煤液化残渣的组成结构分析和催化加氢
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深入了解煤液化残渣中有机质的组成结构对实现残渣的定向转化和高效利用具有重要意义。本课题选用黑山煤液化残渣(HSR)和胜利煤液化残渣(SLR)为研究对象,考察其在不同极性溶剂中的溶解性,结果表明:残渣的萃取率与溶剂的介电常数有一定的关系,两种煤液化残渣均在介电常数较大的溶剂中显示出较好的溶解性,在低介电常数范围内,萃取率随溶剂介电常数的增高而增高,在高介电常数范围内,SLR的萃取率随溶剂介电常数的增高而降低,而HSR没有此规律。依次用石油醚、甲醇、环己烷、CS_2、苯和丙酮/CS_2对HSR和SLR进行分级萃取,用GC/MS分析各级萃取物,得到了正构烷烃、长链烯烃、芳烃、酚类、酯类、酮类、醇类和其它类别的化合物(OSs)。前三级萃取物中检测到的化合物种类和含量要远远大于后三级,推测后三级萃取物中主要是大分子的缩合芳烃。
     利用钌离子催化氧化(RICO)法对HSR、SLR及其萃余物和各级萃取物进行了温和条件下的氧化解聚,氧化产物经酯化后,用GC/MS和FTIR对酯化产物进行检测分析,通过比较产物组成结构的差别推测HSR和SLR的组成结构及其差异性。HSR、SLR及其萃余物和萃取物氧化反应所得可溶物的GC/MS可检测组分包括脂肪族一元酸、-二元酸、三元酸、芳酸、饱和环脂肪酸、含杂原子(氯、氧和氮)的酸及一些酮类和酯类化合物。芳酸的收率在HSR的氧化产物中占有绝对优势,而SLR的氧化产物中-二元酸的含量最高,说明HSR的缩合程度较高,而SLR中富含短链的二芳基烷烃类化合物。脂肪族一元酸和-二元酸的碳链长度较短,推测碳链较长的烷基芳烃和-二芳基烷烃为易于加氢液化的组分。在HSR和SLR萃余物的氧化产物中均检测到了一系列中长链的烷烃,碳原子分布为C13-C20,而在HSR和SLR的氧化产物中却没有检测到任何的烷烃,推测这部分烷烃化合物以网络嵌入态的形式存在于残渣的大分子结构中。SLR萃余物的氧化产物中卤代烷烃、乙氧基烷烃和短链酮类的含量较高,推测这些小分子化合物同样以网络嵌入态的形式存在于SLR的大分子结构中。前三级萃取物的氧化产物中物种较丰富,而后三级萃取物的氧化产物中主要是苯多酸。
     以硅胶柱层析对SLR的CS_2萃取物进行分离分析,得到烷烃、不同缩合程度的芳烃和酯类共五个族组分。这一结果显示,溶剂萃取和柱层析技术相结合对煤液化残渣中的有机质具有良好的分离效果,可为煤液化残渣组成结构的研究和高效利用提供更加丰富的数据和信息。检测到的烷烃主要是正构烷烃,芳烃主要是4-7环的稠环芳烃,酯类主要包括长链脂肪酸甲酯和邻苯二甲酸二烷基酯。还检测到少量含氮和硫的化合物,氮和硫元素主要以环的形式存在。
     在微波辐射下对脱矿物质后的HSR和SLR进行催化加氢反应,反应化合物经甲醇继续萃取两周后,用FTIR和GC/MS分析甲醇萃取物。结果表明:Pd/γ-Al2O3能有效地促进两种煤液化残渣的加氢转化;两种煤液化残渣催化加氢反应混合物中氢化芳烃、取代芳烃和非取代芳烃的收率均明显高于非催化加氢反应混合物中相应类别化合物的收率;甲醇萃余物的FTIR谱图中脂肪族成分的特征吸收峰明显减弱,表明在催化剂的作用下含-OH和链烃等官能团的小分子易从煤液化残渣的大分子结构中游离出来。
Investigating the compositions and structures in soluble organic matter from coalliquefaction residue is of great significance for both targeted conversion and efficientutilization of coal liquefaction residue. In order to investigate the organic chemicalcompositions of coal liquefaction residue, Heishan coal liquefaction residue (HSR) and Shenglicoal liquefaction residue (SLR) were selected in this subject. HSR and SLR were extractedwith petroleum ether, methanol, cyclohexane, CS_2, benzene and acetone/CS_2(1:1, V/V)sequentially and the extracts were analyzed with GC/MS. The results shows that theGC/MS-detectable species can be classified into normal alkanes, branched alkanes, alkenes,arenes, hydroxybenzenes, esters, ketones, alcohols and other species organic compounds. Thenumber of GC/MS-detectable compounds in extracts of petroleum ether, methanol andcyclohexane were appreciably more than those in extracts of CS_2, benzene and acetone/CS_2.
     HSR, SLR, their extracts and extraction residues (acetone/CS_2-insoluble) were subject toruthenium ion-catalyzed oxidation (RICO). After esterification with diazomethane, theproducts were analyzed with FTIR and GC/MS. The results show that main component in theproduct from HSR is benzene carboxylic acids, however, short-chain alkanedioic acids are themost abundant species in the product from SLR, implying that HSR contains large amounts ofcondensed polyaromatic rings, and SLR contains more-diarylalkanes. The lengths ofcarbon chain of monocarboxylic acids and dicarboxylic acids are short, suggesting that theresidues are rich in condensed aromatic rings and the condensed aromatic species are insolubleand inactive toward hydroliquefaction, whereas alkylarenes and-diarylalkanes with longchain are soluble and active components toward hydroliquefaction. A series of alkanes,distribution of carbon atoms in C13-C20, were only detected in the oxidation products fromextraction residue of HSR and SLR. The yields of halogenated alkanes, ethoxy alkanes andshort chain ketones in the products from RICO of extraction residues of HSR and SLR weresignificantly higher than those from RICO of HSR and SLR.
     The further separation of CS_2-extractable fraction of SLR by silica-gel columnchromatography achieved five group fractions, including alkanes, arenes (three) and esters.This result demonstrates that solvent extraction combined with column chromatography hasgood separation effect on the organic matter of coal liquefaction residue. This method canprovide more information of the compositions and structures of organic macromolecularcomponents in coal liquefaction residue and reliable theoretical basis for efficient utilization ofcoal liquefaction residue.
     Demineralized HSR and SLR were subject to hydroconversion in methanol undermicrowave irradiation followed by products analysis with GC/MS. The results show thatPd/γ-Al2O3possesses good hydrogenation activity and can promote hydroconversion of coalliquefaction residue effectively; The products of hydrogenation reactions from HSR and SLRcan be classified as alkanes, hydroarenes (HAs), substituted arenes (SAs), non-substitutedarenes (NSAs), oxygen-containing organic compounds (OCOCs), and sulfur-containingorganic compounds (SCOCs). The yields of HAs, SAs and NSAs of products from catalytichydrogenations were significantly higher than those from non-catalytic hydrogenations.
引文
[1]赵洪滨,金红光,林汝谋,等.世界能源结构变化趋势与分析[J].洁净煤技术,2000,6(3):5-12.
    [2]国家统计局工业交通统计司,国家发展和改革委员会能源局.中国统计年鉴-2005[M].北京:中国统计出版社,2006.
    [3]刘清志,王臻.低碳背景下中国能源结构调整思考[J].中国石油大学学报,2012,28(1):13-16.
    [4]林明彻,李晶晶,杨富强.中国可持续能源政策分析[J].中国能源,2012,34,(6):6-16,25.
    [5]中国煤炭工业协会编著.中国煤炭经济研究[M].北京:煤炭工业出版社,2005.
    [6]林伯强.中国能源战略调整和能源政策优化研究[J].电网与清洁能源,2012,28(1):1-3.
    [7]翁非.中国能源结构特征及发展前瞻[J].经济视角,2012,1:90-92.
    [8]曹怀术,廖华,魏一鸣.2010年中国能源流分析[J].中国能源,2012,34(4):25,29-31.
    [9] BP世界能源统计2009[M]. www.bp.com/statisticalreview,2009.
    [10]王爱兰.我国能源结构与能源经济效率的国际比较[J].环球中国,2012,6:43-45.
    [11]魏贤勇,宗志敏,孙林兵,秦志宏,赵炜.重质碳资源高效利用的科学基础[J].化工进展,2006,25(10):1139-1147.
    [12] Salim S S, Bell A T. Effects of Lewis acid catalysts on the hydrogenation and cracking of two-ringaromatic and hydroaromatic structures related to coal[J]. Fuel,1982,61(8):745-754.
    [13] Olah G A, Bruce M R, Edelson E H, Husain A. Superacid coal chemistry.1. HF:BF3catalyseddepolymerization-ionic hydroliquefaction of coals under mild conditions[J]. Fuel,1984,63(8):1130-1137.
    [14] Robin A M. Annual Report FE-2247-7: Gasification of residual materials from coal liquefaction[R].Fossil Energy: Energy Research and Development Administration.1977.
    [15] Nolan, P., Shipman, A.,Rui, H. Coal Liquefaction, Shenhua Group, and China's Energy Security[J].European Management Journal,2004,22(2):150-164.
    [16]孙启文,吴建民,张宗森,庞利锋.煤间接液化技术及其研究进展[J].化工进展,2013,32(1):1-12.
    [17]许建文,王继元,堵文斌,等.煤直接液化技术进展[J].化工进展,2012,31(增刊):119-123.
    [18]崔洪,杨建丽,刘振宇,毕继诚.煤直接液化残渣的性质与气化制氢[J].煤炭转化,2001,24(1):15-20.
    [19] Hoehne K, Late Tertiary silicified wood in the Rosenback coal seams near Latschach[M]. Lake Faaker,Carinthia, Geologie2,1953:185-189.
    [20]高晋生,张德祥.煤液化技术[M].北京:化学工业出版社,2005.
    [21]魏贤勇,宗志敏,秦志宏,等.煤液化化学[M].北京:科学出版社,2002.
    [22] Djerassi C, Engle R R. Oxidations with Ruthenium Tetroxide[J]. J Am Chem Soc,1953,75(15):3838-3840.
    [23] White P J. To Treat and crack oil from coal[J]. Hydrocarbon Processing,1986,47(12):97-102.
    [24]蒋巍.中国能源的“秘密武器”-神化集团“煤制油”揭秘[J].北京文学(精彩阅读),2013,1:4-27.
    [25] Huang C B, Stock L M. On the sulphur compounds in coal liquefaction [J]. Am Chem Soc Prepr DivFuel Chem,1982,27(3-4):28.
    [26] Youtcheff J S, Given P H. Dependence of coal liquefaction behavior on coal characteristics8. aspects ofthe phenomenology of the liquefaction of some coal[J]. Fuel,1982,61(10):980-987.
    [27] Robin A M. Annual Report FE-2247-7: Gasification of residual materials from coal liquefaction[R].Fossil Energy: Energy Research and Development Administration.1977.
    [28]韩宗仁.加氢裂化工艺与工程[M].北京:中国石油出版社,2001.
    [29] Cornils B, Hibbel J, Ruprecht P. Gasification of hydrogenation residues using the texaco coalgasification process[J]. Fuel Processing Technology,1984,9(2):251-252.
    [30] Kanda N, Itoh H, Yokoyama S, Ouchi K. Mechanism of hydrogenation of coal-derived asphaltene[J].Fuel,1978,57(11):676-680.
    [31] Tanaka T, Murata S, Nomura M. Study on chemical structure of vacuum residue of Illinois No.6coalfrom NEDOL coal liquefaction process[J]. Journal of Japan Institute of Energy,1993,72(10):935-942.
    [32] Masuda K, Okuma O, Kanaji M et al. Characterization of heavy liquefaction products derived frombrown coal[J]. Journal of Japan Institute of Energy,1993,72(10):943-950.
    [33] Nakagama T, Sugiyama I, Sakawa M. Fluidity of coal liquefaction residue[J]. Journal of Japan Instituteof Energy,1993,72(10):977-984.
    [34] Takarada T, Abe H. Catalytic steam gasification of liquefaction residue[J]. Journal of Japan Institute ofEnergy,1993,72(10):1016-1021.
    [35]舒歌平.煤炭液化技术[M].北京:煤炭工业出版社,2003.
    [36]崔之栋,李嘉珞.煤炭液化[M].大连:大连理工大学出版社,1993,13-25.
    [37]王兆熊.美国煤炭产物的固液分离技术.煤炭综合利用,1981,4-32.
    [38]郭树才.煤化工工艺学[M].北京:化学出版社,1995.
    [39] Namiki Y, Kubo H, Wada K. Effect of operation condition on characteristics of residue produced at the1t/d Process Supporting Unit (PSU)[J]. Journal of Japan Institute of Energy,1993,72(10):1027-1033.
    [40] Anderson R R, Bockrath B C. Effect of sulphuron coal liquefaction in the presence of dispersed ironormolybdenum catalysts[J]. Fuel,1984,63(3):329-333.
    [41]史士东,金嘉璐,舒歌平,等.云南先锋褐煤直接液化示范厂技术经济初步分析[J].洁净煤技术,1996,2(3):8-11.
    [42] Hirano K. Outline of NEDOL coal liquefaction process development (Pilot Plant Program)[J]. FuelProcessing Technology,2000,62(1):109-110.
    [43] Nakagama T, Sugiyama I, Sakawa M. Fluidity of coal liquefaction residue[J]. Journal of Japan Instituteof Energy,1993,72(10):977-984.
    [44] Takeo U, Okuhara T. Pyrolysis of coal liquefaction vacuum residue[J]. Journal of Japan Institute ofEnergy,1993,72(10):1000-1008.
    [45] Hayashi J, Kawakami T, Kusakabe K, et al. Compositive pyrolysis of coal and coal liquefactionresidue[J]. Journal of Japan Institute of Energy,1993,72(10):1009-1015.
    [46] Benito Ana M, Martínez Maria T, Fernández Isaias, et al. Visbreaking of an asphaltenic coal residue[J].Fuel,1995,74(6):922-927.
    [47] Taguchi N, Tsuji T, Shibata T, et al. Thermogravimetric analysis of coal liquefaction residue and theirsolvent extracts[J]. The Chemical Society of Japan,2001,10:581-586.
    [48] Cui H, Yang J L, Liu Z Y, Bi J C. Effects of remained catalysts and enriched coal minerals ondevolatilization of residual chars from coal liquefaction[J]. Fuel,2002,81(11-12):1525-1531.
    [49] Kemp W, Steedman W, Scott D A, Thomson M A. Asphaltenes and preasphaltenes in direct coalliquefaction-changes in heteroatom content[J]. Fuel Processing Technology,1987,15:341-350.
    [50] Miyake M, Kagajyo T, Nomura M. Hydrocracking of asphaltene from coal using ZnCl2as catalyst[J].Fuel Processing Technology,1984,9(3):293-306.
    [51] Mashimo K, Suezawa J, Masumoto N, et al. Hydrogenolysis reaction of coal-derived asphaltene usingmolten salt catalysts[J]. Fuel,1986,65(4):495-499.
    [52] Yoshimoto I, Itoh H, Makabe M, Ouchi K. Pressure and temperature effects on the hydrogenation ofcoal-derived asphaltene[J]. Fuel,1984,63(7):978-983.
    [53] Martínez M T, Benito A M, Callejas M A. Kinetics of asphaltene hydroconversion:1. Thermalhydrocracking of a coal residue[J]. Fuel,1997,76(10):899-905.
    [54]李军,杨建丽,刘振宇.煤直接液化残渣的热解特性研究[J].燃料化学学报,2010,38(4):385-390.
    [55]李军,杨建丽,周淑芬,等.煤直接液化残渣溶剂萃取组分的热解行为研究[J].燃料化学学报,2010,38(6):647-651.
    [56] Hower J C, Anderson K B, Mackay G, et al. Interlaboratory comparisons of petrography of liquefactionresidues from three Argonne Premium coals[J]. Org. Geochem.1995,22(1):27-32.
    [57] Hower J C, Keogh R A, Davis B H. Petrography of liquefaction residues: high-vitrinite, high-sulfurdavis (Western Kentucky No.6) coal[J]. Energy Fuels,1992,6(5):609-613.
    [58] Gentzis T, Parker R J, Simpson P L. Liquefaction of Black Thunder coal.1. Petrographic examination ofresidues[J]. Fuel,1995,74(11):1599-1610.
    [59] Aleksic B R, Ercegovac M D, Cvetkovi, et al. Direct hydroliquefaction of a low rank soft browncoal[J]. Fuel Processing Technology,1998,58(1):33-43.
    [60]陈洪博,李文华,姜英,等.神东煤液化残渣显微组分的特征与分类研究[J].燃料化学学报,2006,34(5):513-518.
    [61] Ryuichi A, Kyosuke N, Masayuki O, et al. Fractionation of coal by use of high temperature solventextraction technique and characterization of the fractions[J]. Fuel,2008,87(4-5):576-582.
    [62] Adachi Y, Nakamizo. Chemical structure of pyridine soluble matter of coal liquefaction residue[J].Journal of Japan Institute of Energy,1993,72(10):927-934.
    [63] Snape C E. Estimation of aliphatic H/C ratios for coal liquefaction products by spin-echo13C n.m.r.[J]Fuel,1983,62(5):621-624.
    [64] Erbatur G, Erbatur O, Davis M F, Maciel G E. Investigation of pyridine extracts and residues of coals bysolid-state13C n.m.r. spectroscopy[J]. Fuel,1986,65(9):1265-1272.
    [65]田中尚羲,村田聡,野村正滕等.伊利诺6号在NEDOL工艺上的液化残渣的化学结构的研究[J].日本能源协会誌,1993,72(10):935-942.
    [66] Cui H, Yang J L, Liu Z Y, Bi J C. Characteristics of residues from thermal and catalytic coalhydroliquefaction[J]. Fuel,2003,82(12):1549-1556.
    [67]谷小会,史士东,周铭.神华煤直接液化残渣中沥青烯组分的分子结构研究[J].煤炭学报,2006,31(6):785-789.
    [68]谷小会,周铭,史士东.神华煤直接液化残渣中重质油组分的分子结构[J].煤炭学报,2006,31(1):76-80.
    [69] Wu Z G, Rodgers R P, Marshall A G. ESI FT-ICR mass spectral analysis of coal liquefaction products[J]Fuel,2005,84(14-15):1790-1797.
    [70] Feng J, Li J, Li W Y. Influences of chemical structure and physical properties of coal macerals on coalliquefaction by quantum chemistry calculation[J]. Fuel Processing Technology,2013,109:19-26.
    [71] Wang S Q, Tang Y G, Schobert H H, et al. Petrology and structural studies in liquefaction reactions ofLate Permian coals from Southern China[J]. Fuel,2013, in press.
    [72]魏贤勇,宗志敏,秦志宏,等.煤液化化学[M].北京:科学出版社,2002.
    [73] Wei X Y, Shen J L, Takanohashi T, et al. Effect of extractable substances on coal dissolution. Use ofCS2-N-methyl-2-pyrrolidinone mixed solvent for dissolution reaction products[J]. Energy Fuels,1989,3(5):575-579.
    [74]陈博,魏贤勇,杨竹晟,等.准东煤CS2-丙酮萃取物的GC/MS分析.河南师范大学学报,2012,40(1):73-77.
    [75] Sun L B, Zong Z M, Kou J H, et al. Identification of organic chlorines and iodines in the extracts fromhydrotreated Argonne Premium coal residues[J]. Energy Fuels,2007,21(4):2238-2239.
    [76] Wei X Y, Wang X H, Zong Z M. Extraction of organonitrogen compounds from five Chinese coalswith methanol[J]. Energy Fuels,2009,23(10):4848-4851.
    [77] Ryuichi A, Kyosuke N, Masayuki O, et al. Fractionation of coal by use of high temperature solventextraction technique and characterization of the fractions[J]. Fuel,2008,87(4-5):576-582.
    [78] Hideyuki T. Catalytic hydrogenation of extracts from coal and their thermal reactivity[J]. Energy Fuels,2002,16(5):12-17.
    [79] Feng J, Li W Y, Xie K C. Analysis of Small Molecular Phase in Coal Involved in Pyrolysis and SolventExtraction by PGC[J]. Energy Fuels,2004,18(3):889-895.
    [80] Larsen J W, Mohammadi M. Structural changes in coals due to pyridine extraction [J]. Energy Fuels,1990,4(1):107-110.
    [81] erny J, Pavlíkováh. Chemical changes of coal matter after treatment with ethylenediamine [J]. FuelProcess Technol.1991,27(3):307-318.
    [82] Stefanove M, Simoneit B R T, Stojanova G, et al. Composition of the extract from a Carboniferousbituminous coal:1. Bulk and molecular constitution [J]. Fuel,1995,74(5):768-778.
    [83]陈茺,高晋生,颜涌捷.环己酮抽提煤的研究[J].燃料化学学报,1997,25(1):60-64.
    [84]飯野雅,熊谷淳,伊藤攻.二硫化碳素-N-メチル-2-ピロリドン混合溶媒による石炭の常温抽出[J].燃料协会誌,1985,64(3):210-212.
    [85] Iino M, Takanohashi T, Ohkawa T, et al. On the solvent soluble constituents originally existing in ZaoZhuang coal [J]. Fuel,1991,70(10):1236-1237.
    [86] Takanohashi T, Yanagida T, Iino, M. Extraction and swelling of low-rank coals with solvents at roomtemperature [J]. Energy Fuels,1996,10(5):1128-1132.
    [87] Zong Z M, Peng Y L, Qin Z H, et al. Reaction of N-methyl-2-pyrrolidinone with carbon disulfide [J].Energy Fuels,2000,14(3):734-735.
    [88] Painter P C, Sobkowiak M, Gamble V. Concerning the solubility of coal in mixed solvents [J]. Prepr.Pap-Am. Chem. Soc. Div. Fuel Chem.1998,43(4):913-915.
    [89] Zhao X Y, Zong Z M, Cao J P, et al. Difference in chemical composition of carbon disulfide-extractablefraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coals[J]. Fuel,2008,87(4-5):565-575.
    [90]丁明洁.煤及煤液化衍生物中有机组分的族组分分离与分析[D].徐州:中国矿业大学化工学院,2008.
    [91] Ding M J, Zong Z M, Zong Y, et al. Isolation and identification of fatty acid amides from Shenglicoal[J]. Energy Fuels,2008,22(4):2419-2421.
    [92] Ding M J, Li W D, Xie R L, et al. Separation and analysis of aromatic hydrocarbons from two Chinesecoals[J]. Journal of China University of Mining and Technology,2008,18(3):432-436.
    [93] Zong Y, Zong Z M, Ding M J, et al. Separation and analysis of organic compounds in an Erdos coal.Fuel,2009,88(3):469-474.
    [94]刘滋武.灵武烟煤中有机化合物的分离与分析[D].徐州:中国矿业大学化工学院,2009.
    [95] Liu Z W, Zong Z M, Li J N, et al. Isolation and identification of two bis(2-ethylheptyl)benzenedicarboxylates from Lingwu coal[J]. Energy Fuels,2009,23(1):588-590.
    [96] Liu Z W, Wei X Y, Zong Z M, et al. Isolation and identification of methyl alkanoates from Lingwucoal[J]. Energy Fuels,2010,24(4):2784-2786.
    [97] Alam H G, Moghaddam A Z, Omidkhah M R. The influence of process parameters on desulfurizationof Mezino coal by HNO3/HCl leaching[J]. Fuel Process Technol,2009,90(1):1-7.
    [98] Pietrzak R, Wachowska H. Low temperature oxidation of coals of different rank and different sulphurcontent[J]. Fuel,2003,82(6):705-713.
    [99] Zhumanova M O, Usanboev N, Namazov S S, Beglov B M. Oxidation of brown coal of Angren depositwith a mixture of nitric and sulfuric acids[J]. Russ J Appl chem,2009,82(12):22232229.
    [100] Sugano M, Ikemizu R, Mashimo K. Effects of the oxidation pretreatment with hydrogen peroxide onthe hydrogenolysis reactivity of coal liquefaction residue[J]. Fuel Processing Technology,2002,77-78(20):67-73.
    [101] Mae K, Shindo H, Miura, K. A new two-step oxidative degradation method for producing valuablechemicals from low rank coals under mild conditions[J]. Energy Fuels,2001,15(3):611-617.
    [102] Wang T, Zhu X F. Conversion and kinetics of the oxidation of coal in supercritical water[J]. EnergyFuels,2004,18(5):1569-1572.
    [103] Liu Z X, Liu Z C, Zong Z M, et al. GC/MS Analysis of water-soluble products from the mild oxidationof Longkou Brown Coal with H2O2[J]. Energy Fuels,2003,17(2):424-426.
    [104] Mae K, Maki T, Okutsu H, Miura K. Examination of relationship between coal structure and pyrolysisyields using oxidized brown coals having different macromolecular networks[J]. Fuel,2000,79(3-4):417-425.
    [105] Deno N, Greigger B, Messer L. Aromatic ring oxidation of alkylbenzenes[J]. Tetrahedron Lett,1977,18(20):1703-1704.
    [106] Semenova S A, Patrakov Y F, Batina M V. Preparation of oxygen-containing organic products frombed-oxidized brown coal by ozonation[J]. Russ J Appl chem,2009,82(1):80-85.
    [107] Patrakov Y F, Fedyaeva O N, Semenova S A, et al. Influence of ozone treatment on change ofstructural–chemical parameters of coal vitrinites and their reactivity during the thermal liquefactionprocess[J]. Fuel,2006,85(9):1264-1272.
    [108] Kurkova M, Klika Z, Klikova C, Havel J. Humic acids from oxidized coals I. Elemental composition,titration curves, heavy metals in HA samples, nuclear magnetic resonance spectra of HAs and infraredspectroscopy[J]. Chemosphere,2004,54(8):1237-1245.
    [109] Oshika T,Okuwaki A. Formation of aromatic carboxylic acids from coal-tar pitch by two-stepoxidation with oxygen in water and in alkalinesolution[J]. Fuel,1994,73(1):77-82.
    [110] Chakrabartty S K, Kretschmer H O. Studies on the structure of coals: Part1. The nature of aliphaticgroups[J]. Fuel,1972,51(2):160-163.
    [111] Chakrabartty S K, Kretschmer H O. Studies on the structure of coals.2. The valence state of carbon incoal[J]. Fuel,1974,53(2):132-135.
    [112] Chakrabartty S K, Kretschmer H O. Sodium hypochlorite as a selective oxidant for organiccompounds[J]. J Chem Soc Perk T1,1974:222-228.
    [113] Li W, Cho E H. Coal desulfurization with sodium hypochlorite[J]. Energy Fuels,2005,19(2):499-507.
    [114] Stock L M, Kwok-tuen T. Ruthenium tetroxide catalysed oxidation of Illinois No.6coal and somerepresentative hydrocarbons[J]. Fuel,1983,62(8):974-976.
    [115] Huang Y G, Zong Z M, Yao Z S, et al. Ruthenium ion-catalyzed oxidation of Shenfu Coal and itsresidues[J]. Energy Fuels,2008,22(3):1799-1806.
    [116] Yao Z S, Wei X Y, Lv J, et al. Oxidation of Shenfu coal with RuO4and NaOCl[J]. Energy Fuels,2010,24(3):1801–1808.
    [117] Liu F J, Wei X Y, Zhu Y, et al. Investigation on structural features of Shengli lignite through oxidationunder mild conditions[J]. Fuel,2013, in press.
    [118] Mallya N, Zingaro R A. Ruthenium tetroxide-a reagent with the potential for study of oxygenfunctionalities in coal[J]. Fuel,1984,63(3):423-425.
    [119]王国龙,徐蓉,张德祥,等.煤液化残渣加氢性能[J].石油学报,2009,25(5):747-751.
    [120] Wang T X, Zong Z M, Zhang J W, et al. Microwave-assisted hydroconversions of demineralized coalliquefaction residue[J]. Fuel,2008,87(4-5):498-507.
    [121] Li J, Yang J L, Liu Z Y. Hydrogenation of heavy liquids from a direct coal liquefaction residue forimproved oil yield[J]. Fuel Processing Technology,2009,90(4):490-495.
    [122]钟金龙,李文博,朱晓苏,等.煤炭直接液化残渣加氢研究进展[J].洁净煤技术,2011,17(3):37-40.
    [123]刘文郁,杜铭华,曲思建,等.神华煤直接液化残渣热解动力学研究[J].煤炭学报,2006,31(2):215-218.
    [124]赵鹏,孙淑君,卢正元,等.煤直接液化残渣性质及高附加值应用研究进展[J].洁净煤技术,2009,15(6):33-35.
    [125] Ren Y J, Wei A L, Zhang D X, et al. Rheological characteristics of coal hydro-liquefaction residue[J]. JFuel Chem Technol,2007,35(3):262-267.
    [126] Chu X J, Li W, Li B Q, et al. Gasification property of direct coal liquefaction residue with steam[J].Process Safety and Environmental Protection,2006,84(B6):440-445.
    [127] Chu X J, Li W, Li B Q, et al. Sulfur transfers from pyrolysis and gasification of direct liquefactionresidue of Shenhua coal[J]. Fuel,2008,87(2):211-215.
    [128] Chu X J, Li W, Li B Q, et al. Gasification characteristics of coal liquefaction residue with carbondioxide[J]. J Fuel Chem Technol.2006,34(2):146-150.
    [129]王桃霞,丁明杰,张佳伟,等.微波辐射下神府煤的催化加氢[J].化工进展,2006,25(10):1204-1207.
    [130] Wei Y B, Zong Z M, Xie R L, et al. Solid superacid-catalyzed hydroconversion of demineralizedShengli coal liquefaction residue under microwave irradiation[J]. Energy Sources, Part A: Recovery,Utilization, and Environmental Effects,2010,32(6):551-558.
    [131] Suzuki D, Tsuji T, Shibata T, Uemaki O, Itoh H. Study of co-liquefaction of coal liquefaction residuewith plastic[C]. Nippon Enerugi Gakkai Sekitan Kagaku Kaigi Happyo Ronbunshu,1997,34:73-76.
    [132] Sugano M, Tamaru T, Hirano K, Mashimo K. Additive effect of tyre constituents on thehydrogenolyses of coal liquefaction residue[J]. Fuel,2005,84(17):2248-2255.
    [133] Yang J L, Wang Z X, Liu Z Y, Zhang Y Z. Novel use of residue from direct coal liquefaction process[J].Energy Fuels,2009,23(10):4717-4722.
    [134]陈明波,王彬等.煤直接液化残渣焦化特性研究[J].洁净煤技术,2005,11(1):29-33.
    [135]盛英,李克键,李文博,等.煤直接液化残留物制备中间相沥青[J].煤炭学报,2009,34(8):1125-1128.
    [136] Zhang J B, Jin L J, Hu H Q, et al. Effect of composition in coal liquefaction residue on catalyticactivity of the resultant carbon for methane decomposition[J]. Fuel,2012,96:462-468.
    [137] Zhang J B, Jin L J, Liu S B, et al. Mesoporous carbon prepared from direct coal liquefaction residuefor methane decomposition[J]. Carbon,2012,50(3):952-959.
    [138] Zhang J B, Jin L J, Cheng J, Hu H Q. Hierarchical porous carbons prepared from direct coalliquefaction residue and coal for supercapacitor[J]. Carbon,2013,55:221-232.
    [139] Zhang J B, Jin L J, Cheng J, Hu H Q. Preparation and applications of hierarchical porous carbons fromdirect coal liquefaction residue[J]. Fuel,2013, in press.
    [140]周颖,张艳,邱介山,等.以煤炭直接液化残渣为原料制备炭纳米管[J].煤炭转化,2007,30(3):41-44.
    [141] Zhou Y, Xiao N, Qiu J S, et al. Preparation of carbon microfibers from coal liquefaction residue[J].Fuel,2008,87(15-16):3474-3476.
    [142] Xiao N, Zhou Y, Qiu J S, Wang Z H. Preparation of carbon nanofibers/carbon foam monolithiccomposite from coal liquefaction residue[J]. Fuel,2010,89(5):1169-1171.
    [143] Bai L, Nie Y, Zhang X P, et al. Protic ionic liquids extract asphaltenes from direct coal liquefactionresidue at room temperature[J]. Fuel Processing Technology,2013,108:94-100.
    [144] Schobert H H, Song C. Chemicals and materials from coal in the21st century[J]. Fuel,2002,81(1):15-32.
    [145]陈茺,高晋生,颜涌捷.煤有机质在化学脱灰过程中的变化[J].华东理工大学学报,1997,23(3):281-285.
    [146]楚希杰,李文,李保庆,等.煤直接液化残渣焦CO2气化反应的研究[J].燃料化学学报,2006,34(2):146-150.
    [147]邱介山,王琳娜,周颖.由脱灰煤制备富勒烯[J].化工学报,2002,53(11):1117-1121.
    [148] Silbernagel B G, Gebhard L A. Demineralization effects on the EPR properties of Argonne Premiumcoals[J]. Energy Fuels,1991,5(4):561-568.
    [149] Krzesińska M. The use of ultrasonic wave propagation parameters in the character-ization of eatractsfrom coals[J]. Fuel,1998,77(6):649-653.
    [150] Letellier M, Budzinski H, Bellocq J, et al. Focused microwave-assisted extraction of polycyclicaromatic hydrocarbons and alkanes from sediments and source rocks[J]. Organic Geochemistry,1999,30(11):1353-1365.
    [151] Cagniant D, Bimer J, Salbut P D, et al. Structural study by infrared spectroscopy of some pretreatedcoal samples and their methanol-NaOH solubilization products[J]. Fuel,1994,73(6):871-879.
    [152] Shui H F. Effect of coal extracted with NMP on its aggregation[J]. Fuel,2005,84(7-8):939-941.
    [153]王晓华,魏贤勇,宗志敏.溶剂分级萃取法研究平朔煤的化学组成特征[J].煤炭转化,2006,29(2):4-7.
    [154]魏贤勇,宗志敏,秦志宏,等.煤液化化学[M].北京:科学出版社,2002.
    [155]位艳宾,魏贤勇,李胜,等.神府和胜利煤液化残渣CS2萃取物的组成分析[J].河南师范大学学报,2013,41(1):74-77.
    [156] Smallwood I M. Handbook of organic solvent properties[M]. London: Arnold,1996.
    [157] Barton A M F. CRC handbook of solubility parameters and other cohesion parameters[M]. Boca Raton,FL: CRC Press,1983.
    [158]夏庆,殷开梁.分子动力学模拟计算有机溶剂的溶解度参数[J].江苏工业学院学报,2004,16(1):40-42.
    [159]栗印环,郭鹏.液体溶解度参数的计算[J].信阳师范学院学报(自然科学版),2002,15(1):52-53.
    [160]候读杰,张林晔.实用油气地球化学.石油工业出版社.2003:148-150.
    [161] Rook J J. Chlorination reactions of fulvic acids in natural waters[J]. Environ Sci Technol,1977,11(5):478-482.
    [162] Fahimi I J, Keppler F, Schōler H F. Formation of chloroacetic acids from soil, humic acid and phenolicmoieties[J]. Chemosphere,2003,52(2):513–520.
    [163] Wei X Y, Wang X H, Zong Z M, et al. Identification of organochlorines and organobromines in coals[J].Fuel,2004,83(17-18):2435-2438.
    [164]宫贵贞.煤在NaOCl水溶液中的选择性氧化和产物的精细分离[D].徐州:中国矿业大学化工学院,2011.
    [165] Stock L M, Wang S H. Ruthenium tetroxide catalysed oxidation of coals-The formation of aliphaticand benzene carboxylic acids[J]. Fuel,1986,65(11):1552–1562.
    [166] Masakatsu N, Levent A, Satoru M, et al. Structural Evaluation of Zao Zhuang Coal[J]. Energy Fuels,1998,12(3):512-523.
    [167]侯读杰,张林晔.实用油气地球化学[M].石油工业出版社,2003,148-150.
    [168] Philp R P. Fossol Fuel Biomarkers: Applications and Spectra[M]. Translated by Fu J M and Sheng G Y,Beijing: Science Press,1987.
    [169] Collin P J, Wilson M A. Use of inept and gaspe NMR pulse sequences-Assignment of position ofincorporation of deuterium into tetralin during coal hydrogentation[J]. Fuel,1983,62:1243-1246.
    [170]王晓华.煤的溶剂分级萃取研究[D].徐州:中国矿业大学化工学院,2002.
    [171] Eglinton G, Hamilton R J. The distribution of alkanes[M]. In: T. Swain (Editor), Chemical PlantTaxonomy, Academic Press,1963,187-208.
    [172] Han J, Calvin M. Occurrence of C22-C25isoprenoids in Bell Creek cruid oil[J]. Geochim. Cosmochim.Acta,1969,33(4):733-742.
    [173]贾绍义,赵金铎,李宗堂,等.2,6-二叔丁基对甲苯酚精制过程的研究与设计[J].化学工业与工程,2000,17(2):111-115.
    [174]刘昌见,李德宝,鲍晓军.蒽的电化学加氢[J].化工学报,2004,55(11):1809-1814.
    [175]蔺华林,张德祥,高晋生.煤加氢液化制取芳烃研究进展[J].煤炭转化,2006,29(2):92-97.
    [176] Van Mao R L, Saberi M A. Catalysts for the hydroisomerization of n-heptane, prepared according tothe concept of triangular site configuration [J]. Appl Catal A: Gen,2000,199(1):99-107.
    [177] Soriente A, Spinella A, Rosa M D, Giordano M, Scettri A. Solvent freereaction under microwaveirradiation: A new procedure for Eu+3-Catalyzed Michael addition of1,3-dicarbonyl compounds[J].Tetrahedron Letters,1997,38(2):289-290.
    [178]张寒琦,金钦汉.微波化学[J].大学化学,2001,16(1):32-36.
    [179]王静,姜凤超.微波有机合成反应的新进展[J].有机化学,2002,22(3):212-219.
    [180] Gedye R, Smith K F, Westaway K, Ali H, Baldisera L, Laberge L, Rousell J. The use of microwaveovens for rapid organic synthesis [J]. Tetrahedron Lett,1986,27(3):279-282.
    [181] Bonnet C, Estel L, Ledoux A, Mazari B, Louis A. Study of the thermal repartition in a microwavereactor: application to the nitrobenzene hydrogenation [J]. Chem Eng Process,2004,43(11):1435-1440.
    [182] Enquist P A, Nilsson P, Larhed M. Ultrafast chemistry: cobalt carbonyl-mediated synthesis of diarylketones under microwave irradiation [J]. Org Lett,2003,5(25):4875-4878.
    [183] Hoz A D L, Díaz-Ortiz á, Moreno A. Microwaves in organic synthesis. Thermal and non-thermalmicrowave effects [J]. Chem Soc Rev,2005,34(2):164-178.
    [184] Chang Y C, Charlie T C. Microwave process for removal and destruction of volatile organiccompounds[J]. Environmental Progress,2001,20(3):145-150.
    [185] Tanner D D, Kandanarachchi P, Ding Q Z, Shao H W, Vizitiu D, Franz J A. The catalytic conversion ofC1-Cnhydrocarbons to olefins and hydrogen: microwave-assisted C-C and C-H bond activation[J].Energy Fuels,2001,15(1):197-204.
    [186] Vitidsant T, Liu Y, Yang G H, et al. Highly active Fischer-Tropsch synthesis Co/SiO2catalystsprepared from microwave irradiation[J]. Catalysis Communications,2007,8(3):375-378.
    [187]鞠彩霞,姜发琴,王飞军,等.两种烟煤微波辅助萃取所得CS2萃取物的GC/MS分析[J].黑龙江科技学院学报,2004,14(1):11-14.
    [188]鞠彩霞,徐伟,宗志敏,等.微波条件下两种煤丙酮萃取物的GC/MS分析[J].煤炭转化,2007,30(1):1-4.
    [189]陈红.微波辅助溶剂对煤抽提机制研究及煤组成结构分析[D].西安:西安科技大学,2009.
    [190]陈红,葛玲梅,李建伟.微波辅助抽提煤的条件优化及抽提物和残煤的分析[J].煤炭学报,2009,34(4):546-550.
    [191] Andres J M, Ferrando A C, Membrado L. Chemical desulfurization of coal with hydroiodic[J]. EnergyFuels,1996,10(2):425-430.
    [192]米杰,任军,王建成,等.超声波和微波联合加强氧化脱除煤中有机硫[J].煤炭学报,2008,33(4):435-438.
    [193]骆健美,卢学英,张敏卿.微波萃取技术及其应用[J].化工进展,2001,12:46-49.
    [194]郭振库,金钦汉.微波萃取技术[J].分析科学学报,2001,17(6):505-509.
    [195] Yagmur E, Togrul T. The effect of microwave receptors on the liquefaction of Turkish coals bymicrowave energy in a hydrogen donor solvent[J]. Energy Fuels,2005,19(6):2480-2487.
    [196] Yagmur E, Simsek E H, Aktas Z, et al. Effect of demineralization process on the liquefaction ofTurkish coals in tetralin with microwave energy: Determination of particle size distribution andsurface area[J]. Fuel,2005,84(18):2316-2323.
    [197] Yagmur E, Simsek E H, Aktas Z, Togrul T. Effect of CuO receptor on the liquid yield and compositionof oils derived from liquefaction of coals by microwave energy[J]. Energy Conversion andManagement,2008,49(11):3043-3050.
    [198] CEM.美国CEM公司-世界微波技术先导[J].现代科学仪器,2003,(4):73-74.
    [199]包天桐,刘耕陶,徐桂芳,等.二苯乙烯(芪)的一些药理作用[J].药学学报,1979,14(4):227-233.
    [200]贾玉梅,王君明,崔瑛.基于二苯乙烯类为主要活性成分的虎杖药理作用研究进展[J].中国实验方剂学杂志,2011,17(9):263-269.
    [201]张华西,陈浩,李瑛,蒋青,谢明贵,啜玉涛,邹德春.新型含苯并噻唑及吡唑啉环德聚烷基芴电致光材料的合成及性能研究.功能材料,2003,37(7):1027-1029.
    [202] Siskin M, Aczel T. Pyrolysis studies on the structure of ethers and phenols in coal[J]. Fuel,1983,62(11):1321-1326.
    [203] Wei X Y, Ni Z H, Zong Z M, et al. Reaction of di(1-naphthyl)methane over metals and metal-sulfursystems [J]. Energy Fuels,2003,17(3):652-657.
    [204] Wei X Y, Ogata E, Niki E. Catalyses of Fe and FeS2on the reaction of di(1-naphthyl)methane [J].Chem Lett,1991,20(12):2199-2202.
    [205] Ma Y M, Wei X Y, Zhou X, et al. Microwave-Assisted Hydrogen Transfer to Anthracene andPhenanthrene over Pd/C. Energy&Fuels,2009,23(2):638-645.
    [206] Yuan T, Marshall W D. Catalytic hydrogenation of polycyclic aromatic hydrocarbons overpalladium/γ-Al2O3under mild conditions[J]. J Hazard Mater B,2005,126(1-3):149-157.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700