun.,3915-3917, (2005).
    47 Balkus, K. J.& Shi, J. M. A study of suspending agents for gadolinium(Ⅲ)-exchanged hectorite. An oral magnetic resonance imaging contrast agent. Langmuir 12,6277-6281, (1996).
    48 Lin, Y. S. et al. Gadolinium(III)-incorporated nanosized mesoporous silica as potential magnetic resonance imaging contrast agents. J. Phys. Chem. B 108,15608-15611, (2004).
    49 Kooi, M. E. et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107,2453-2458, (2003).
    50 Liang, G. L., Ren, H. J.& Rao, J. H. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem.2,54-60, (2010).
    51 Frangioni, J. V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol.7, 626-634, (2003).
    52 Gao, X. H. et al. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotech.,16,63-72, (2005).
    53 Azhdarinia, A., Ghosh, P., Ghosh, S., Wilganowski, N. & Sevick-Muraca, E. M. Dual-Labeling Strategies for Nuclear and Fluorescence Molecular Imaging:A Review and Analysis. Mol. Imaging Biol.,14,261-276, (2012).
    54 H. C. Kolb,M. G Finn, K. B. Sharpless, Angew. Chem.,113,2056-2075,(2001);
    55 A. E. Speers, G. C. Adam, B. F. Cravatt, J. Am. Chem. Soc.,125,4686-4687,(2003);
    56 S. T. Laughlin, J. M. Baskin, S. L. Amacher, C. R. Bertozzi,Science,320,664-667,(2008);
    57 J. A. Prescher, C. R. Bertozzi, Nat. Chem. Biol.,1,13-21,(2005).
    58 J. M. Baskin, C. R. Bertozzi, QSAR Comb. Sci.,26,1211-1219,(2007).
    59 K. Sivakumar, F. Xie, B. M. Cash, S. Long, H. N. Barnhill, Q.Wang, Org. Lett.,6,4603-4606,(2004);
    60 Kolb, H. C., Finn, M. G.& Sharpless, K. B. Click Chemistry:Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed.,40,2004-2021, (2001).
    61. Seidah NG, Day R, Marcinkiewicz M, Chretien M. Precursor convertases:an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann. N. Y.Acad. Sci.839,9-24,(1998).
    62. Thacker C, Rose AM. A look at the Caenorhabditis elegans Kex2/Subtilisin-like proprotein convertase family. Bioessays.22,545-553,(2000).
    63. Zhou A, Martin S, Lipkind G, LaMendola J, Steiner DF. Regulatory roles of the P domain of the subtilisin-like prohormone convertases. J. Biol. Chem.273,11107-11114,(1998).
    64. Siezen RJ, Creemers JW, Van de Ven WJ. Homology modelling of the catalytic domain of human furin. A model for the eukaryotic subtilisin-like proprotein convertases. Eur. J. Biochem.222,255-266,(1994).
    65. Siezen RJ. Modelling and engineering of enzyme/substrate interactions in subtilisin-like enzymes of unknown 3-dimensional structure. Adv. Exp. Med. Biol.379,63-73,(1996).
    66. Whitesides, G. M., Mathias, J. P.& Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for synthesis of nanostructure. Science 254,1312-1319(1991).
    67. Lehn, J. M. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information-processing and self-organization. Angew. Chem. Int. Ed.29, 1304-1319(1990).
    68. Estroff, L. A.& Hamilton, A. D. Water gelation by small organic molecules. Chem. Rev.104, 1201-1217 (2004).
    69. Silva, G. A. et al. Selective differentiation of neural progenitor cells by highepitope density nanofibers. Science 303,1352-1355 (2004).
    70. Petka, W. A., Harden, J. L., McGrath, K. P., Wirtz, D.& Tirrell, D. A. Reversible hydrogels from self-assembling artificial proteins. Science 281,389-392 (1998).
    71. Saxon, E.& Bertozzi, C. R. Cell surface engineering by a modified Staudinger reaction. Science 287,2007-2010 (2000).
    72. Laughlin, S. T., Baskin, J. M., Amacher, S. L.& Bertozzi, C. R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320,664-667 (2008).
    73. Kolb, H. C., Finn, M.G.& Sharpless, K. B. Click chemistry:diverse chemical function from a few good reactions. Angew. Chem. Int. Ed.40,2004-2021 (2001).
    74. Link, A. J.& Tirrell, D. A. Cell surface labeling of Escherichia coli via copper (I)-catalyzed [3+2] cycloaddition. J. Am. Chem. Soc.125,11164-11165 (2003).
    75. Agard, N. J., Prescher, J. A.& Bertozzi, C. R. A strain-promoted [3+2] azidealkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc.126,15046-15047 (2004).
    76. Hsu, T.-L. et al. Alkynyl sugar analogs for labeling and visualization of glycoconjugates in cells. Proc. Natl Acad. Sci. USA 104,2614-2619 (2007).
    77. Mahal, L. K., Yarema, K. J.& Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276,1125-1128 (1997).
    78. Zeng, Y., Ramya, T. N. C., Dirksen, A., Dawson, P. E.& Paulson, J. C. Highefficiency labeling of sialylated glycoproteins on living cells. Nature Methods 6,207-209 (2009).
    1 Louie, A. Y. et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol.,18,321-325, (2000).
    2 Chou, S. W. et al. In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging. J. Am. Chem. Soc.,132,13270-13278,(2010).
    3 Major, J. L.& Meade, T. J. Bioresponsive, Cell-Penetrating, and Multimeric MR Contrast Agents. Accounts Chem. Res.,42,893-903, (2009).
    4 Terreno, E., Castelli, D. D., Viale, A.& Aime, S. Challenges for Molecular Magnetic Resonance Imaging. Chem. Rev.,110,3019-3042, (2010).
    5 Bridot, J. L. et al. Hybrid gadolinium oxide nanoparticles:Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc., 129,5076-5084, (2007).
    6 Karfeld-Sulzer, L. S. et al. Protein Polymer MRI Contrast Agents:Longitudinal Analysis of Biomaterials In Vivo. Magn. Reson. Med.,65,220-228, (2011).
    7 Chen, W. T. et al. Dynamic Contrast-Enhanced Folate-Receptor-Targeted MR Imaging Using a Gd-loaded PEG-Dendrimer-Folate Conjugate in a Mouse Xenograft Tumor Model. Mol. Imaging Biol,.12,145-154, (2010).
    8 Yang, H. et al. Detection of a Family of Gadolinium-Containing Endohedral Fullerenes and the Isolation and Crystallographic Characterization of One Member as a Metal-Carbide Encapsulated inside a Large Fullerene Cage. J. Am. Chem. Soc,.130,17296-17300, (2008).
    9 Ananta, J. S. et al. Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T-1 contrast. Nat. Nanotechnol,5,815-821, (2010).
    10 Silva, G. A. Neuroscience nanotechnology:Progress, opportunities and challenges. Nat Rev. Neurosci.,7,65-74, (2006).
    11 Bogdanov, A., Jr., Matuszewski, L., Bremer, C., Petrovsky, A.& Weissleder, R. Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol. Imaging,1,16-23, (2002).
    12 Querol, M.& Bogdanov, A. Amplification strategies in MR imaging:Activation and accumulation of sensing contrast agents (SCAs). J. Magn. Reson. Imaging,24,971-982, (2006).
    13 Chen, J. W., Pham, W., Weissleder, R.& Bogdanov, A. Human myeloperoxidase:A potential target for molecular MR imaging in atherosclerosis. Magn. Reson. Med.,52, 1021-1028,(2004).
    14 Ronald, J. A. et al. Enzyme-Sensitive Magnetic Resonance Imaging Targeting Myeloperoxidase Identifies Active Inflammation in Experimental Rabbit Atherosclerotic Plaques. Circulation,120,592-599, (2009).
    15 Whitesides, G. M., Mathias, J. P.& Seto, C. T. Molecular Self-Assembly and Nanochemistry - a Chemical Strategy for the Synthesis of Nanostructures. Science,254, 1312-1319,(1991).
    16 Thomas, G. Furin at the cutting edge:From protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell. Bio.,3,753-766, (2002).
    17 Mbikay, M., Sirois, F., Yao, J., Seidah, N. G.& Chretien, M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Brit. J. Cancer,75,1509-1514, (1997).
    18 Hosaka, M. et al. Arg-X-Lys/Arg-Arg Motif as a Signal for Precursor Cleavage Catalyzed by Furin within the Constitutive Secretory Pathway.J. Biol. Chem.,266,12127-12130, (1991).
    19 Liang, G. L., Ren, H. J.& Rao, J. H. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem.,2,54-60, (2010).
    20 Liang, G. L. et al. Controlled Self-Assembling of Gadolinium Nanoparticles as Smart Molecular Magnetic Resonance Imaging Contrast Agents. Angew. Chem. Int. Ed.,50, 6283-6286,(2011).
    21 Ye, D. J., Liang, G. L., Ma, M. L.& Rao, J. H. Controlling Intracellular Macrocyclization for the Imaging of Protease Activity. Angew. Chem. Int. Ed.,50,2275-2279, (2011).
    22 Stanisz, G J.& Henkelman, R. M. Gd-DTPA relaxivity depends on macromolecular content. Magn.Reson. Med.,44,665-667, (2000).
    23 Cao, C. Y., Chen, Y, Wu, F. Z., Deng, Y.& Liang, G L. Caspase-3 controlled assembly of nanoparticles for fluorescence turn on. Chem. Commun.,47,10320-10322, (2011).
    1 Nakayama, K. Furin:a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J.,327,625-635, (1997).
    2 Thomas, G. Furin at the cutting edge:From protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Bio.,3,753-766, (2002).
    3 Mbikay, M., Sirois, F., Yao, J., Seidah, N. G. & Chretien, M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Brit. J. Cancer.75,1509-1514, (1997).
    4 Hosaka, M. et al. Arg-X-Lys/Arg-Arg Motif as a Signal for Precursor Cleavage Catalyzed by Furin within the Constitutive Secretory Pathway.J. Biol. Chem.,266, 12127-12130,(1991).
    5 Liang, G L., Ren, H. J.& Rao, J. H. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem.,2,54-60, (2010).
    6 Ye, D. J., Liang, G. L., Ma, M. L.& Rao, J. H. Controlling Intracellular Macrocyclization for the Imaging of Protease Activity. Angew. Chem. Int. Edit.,50, 2275-2279,(2011).
    7 Helmchen, F.& Denk, W. Deep tissue two-photon microscopy. Nat. Methods,2, 932-940, (2005).
    8 Oheim, M., Beaurepaire, E., Chaigneau, E., Mertz, J.& Charpak, S. Two-photon microscopy in brain tissue:parameters influencing the imaging depth. J. Neurosci. Meth., 111,29-37, (2001).
    9 Katona, G. et al. Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat. Methods,9,201-208, (2012).
    10 Kong, B. et al. Carbon Dot-Based Inorganic-Organic Nanosystem for Two-Photon Imaging and Biosensing of pH Variation in Living Cells and Tissues. Adv. Mater.,24, 5844-5848, (2012).
    11 D'Aleo, A. et al. Ytterbium-Based Bioprobes for Near-Infrared Two-Photon Scanning Laser Microscopy Imaging. Angew. Chem. Int. Edit.,51,6622-6625, (2012).
    12 Wingate, R.& Kwint, M. Imagining the brain cell:the neuron in visual culture. Nat. Rev. Neurosci.,7,745-752, (2006).
    13 Yu, Q. R.& Heikal, A. A. Two-photon autofluorescence dynamics imaging reveals sensitivity of intracellular NADH concentration and conformation to cell physiology at the single-cell level.J.Photoch. Photobio. B,95,46-57, (2009).
    14 Lehmann, M. et al. Deficient processing and activity of type I insulin-like growth factor receptor in the furin-deficient LoVo-C5 cells. Endocrinology,139,3763-3771, (1998).
    15 Hook, V., Hook, G.& Kindy, M. Pharmacogenetic features of cathepsin B inhibitors that improve memory deficit and reduce beta-amyloid related to Alzheimer's disease. Biol. Chem.,391,861-872, (2010).
    16 Cao, C. Y., Chen, Y, Wu, F. Z., Deng, Y.& Liang, G. L. Caspase-3 controlled assembly of nanoparticles for fluorescence turn on. Chem. Commun.,47,10320-10322, (2011).
    1 Whitesides, G. M., Mathias, J. P.& Seto, C. T. Molecular Self-Assembly and Nanochemistry - a Chemical Strategy for the Synthesis of Nanostructures. Science,254, 1312-1319,(1991).
    2 Silva, G A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science,303,1352-1355, (2004).
    3 Yang, W., Lopez, P. J.& Rosengarten, G Diatoms:Self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst.,136,42-53, (2011).
    4 Liu, L. H. et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat. Nanotechnol.,4,457-463, (2009).
    5 Schnur, J. M. LIPID TUBULES -A PARADIGM FOR MOLECULARLY ENGINEERED STRUCTURES. Science,262,1669-1676, (1993).
    6 Adler-Abramovich, L. et al. Self-Assembled Organic Nanostructures with Metallic-Like Stiffness. Angew. Chem. Int. Edit.,49,9939-9942, (2010).
    7 Ariga, K., Mori, T.& Hill, J. P. Control of nano/molecular systems by application of macroscopic mechanical stimuli. Chem. Sci.,2,195-203, (2011).
    8 Loos, M. ORGANIC & BIOMOLECULAR CHEMISTRY3,1631, (2005).
    9 Lee, N. S. et al. Tunable dual-emitting shell-crosslinked nano-objects as single-component ratiometric pH-sensing materials. J. Mater. Chem.,21,14193-14202, (2011).
    10 Yang, Z., Liang, G, Guo, Z.& Xu, B. Intracellular hydrogelation of small molecules inhibits bacterial growth. Angew. Chem. Int. Edit.,46,8216-8219, (2007).
    11 Spruell, J. M.& Hawker, C. J. Triggered structural and property changes in polymeric nanomaterials. Chem. Sci.,2,18-26, (2011).
    12 Danial, N. N.& Korsmeyer, S. J. Cell death:Critical control points. Cell,116,205-219, (2004).
    13 Yang, Z., Liang, G.& Xu, B. Enzymatic hydrogelation of small molecules. Ace. Chem. Res., 41,315-326,(2008).
    14 Liang, G L., Ren, H. J.& Rao, J. H. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem.,2,54-60, (2010).
    15 Ren, H. J. et al. A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins. Angew. Chem. Int. Edit.,48,9658-9662, (2009).
    16 Ye, D. J., Liang, G L., Ma, M. L.& Rao, J. H. Controlling Intracellular Macrocyclization for the Imaging of Protease Activity. Angew. Chem. Int. Ed.,50,2275-2279, (2011).
    17 Liang, G L. et al. Controlled Self-Assembling of Gadolinium Nanoparticles as Smart Molecular Magnetic Resonance Imaging Contrast Agents. Angew. Chem. Int. Ed.,50, 6283-6286,(2011).
    18 Takaoka, Y. et al. Self-assembling nanoprobes that display off/on F-19 nuclear magnetic resonance signals for protein detection and imaging. Nat. Chem.,1,557-561, (2009).
    19 Talanian, R. V. et al. Substrate specificities of Caspase family proteases. J. Biol. Chem.,272, 9677-9682, (1997).
    20 Panda, D., Khatua, S.& Datta, A. Enhanced fluorescence of epicocconone in surfactant assemblies as a consequence of depth-dependent microviscosity. J. Phys. Chem. B,111, 1648-1656, (2007).
    21 Maxwell, D. J., Taylor, J. R.& Nie, S. M. Self-assembled nanoparticle probes for recognition and detection of biomolecules.J.Am. Chem. Soc.,124,9606-9612, (2002).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700