染料敏化太阳电池电解质材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳电池(DSSCs)具有成本低、效率高、制作工艺简单等优势,引起了众多科研工作者和工业界人士的关注。在DSSCs中,离子液体和添加剂作为电解质的重要组成部分,对DSSCs光伏性能的提高起着至关重要的作用。本论文旨在发展环境友好型离子液体的制备方法、开发适用于DSSCs的新型离子液体和添加剂等电解质材料,以期获得高效、稳定的染料敏化太阳电池。主要研究内容如下:
     利用高压釜制备了3-甲基苯并噻唑碘(MBTI)和2,3-二甲基苯并噻唑碘(DMBTI),利用热分析法研究了苯并噻唑环上引入2位甲基对其熔点和热稳定性的影响;利用加热回流法合成了一碘化N-(2-羟乙基)乙二胺盐(HEEDAI);将MBTI、DMBTI、苯并噻唑(BT)、2-甲基苯并噻唑(MBT)和4-叔丁基吡啶(TBP)作为染料敏化太阳电池(DSSCs)电解质溶液中的添加剂,制备了含有不同添加剂的电解质材料;研究了含有不同质量的乙腈(ACN)和3-甲氧基丙腈(MePN)以及不同质量的1,2-二甲基-3-丙基咪唑碘(DMPII)和1-甲基-3-丙基咪唑碘(MPII)电解质材料的性能。并将这些电解质材料应用于DSSCs中,利用超微铂电极和循环伏安法以及电化学阻抗谱法研究电解质材料中不同化合物的阳离子结构、杂环结构和杂原子N和S以及不同电解质组成对I-3和I-的氧化还原行为和铂电解质界面的影响;并将这些电解质材料组装成DSSCs,测量了光伏性能。
     结果表明:利用高压釜合成苯并噻唑碘,操作简便、缩短了反应时间、提高了产率;在苯并噻唑环上引入2位甲基,可以提高苯并噻唑碘的熔点和热稳定性;DMBT+易在电极上形成多层吸附,且DMBT+对I-的束缚力小,因此I-的扩散系数较大;对不同添加剂的研究结果表明,含有碱性N原子的添加剂对DSSCs光伏性能作用优于碱性S原子的添加剂;含有吡啶环结构添加剂(TBP)对DSSCs光伏性能作用优于含有苯并噻唑环的添加剂(MB、MBT、MBTI、DMBTI),且DMBTI可以作为一种良好的添加剂应用于DSSCs中;HEEDAI作为电解质中的I-源,所组装的离子液体基DSSCs,具有较高的开路电压和填充因子。以DMPII作为I-供体、ACN和MePN的质量混合比为2:1时,电解质溶液中I-3和I-具有较大的表观扩散系数,且对应的DSSCs具有较高的光电转换效率;当ACN和MePN的质量混合比为2:1、DMPII和MPII以2:1混合作为I-源时,DSSCs具有较高的短路电流密度和光电转换效率。
     进一步研究了碘化-(2-羟乙基)乙二胺盐(HEEDAIs)和碘化-(2-羟乙基)哌嗪盐(HEPIs)的合成以及热稳定性,并研究了二元离子液体中HEEDAIs和HEPIs对I-3离子和I-离子氧化还原电对的影响。结果表明HEEDAIs可以抑制基体TiO2导带中释放的电子与I-
     3离子的复合,从而使HEEDAI可以成为染料敏化太阳电池电解液中添加剂4-叔丁基吡啶。电解液组分为0.15mol L-1I2,HEEDAI与MPII质量比为1:4时,由此而组装成的染料敏化太阳电池短路光电流密度为9.36mA cm-2,开路光电压为0.67V,填充因子为0.52,在光照下,染料敏化太阳电池的光电转换效率为3.24%。
Dye sensitized solar cells (DSSCs) have attracted great attention in the past time due to theirlow cost, high efficiency and simple manufacturing process in the field of research and industry.Ionic liquid and additives are two important constitutes of the electrolyte and play the crucial role inthe improvement of photovoltic performance of DSSCs. In this dissertation, the fabrication methodof environmentally friendly ionic liquid was investigated. And novel ionic liquid and additives usedfor DSSCs were also developed to get DSSCs with high efficiency and stability. The main researchcontents are as follows:
     3-methyl benzothiazoliumiodide (MBTI) and2,3-dimethyl benzothiazoliumiodide (DMBTI)were prepared using Teflon-lined, stainless steel autoclaves. The influence of the2-position methylgroup of the benzothiazolium heterocycle on the melting point and thermal stability ofbenzothiazolium iodides was studied by thermogravimetric analysis and differential scanningcolorimetry. N-(2-hydroxyethyl) ethylenediaminium iodide (HEEDAI) was also synthesized. MBTI,DMBTI, benzothiazole (BT),2-methyl benzothiazole (MBT),4-tert-butylpyridine (TBP) were usedas additive in electrolyte of dye sensitized solar cells (DSSCs). The electrolytes were prepared withdifferent ratio of1,2-dimethyl-3-propylimidazolium iodide (DMPII),1-methyl-3-propylimidazoliumiodide (MPII),3-methoxypropionitrile (MePN) and acetonitrile (ACN). Moreover, the influence ofdifferent electrolytes with the heterocyclic structure and heteroatom N/S or different composition onI3–/I–redox behavior and the Pt electrode/solution interface reaction was investigated by cyclicvoltammetry using a Pt disk ultramicroelectrode and electrochemical impedance spectroscopy.DSSCs were assembled, and their photovoltaic performances were also studied.
     The results revealed that the preparation of the benzothiazolium iodides is simple with shortreaction time, easy purification, and high yields. The2-position methyl group of DMBTI has ahigher melting point and excellent thermal stability than MBTI. Compared with MBTI, the apparentdiffusion coefficient of I–in solution with DMBTI was higher. From the photovoltaic performance ofthese DSSCs, it was concluded that pyridine cycle (TBP) was better than benzothiazole cycle (MB,MBT, MBTI, DMBTI) and basic N atom was better than basic S atom in these additives. The DSSCswith HEEDAI gave higher open voltage and fill factor. Furthermore, the apparent diffusioncoefficient of I–/I–3and the photovoltaic performance of DSSCs were higher than others, when theDMPII was I–source of the electrolyte and the weight ratio of ACN and MePN was2:1. The DSSCswith DMPII and MPII (weight ratio2:1), ACN and MePN (weight ratio2:1) as solvent gave higheropen voltage and fill factor.
     Finally, N-(2-hydroxyethyl) ethylenediaminium iodides (HEEDAIs) and N-(2-hydroxyethyl)piperazinium iodides (HEPIs) were synthesized, and their thermal properties were analysed. Theinfluence of HEEDAI and HEPI on I-3/I-redox behavior in binary ionic liquid was investigated. The result revealed that HEEDAI can suppress the recombination between I-3and the injectedelectrons in TiO2conduction band and be used as the alternative of4-tert-butylpyridine in theelectrolyte of dye-sensitized solar cells. The electrolyte C,0.15mol·L1I2, HEEDAI and MPII withmass ratio of1:4, gave the short-circuit photocurrent density of9.36mA·cm2, open-circuitphotovoltage of0.67V, fill factor of0.52, and the corresponding photoelectric conversion efficiencyof3.24%at the illumination.
引文
[1] Shah, A.; Torres, P.; Tscharner, R.; et al. Photovoltaic technology: The case for thin-filmsolar cells [J]. Science1999,285(5428),692-698.
    [2](a) Oregan, B.; Gratzel, M., A low-cost, high-effiiency solar-cell based on dye-sensitizedcolloidal TiO2films [J]. Nature1991,353(6346),737-740;(b) Gratzel, M., CLUSTERPHYSICS-ALL SURFACE AND NO BULK.[J] Nature1991,349(6312),740-741.
    [3] Wang, M. K.; Gratzel, C.; Zakeeruddin, et al. Recent developments in redox electrolytes fordye-sensitized solar cells [J]. Energy Environ Sci2012,5(11),9394-9405.
    [4] Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; et al. Conversion of light to electricity bycis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthnium(II) charge-transfer sensitizers (X=CL-,BR-, I-, CN-, and SCN-) on nanocrystalline TiO2electrodes [J]. J Am Chem Soc1993,115(14),6382-6390.
    [5] Nazeeruddin, M. K.; Pechy, P.; Gratzel, M., Efficient panchromatic sensitization ofnanocrystalline TiO2films by a black dye based on a trithiocyanato-ruthenium complex [J].Chem Commun1997,(18),1705-1706.
    [6] Islam, A.; Sugihara, H.; Hara, K.; Singh, et al. Dye sensitization of nanocrystalline titaniumdioxide with square planar platinum(II) diimine dithiolate complexes [J]. Inorg Chem2001,40(21),5371-5380.
    [7] Dietrichbuchecker, C. O.; Sauvage, J. P.; Decian, A.; Fischer, J., High-yield synthesis of adicopper(I) trefoil knot containing1,3-phenylene groups as bridges between the chlate units[J]. J Chem Soc Chem Comm1994,(19),2231-2232.
    [8] Zeng, W.; Cao, Y.; Bai, Y, et al. Efficient Dye-Sensitized Solar Cells with an OrganicPhotosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and DithienosiloleBlocks [J]. Chem Mater2010,22(5),1915-1925.
    [9] Tsubouura H., Matsumura M., Nomura Y., et al. Dye sensitized zinc oxide: aqueouselectrolyte: platinum photo cell [J]. Nature,1976,261:402-403.
    [10]吴季怀,郝三存,林建明.染料敏化TiO2纳晶太阳能电池研究进展[J].华侨大学学报:自然科学版,2003,24(4):335-344.
    [11] Liu J, Yang H T, Zhang J B, et al. Room temperature synthesis of rutile TiO2and itsapplication in dye-sensitized solar cells[J]. Acta Phys-Chim Sin,2011,27(2):408-412.
    [12]李树全,林建明,吴季怀.上转换发光在染料敏化太阳能电池中的应用[J].无机化学学报,2009,25(1):60-64.
    [13] Wang J, Lin Z Q. Dye-sensitized TiO2nanotube solar cells with markedly enhancedperformance via rational surface engineering[J].Chem. Mater.,2010,22(2):579-584.
    [14]张莉,任焱杰,蔡生民.染料敏化La3+掺杂的TiO2纳米晶电极的光电化学性质[J].电化学,2002,8(1):27-31.
    [15] Wang M L, Huang C G, Cao Y G, et al. Dye-sensitized solar cells based onnanoparticle-decorated ZnO/TiO2core/shell nanorod arrays [J].J Phys D: Appl Phys,2009,42:155104.
    [16]焦星剑,林红,庄东填. TiO2纳米线薄膜的MgO包覆及其在染料敏化太阳能电池中的性能[J].稀土金属材料与工程,2011,40:318-322.
    [17] Jiang Y H, Xin X K, Byun M W, et al. An unconventional route to high-efficiency dyesensitized solar cells via embedding graphitic thin films into TiO2nano particle photo anode[J]. Nano Lett,2012,12:479-485.
    [18] Hauch A, Georg A. Diffusion in the electrolyte and charge-transfer reaction at the platinumelectrode in dye-sensitized solar cells [J]. Electrochim Acta,2001,46:3457–3466.
    [19] Fang X M, Ma T L, Guan G Q, et al. Performances characteristics of dye-sensitized solarcells based on counter electrodes with Pt films of different thickness [J]. J PhotochemPhotobiol A,2004,164:179–182.
    [20] Choi J Y, Hong J T, Seo H, et al. Optimal series-parallel connection method ofdye-sensitized solar cell for Pt thin film deposition using a radio frequency sputter system[J]. Thin Solid Films,2008,517:963–966.
    [21] Kim S S, Nah Y C, Noh Y Y, et al. Electrodeposited Pt for cost-efficient and flexibledye-sensitized solar cells [J]. Electrochim Acta,2006,51:3814–3819.
    [22] Tsekouras G, Mozer A J, Wallace G G. Enhanced performance of dye sensitized solar cellsutilizing platinum electrodeposit counter electrodes [J]. J Electrochem Soc,2008,155:K124–K128.
    [23] Li P J, Wu J H, Lin J M, et al. Improvement of performance of dye-sensitized solar cellsbased on electrodeposited-platinum counter electrode [J]. Electrochim Acta,2008,53:4161–4166.
    [24] Papageorgiou N, Maier W F, Gr tzel M. An iodinetriiodide reduction electrocatalyst foraqueous and organic media [J]. J Electrochem Soc,1997,144:876–884.
    [25] Wang G Q, Lin R F, Lin Y, et al. A novel high-performance counter electrode fordye-sensitized solar cells [J]. Electrochim Acta,2005,50:5546–5552.
    [26] Cho S J, Ouyang J Y. Attachment of platinum nanoparticles to substrates by coating andpolyol reduction of a platinum precursor [J]. J. Phys. Chem. C,2011,115:8519-8526.
    [27] Lin C Y, Lin J Y, Wan C C, et al. High-performance and low platinum loadingelectrodeposited-Pt counter electrodes for dye-sensitized solar cells [J]. Electrochim Acta,2011,56:1941–1946.
    [28] Hsieh C K, Tsai M C, Su C Y, et al. A hybrid nanostructure of platinum-nanoparticles/graphitic-nanofibers as a three-dimensional counter electrode in dye-sensitized solar cells[J]. Chem Commun,2011,47:11528–11530.
    [29] Huang K C, Wang Y C, Dong R X, et al. A high performance dye-sensitized solar cell witha novel nanocomposite film of PtNP/MWCNT on the counter electrode [J]. J Mater Chem,2010,20:4067–4073.
    [30] Gong F, Wang H, Wang Z S. Self-assembled monolayer of graphene-Pt as counter electrodefor efficient dye-sensitized solar cell [J]. Phys. Chem. Chem. Phys.,2011,13:17676–17682.
    [31] Jeon S S, Kim C, Ko J, et al. Pt nanoparticles supported on polypyrrole nanospheres as acatalytic counter electrode for dye-sensitized solar cells [J]. J Phys Chem C,2011,115:22035–22039.
    [32] Kay A, Gr tzel M. Low cost photovoltaic modules based on dye sensitized nanocrystallinetitanium dioxide and carbon powder [J]. Sol. Energ. Mater. Sol. Cells,1996,44:99–117.
    [33] Murakami T N, Ito S, Wang Q, et al. Highly efficient dye-sensitized solar cells based oncarbon black counter electrodes [J]. J. Electrochem. Soc.,2006,153: A2255–A2261.
    [34] Chen J, Li K, Luo Y, et al. A flexible carbon counter electrode for dye-sensitized solar cells[J]. Carbon,2009,47:2704–2708.
    [35] Jiang Q W, Li G R, Wang F, et al. Highly ordered mesoporous carbon arrays from naturalwood materials as counter electrode for dye-sensitized solar cells [J]. Electrochem Commun,2010,12:924–927.
    [36] Suzuki K, Yamaguchi M, Kumagai M, et al. Application of carbon nanotubes to counterelectrodes of dye-sensitized solar cells [J]. Chem. Lett.,2003,32:28–29.
    [37] Xu Y X, Bai H, Lu G W, et al. Flexible graphene films via the filtration of water-solublenoncovalent functionalized graphene sheets [J]. J. Am. Chem. Soc.,2008,130:5856–5857.
    [38] Ramasamy E, Lee W J, Lee D Y, et al. Spray coated multi-wall carbon nanotube counterelectrode for tri-iodide reduction in dye-sensitized solar cells [J]. Electrochem Commun,2008,10:1087–1089.
    [39] Roy-Mayhew J D, Bozym D J, Punckt C, et al. Functionalized graphene as a catalyticcounter electrode in dye-sensitized solar cells [J]. ACS Nano,2010,4:6203–6211.
    [40] Gong F, Li Z Q, Wang H, et al. Enhanced electrocatalytic performance of graphene viaincorporation of SiO2nanoparticles for dye-sensitized solar cells [J]. J. Mater. Chem.,2012,22:17321–17327.
    [41] Kavan L, Yum J H, Nazeeruddin M K, et al. Graphene nanoplatelet cathode for Co(III)/(II)mediated dye-sensitized solar cells [J]. ACS Nano,2011,5:9171-9178.
    [42] Kavan L, Yum J H, Gr tzel M. Graphene nanoplatelets outperforming platinum as theelectrocatalyst in Co-bipyridine-mediated dye-sensitized solar cells [J]. Nano Lett,2011,11:5501–5506.
    [43] Saito Y, Kitamura T, Wada Y, et al. Application of poly (3,4-ethylenedioxythiophene) tocounter electrode in dye-sensitized solar cells [J]. Chem. Lett.,2002,31:1060–1061.
    [44] Yum J H, Baranoff E, Kessler F, et al. A cobalt complex redox shuttle for dye-sensitizedsolar cells with high open-circuit potentials [J]. Nat. Commun.,2012,3:631.
    [45] Li Q H, Wu J H, Tang Q W, et al. Application of microporous polyaniline counter electrodefor dye-sensitized solar cells [J]. Electrochem. Commun.,2008,10:1299–1302.
    [46] Wu J H, Li Q H, Fan L Q, et al. High-performance polypyrrole nanoparticles counterelectrode for dye-sensitized solar cells [J]. J. Power Sources,2008,181:172–176.
    [47] Tai Q D, Chen B L, Guo F, et al. In situ preparation transparent polyaniline electrode and itsapplication in bifacial dye-sensitized solar cells [J]. ACS Nano,2011,5:3795–3799.
    [48] Trevisan R, D bbelin M, Boix P P, et al. PEDOT nanotube arrays as high performingcounter electrodes for dye sensitized solar cells. Study of the interactions amongelectrolytes and counter electrodes [J]. Adv Energy Mater,2011,1:781–784.
    [49] Wang M K, Anghel A M, Marsan B, et al. CoS supersedes Pt as efficient electrocatalystfor triiodide reduction in dye-sensitized solar cells [J]. J. Am. Chem. Soc.,2009,131:15976–15977.
    [50] Sun H C, Qin D, Huang S Q, et al. Dye-sensitized solar cells with NiS counter electrodeselectrodeposited by a potential reversal technique [J]. Energy Environ Sci,2011,4:2630–2637.
    [51] Wu M X, Wang Y D, Lin X, et al. Economical and effective sulfide catalysts fordye-sensitized solar cells as counter electrodes [J]. Phys Chem Chem Phys,2011,13:19298–19301.
    [52] Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu2ZnSnS4nanocrystal ink and its usefor solar cells [J]. J. Am. Chem. Soc.,2009,131:11672–11673.
    [53] Xin X K, He M, Han W, et al. Low-cost copper zinc tin sulfide counter electrodes forhigh-efficiency dye-sensitized solar cells [J]. Angew. Chem. Int. Ed.,2011,50:11739–11742.
    [54] Kung C W, Chen H W, Lin C Y, et al. CoS acicular nanorod arrays for the counter electrodeof an efficient dye-sensitized solar cell [J]. ACS Nano,2012,6:7016–7025.
    [55] Chi W S, Han J W, Yang S, et al. Employing electrostatic self-assembly of tailored nickelsulfide nanoparticles for quasi-solid-state dye-sensitized solar cells with Pt-free counterelectrodes [J]. Chem Commun,2012,48:9501–9503.
    [56] Jiang Q W, Li G R, Gao X P. Highly ordered TiN nanotube arrays as counter electrodes fordye-sensitized solar cells [J]. Chem Commun,2009,45:6720–6722.
    [57] Li G R, Song J, Pan G L, et al. Highly Pt-like electrocatalytic activity of transition metalnitrides for dye-sensitized solar cells [J]. Energy Environ Sci,2011,4:1680–1683.
    [58] Jiang Q W, Li G R, Liu S, et al. Surface-nitrided nickel with bifunctional structure aslow-cost counter electrode for dye-sensitized solar cells [J]. J Phys Chem C,2010,114:13397–13401.
    [59] Li G R, Wang F, Jiang Q W, et al. Carbon nanotubes with titanium nitride as a low-costcounter-electrode material for dye-sensitized solar cells [J]. Angew Chem Int Ed,2010,49:3653–3656.
    [60] Li G R, Wang F, Song J, et al. TiN-conductive carbon black composite as counterelectrodefor dye-sensitized solar cells [J]. Electrochim Acta,2012,65:216–220.
    [61] Wen Z H, Cui S M, Pu H S, et al. Metal nitride-graphene nanohybrids: General synthesisand multifunctional titanium nitride-graphene electrocatalyst [J]. Adv. Mater,2011,45:5445–5450.
    [62] Xia J B, Yuan C C, Yanagida S. Novel counter electrode V2O5/Al for solid dye-sensitizedsolar cells [J]. ACS Appl Mater Interfaces,2010,2:2136–2139.
    [63] Wu M M, Lin X, Hagfeldt A, et al. A novel catalyst of WO3nanorod for the counterelectrode of dye-sensitized solar cells [J]. Chem Commun,2011,47:4535–4537.
    [64] Lin X, Wu M X, Wang Y D, et al. Novel counter electrode catalysts of niobium oxidessupersede Pt for dye-sensitized solar cells [J]. Chem Commun,2011,47:11489–11491.
    [65] Yun S N, Wang L, Guo W, et al. The application of non-Pt counter electrode catalysts usingtantalum oxide for low-cost dye-sensitized solar cells [J]. Electrochem Commun,2012,24:69–73.
    [66] Wu M X, Lin X, Wang L, et al. In situ synthesized economical tungsten dioxide imbeddedin mesoporous carbon for dye-sensitized solar cells as counter electrode catalyst [J]. J PhysChem C,2011,115:22598–22602.
    [67] Jang J S, Ham D J, Ramasamy E, et al. Platinum-free tungsten carbides as an efficientcounter electrode for dye sensitized solar cells [J]. Chem Commun,2010,46:8600–8602.
    [68] Wu M X, Lin X, Hagfeldt A, et al. Low-cost molybdenum carbide and tungsten carbidecounter electrodes for dye-sensitized solar cells [J]. Angew Chem Int Ed,2011,50:3520–3524.
    [69] Wu M X, Lin X, Wang Y D, et al. Economical Pt-free catalysts for counter electrodes ofdye-sensitized solar cells [J]. J Am Chem Soc,2012,134:3419–3428.
    [70] Du Y F, Fan J Q, Zhou W H, et al. One-step synthesis of stoichiometric Cu2ZnSnSe4ascounter electrode for dye-sensitized solar cells [J]. ACS Appl Mater Interfaces,2012,4:1796–1802.
    [71] Gong F, Wang H, Xu X, et al. In situ growth of Co0.85Se and Ni0.85Se on conductivesubstrates as high-performance counter electrodes for dye-sensitized solar cells [J]. J AmChem Soc,2012,134:10953–10958.
    [72] Nazeeruddin, M. K.; Baranoff, E.; Gratzel, M., Dye-sensitized solar cells: A brief overview[J]. Solar Energy2011,85(6),1172-1178.
    [73] Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitizedsolar cells [J]. J Photochem Photobiol A Chem2004,168(3),235-235.
    [74] Fukui, A.; Komiya, R.; Yamanaka, R, et al. Effect of a redox electrolyte in mixed solventson the photovoltaic performance of a dye-sensitized solar cell [J]. Solar Energy Mater SolarCells2006,90(5),649-658.
    [75] Wu, J. H.; Lan, Z.; Lin, J. M, et al, Effect of solvents in liquid electrolyte on thephotovoltaic performance of dye-sensitized solar cells [J]. J Power Sources2007,173(1),585-591.
    [76] Buzzeo, M. C.; Hardacre, C.; Compton, R. G., Extended electrochemical windows madeaccessible by room temperature ionic liquid/organic solvent electrolyte systems [J].Chemphyschem2006,7(1),176-180.
    [77] Tulloch, G. E., Light and energy-dye solar cells for the21st century [J]. J PhotochemPhotobiol A Chem2004,164(1-3),209-219.
    [78] Rachakatla, R. S.; Balivada, S.; Seo, G. M. et al, Attenuation of Mouse Melanoma by A/CMagnetic Field after Delivery of Bi-Magnetic Nanoparticles by Neural Progenitor Cells [J].ACS Nano2010,4(12),7093-7104.
    [79] Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S. et al, Combined experimental andDFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers [J]. JAm Chem Soc2005,127(48),16835-16847.
    [80] Jhong, H. R.; Wong, D. S. H.; Wan, C. C. et al, A novel deep eutectic solvent-based ionicliquid used as electrolyte for dye-sensitized solar cells [J]. Electrochem Commun2009,11(1),209-211.
    [81] Gratzel, M., Dye-sensitized solar cells [J]. J Photochem Photobiol C-Photochem Rev2003,4(2),145-153.
    [82] Ohno, H.; Yoshizawa, M., Ion conductive characteristics of ionic liquids prepared byneutralization of alkylimidazoles [J]. Solid State Ionics2002,154,303-309.
    [83] Hirao, M.; Sugimoto, H.; Ohno, H., Preparation of novel room-temperature molten salts byneutralization of amines [J]. J Electrochem Soc2000,147(11),4168-4172.
    [84] Bonhote, P.; Dias, A. P.; Armand, M., et al, Hydrophobic, highly conductiveambient-temperature molten salts [J]. Inorg Chem1998,37(1),166-166.
    [85] Shi, C. W.; Qian, G.; Shikui, H. et al, An improved preparation of1-methyl-3-propylimidazolium iodide and its application in dye-sensitized solar cells [J]. Solar Energy2008,82(5),385-8.
    [86] Shi, C. W.; Dai, S. Y.; Wang, K. J. et al, Application of3-hexyl-1-methylimidazolium iodideto dye-sensitized solar cells [J]. Acta Chimica Sinica2005,63(13),1205-1209.
    [87] Lall, S. I.; Mancheno, D.; Castro, S.; et al, a new category of room temperature ionic liquidbased on polyammonium salts [J]. Chem Commun2000,(24),2413-2414.
    [88] Bonhote, P.; Dias, A. P.; Papageorgiou, N.; et al, highly conductive ambient-temperaturemolten salts [J]. Inorg Chem1996,35(5),1168-1178.
    [89] Fuller, J.; Breda, A. C.; Carlin, R. T., Ionic liquid-polymer gel electrolytes from hydrophilicand hydrophobic ionic liquids [J]. J Electroanal Chem1998,459(1),29-34.
    [90] Binnemans, K., Ionic liquid crystals [J]. Chem Rev2005,105(11),4148-4204.
    [91] Son, K. M.; Kang, M. G.; Vittal, R.; Lee, et al, Effects of substituents of imidazoliumcations on the performance of dye-sensitized TiO2solar cells [J]. J Appl Electrochem2008,38(12),1647-1652.
    [92] Wachter, P.; Zistler, M.; Schreiner, C. et al, Characterisation of DSSC-electrolytes based on1-ethyl-3-methylimidazolium dicyanamide: Measurement of triiodide diffusion coefficient,viscosity, and photovoltaic performance [J]. J Photochem Photobiol A-Chem2008,197(1),25-33.
    [93] Wang, Y. Q.; Sun, Y. M.; Song, B.; et al, Ionic liquid electrolytes based on1-vinyl-3-alkylimidazolium iodides for dye-sensitized solar cells [J]. Solar Energy MaterSolar Cells2008,92(6),660-666.
    [94] Kubo, W.; Kitamura, T.; Hanabusa, K.; Wada, Y.; et al, Quasi-solid-state dye-sensitizedsolar cells using room temperature molten salts and a low molecular weight gelator [J].Chem Commun2002,(4),374-375.
    [95] Wang, Y. Q.; Sun, Y. M.; Song, B.; et al, Ionic liquid electrolytes based on1-vinyl-3-alkylimidazolium iodides for dye-sensitized solar cells [J]. Solar Energy MaterSolar Cells2008,92(6),660-666.
    [96] Kunugi, Y.; Hamada, N.; Tsunashima, K.; et al, Quaternary Phosphonium Iodides asOrganic Iodide Sources for Dye-Sensitized Solar Cells [J]. J Photopoly Sci Technol2009,22(4),529-531.
    [97] Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; et al, A new ionic liquid electrolyte enhancesthe conversion efficiency of dye-sensitized solar cells [J]. J Phys Chem B2003,107(48),13280-13285.
    [98] Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; et al, A binary ionic liquid electrolyte toachieve7%power conversion efficiencies in dye-sensitized solar cells [J]. Chem Mater2004,16(14),2694-2696.
    [99] Kuang, D.; Wang, P.; Ito, S.; et al, Stable Mesoscopic Dye-Sensitized Solar Cells Based onTetracyanoborate Ionic Liquid Electrolyte [J]. J. Am. Chem. Soc.2006,128(24),7732-7733.
    [100] Wang, P.; Wenger, B.; Humphry-Baker, R.; et al, Charge separation and efficient lightenergy conversion in sensitized mesoscopic solar cells based on binary ionic liquids [J]. JAm Chem Soc2005,127(18),6850-6856.
    [101] Bai, Y.; Cao, Y.; Zhang, J.; et al, High-performance dye-sensitized solar cells based onsolvent-free electrolytes produced from eutectic melts [J]. Nat Mater2008,7(8),626-630.
    [102] Paulsson, H.; Hagfeldt, A.; Kloo, L., Molten and solid trialkylsulfonium iodides and theirpolyiodides as electrolytes in dye-sensitized nanocrystalline solar cells [J]. J Phys Chem B2003,107(49),13665-13670.
    [103] Ramirez, R. E.; Torres-Gonzalez, L. C.; Sanchez, E. M., Electrochemical aspects ofasymmetric phosphonium ionic liquids [J]. J Electrochem Soc2007,154(2), B229-B233.
    [104] Santa-Nokki, H.; Busi, S.; Kallioinen, J.; et al, Quaternary ammonium polyiodides as ionicliquid/soft solid electrolytes in dye-sensitized solar cells [J]. J Photochem PhotobiolA-Chem2007,186(1),29-33.
    [105] Kambe, S.; Nakade, S.; Kitamura, T.; et al, Influence of the electrolytes on electrontransport in mesoporous TiO2-electrolyte systems [J]. J Phys Chem B2002,106(11),2967-2972.
    [106] Nakade, S.; Saito, Y.; Kubo, W.; et al, Enhancement of electron transport in nano-porousTiO2electrodes by dye adsorption [J]. Electrochem Commun2003,5(9),804-808.
    [107] Huang, S. Y.; Schlichthorl, G.; Nozik, A. J.; et al, Charge recombination in dye-sensitizednanocrystalline TiO2solar cells [J]. J Phys Chem B1997,101(14),2576-2582.
    [108] Kusama, H.; Arakawa, H., Influence of alkylaminopyridine additives in electrolytes ondye-sensitized solar cell performance [J]. Solar Energy Mater Solar Cells2004,81(1),87-99.
    [109] Gorlov, M.; Kloo, L., Ionic liquid electrolytes for dye-sensitized solar cells [J]. Dalton T2008,(20),2655-2666.
    [110] Bai, Y.; Cao, Y. M.; Zhang, J.; et al, High-performance dye-sensitized solar cells based onsolvent-free electrolytes produced from eutectic melts [J]. Nat Mater2008,7(8),626-630.
    [111] Liu, Y.; Hagfeldt, A.; Xiao, X. R.; et al, Investigation of influence of redox species on theinterfacial energetics of a dye-sensitized nanoporous TiO2solar cells [J]. Solar EnergyMater Solar Cells1998,55(3),267-281.
    [112] Jennings, J. R.; Wang, Q., Influence of Lithium Ion Concentration on Electron Injection,Transport, and Recombination in Dye-Sensitized Solar Cells [J]. J Phys Chem C2010,114(3),1715-1724.
    [113] Koops, S. E.; O'Regan, B. C.; Barnes, P. R. F.; et al, Parameters Influencing the Efficiencyof Electron Injection in Dye-Sensitized Solar Cells [J]. J Am Chem Soc2009,131(13),4808-4818.
    [114] Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitizedsolar cells [J]. J Photochem Photobiol A-Chem2004,164(1-3),3-14.
    [115] Yu, Z.; Gorlov, M.; Boschloo, et al, Synergistic Effect of N-Methylbenzimidazole andGuanidinium Thiocyanate on the Performance of Dye-Sensitized Solar Cells Based on IonicLiquid Electrolytes [J]. J Phys Chem C2010,114(50),22330-22337.
    [116] Kusama, H.; Arakawa, H., Influence of aminotriazole additives in electrolytic solution ondye-sensitized solar cell performance [J]. J Photochem Photobiol A-Chem2004,164(1-3),103-110.
    [117] Yin, X.; Tan, W.; Zhang, J.; et al, The effect mechanism of4-ethoxy-2-methylpyridine as anelectrolyte additive on the performance of dye-sensitized solar cell [J]. Colloids SurfA-Physicochem Engi Aspects2008,326(1-2),42-47.
    [118] Zhang, C.; Dai, J.; Huo, Z.; et al, Influence of1-methylbenzimidazole interactions with Li+and TiO2on the performance of dye-sensitized solar cells [J]. Electrochim Acta2008,53(17),5503-5508.
    [119] Shi, C. W.; Dai, S. Y.; Wang, K. J.; et al, The adsorption of4-tert-butylpyridine on thenanocrystalline TiO2and Raman spectra of dye-sensitized solar cells in situ [J]. VibrationalSpectroscopy2005,39(1),99-105.
    [120] Shi, C. W.; Ge, Q.; Han, S.; et al, An improved preparation of1-methyl-3-propylimidazolium iodide and its application in dye-sensitized solar cells [J]. Solar Energy2008,82(5),385-388.
    [121] Shi, C. W.; Dai, S. Y.; Wang, K. J.; et al, Influence of various cations on redox behavior of I-and I-3(-) and comparison between KI complex with18-crown-6andL1,2-dimethyl-3-propylimidazolium iodide in dye-sensitized solar cells [J]. ElectrochimActa2005,50(13),2597-2602.
    [122] Matsumoto, T.; Yamamoto, H.; Inoue, S., Selective formation of thiose from formaldehydecatalyzed by thiazolium salt [J]. J Am Chem Soc1984,106(17),4829-4832.
    [123] Kabatc, J.; Jedrzejewska, B.; Orlinski, P.; et al, The synthesis and the solvent andsubstituent effect on the spectroscopic characteristic of3-ethyl-2-(p-substituedstyryl)benzothiazolium iodides [J]. Spectrochim Acta A2005,62(1-3),115-125.
    [124] Huynh, H. V.; Meier, N.; Pape, T.; Hahn, F. E., Benzothiazolin-2-ylidene complexes ofiridium(I)[J]. Organometallics2006,25(12),3012-3018.
    [125] Zhang, C. N.; Huo, Z. P.; Huang, Y.; et al, Studies of interfacial recombination in the dyedTiO2electrode using Raman spectra and electrochemical techniques [J]. J ElectroanalytChem2009,632(1-2),133-138.
    [126] Bisquert, J., Theory of the impedance of electron diffusion and recombination in a thin layer[J]. J Phys Chem B2002,106(2),325-333.
    [127] Wang, Q.; Moser, J. E.; Gratzel, M., Electrochemical impedance spectroscopic analysis ofdye-sensitized solar cells [J]. J Phys Chem B2005,109(31),14945-14953.
    [128] Ma, T. L.; Akiyama, M.; Abe, E.; Imai, I., High-efficiency dye-sensitized solar cell based ona nitrogen-doped nanostructured titania electrode [J]. Nano Lett2005,5(12),2543-2547.
    [129] Qin, H.; Wenger, S.; Xu, M.; et al, An organic sensitizer with a fused dithienothiophene unitfor efficient and stable dye-sensitized solar cells [J]. J Am Chem Soc2008,130(29),9202.
    [130] Li, C.; Yang, X.; Chen, R.; et al, Anthraquinone dyes as photosensitizers for dye-sensitizedsolar cells [J]. Solar Energy Mater Solar Cells2007,91(19),1863-1871.
    [131] Shi, C. W.; Ge, Q.; Zhou, F.; et al, An improved preparation of3-ethyl-1-methylimidazolium trifluoro acetate and its application in dye sensitized solar cells [J]. SolarEnergy2009,83(1),108-112.
    [132] Li, D.; Wang, M.; Wu, J.; et al, Application of a New Cyclic Guanidinium Ionic Liquid onDye-Sensitized Solar Cells (DSSCs)[J]. Langmuir2009,25(8),4808-4814.
    [133] Lin, C.; Lin, H.; Zhuang, D.; et al, Highly-Ordered Perpendicularly Oriented ZnO NanobeltArray Films: Synthesis, Characterization, and Application [J]. J. Nanosci. Nanotechnol.2009,9(3),1976-1984.
    [134] Mishra, A.; Pootrakulchote, N.; Fischer, M. K. R.; et al, Design and synthesis of a novelanchoring ligand for highly efficient thin film dye-sensitized solar cells [J]. Chem Commun2009,(46),7146-7148.
    [135] Kusama, H.; Kurashige, M.; Arakawa, H., Influence of nitrogen-containing heterocyclicadditives in I-/I-3(-) redox electrolytic solution on the performance of Ru-dye-sensitizednanocrystalline TiO2solar cell [J]. J Photochem Photobiol A-Chem2005,169(2),169-176.
    [136] Shi, C. W.; Dai, S. Y.; Wang, K. J.; et al, Influence of1-methyl-3-propylimidazolium iodideon I-3(-)/I-redox behavior and photovoltaic performance of dye-sensitized solar cells [J].Solar Energy Mater Solar Cells2005,86(4),527-535.
    [137] Snaith H. J. and Schmidt-Mende L., Advances in liquidelectrolyte and solid-statedye-sensitized solar cells [J]. Adv Mater,20(19),2007,3187–3200.
    [138] Zakeeruddin S. M. and Gr¨atzel M., Solvent-free ionic liquid electrolytes for mesoscopicdye-sensitized solar cells [J], Adv Funct Mater,19(14),2009,1–16.
    [139] Kubo W., Kambe S., Nakade S. et al., Photocurrent-determining processes inquasi-solid-state dye-sensitized solar cells using ionic gel electrolytes [J], J Phys Chem B,107(18),2003,4374–4381.
    [140] Kawano R., Matsui H., Matsuyama C. et al., High performance dye-sensitized solar cellsusing ionic liquids as their electrolytes [J], J Photochem Photobiol A-Chem,164(1-3),2004,87–92.
    [141] Fei Z. F., Kuang D. B., Zhao D. B. et al., A supercooled imidazolium iodide ionic liquid as alow-viscosity electrolyte for dye-sensitized solar cells [J], Inorg Chem,45(26),2006,10407–10409.
    [142] Mazille F., Fei Z. F., Kuang D. B. et al., Influence of ionic liquids bearing functional groupsin dye-sensitized solar cells [J], Inorg Chem,45(4),2006,1585–1590
    [143] Wang Y. Q., Sun Y. M., Song B., et al, Ionic liquid electrolytes based on1-vinyl-3-alkylimidazolium iodides for dye-sensitized solar cells [J], Solar Energy MaterSolar Cells,92(6),2008,660–666.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700