链格孢菌AAC-毒素生物源除草剂若干关键产业化技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
链格孢菌(Alternaria alternata(Fr.)Keissler)是世界恶性杂草紫茎泽兰(Eupatoriun adenophorum Spreng.)的自然致病菌,本实验室长期以来一直致力于研究利用该菌作为生物除草剂,研究发现其致病的主要因素是产生AAC-毒素,就毒素的生产、提取分离工艺、毒素的杀草活性、杀草谱以及杀草机理等进行了研究,并分离鉴定出其主要活性成分是细交链孢菌酮酸,从而明确了AAC-毒素具有开发为微生物源除草剂的巨大潜力。本文在此基础上,以具有较高产毒能力的NEW菌株为研究对象,进一步就利用该代谢物开发为微生物源除草剂的工业化若干关键技术开展了深入的研究,以便为其产业化奠定基础。对紫茎泽兰致病型链格孢菌AAC-毒素的提取工艺做了进一步完善,对AAC-毒素开发为微生物源除草剂做了进一步的评价,同时也对细交链孢菌酮酸的除草活性、毒理学及其在土壤中的降解动态等方面进行了研究,评价了细交链孢菌酮酸开发为微生物源除草剂的潜力。具体内容如下:
     1.链格孢菌AAC-毒素提取工艺的完善及其生物活性和乳油剂型的研究
     为了探索理想的链格孢菌毒素分离方法,进一步完善毒素的提取工艺,比较研究了大孔吸附树脂DA201、D101、HZ-803、1300及活性炭对链格孢菌毒素的吸附性能。结果表明,DA201对链格孢菌毒素吸附效果最佳,吸附率最高,为72.8%,吸附后滤出液毒性最弱,解吸液毒性最强,适合于链格孢菌毒素的分离纯化富集.DA201对链格孢菌毒素吸附、解吸附的最佳条件是:无菌滤液上样量体积为树脂体积的60~70倍,pH值为4.12~4.62,洗脱液为90%乙醇。
     以幼苗喷雾法检测了链格孢菌AAC-毒素对农田主要杂草、作物以及不同叶期马唐的致病性,同时以大田小区试验研究了链格孢菌AAC-毒素对马唐的防除效果和对小麦和棉花两种作物的安全性。链格孢菌AAC-毒素可以有效防除农田主要杂草和三叶期之前的马唐幼苗,对棉花相对比较安全。在浓度为4000μg/mL时,毒素对白三叶、马唐、异型莎草、鳢肠、稗草、野老鹳草、鸭跖草、续断菊、大巢菜、豚草、野塘蒿和铁苋菜12种杂草的防效均超过90%;而大田小区试验中,此浓度毒素,对棉花植株的伤害率和鲜重抑制率分别仅为2.96%和8.67%。大田小区试验结果证实了AAC-毒素对马唐的高防效和对棉花的安全性。表明链格孢菌AAC-毒素具有开发为棉花田用微生物源除草剂的潜力。
     通过对链格孢菌AAC-毒素7种乳油制剂的表面张力、乳化分散性、乳化稳定性以及生物活性的观察或测定,比较了它们的开发潜力。结果表明,A、C、D、F和G等5种制剂具有良好的乳化分散性,A、C、D和G等4种制剂的乳化稳定性良好,7种制剂的活性均显著高于同浓度AAC.毒素的活性,D和F 2种制剂的活性相对较高,而A和G的表面张力较大。综合考虑,D乳油制剂(以曲拉通X-100为乳化剂)具有较高的开发潜力。
     2.细交链孢菌酮酸的HPLC检测、除草活性、毒理学及其在土壤中的降解动态
     利用HPLC法分析检测细交链孢菌酮酸。使用C18反相柱,以乙腈:甲醇:水=5:3:2(v/v/v)为流动相,柱温30℃,流速0.5 mL/min,在250nm波长下对其进行了定性定量分析,方法的标准偏差为0.53,变异系数为1.14%,回收率在91.26%~94.15%之间,平均回收率为92.64%。并以HPLC法检测了19个链格孢菌菌株细交链孢菌酮酸产率,以紫茎泽兰离体叶片针刺法检测了这19个菌株的致病性,结果表明,19个菌株中,X501的细交链孢菌酮酸产率最高,每毫升培养滤液含有3.8400μg,NEW次之,为2.8327μg/mL;在501-2、501-3、YN、B和AW 5个菌株的培养滤液中未检测到细交链孢菌酮酸。NEW的致病性最强,X501次之,且两者之间差异极显著,501-2、501-3和YN的致病性最弱。
     比较了农乳6201等11种助剂对细交链孢菌酮酸生物活性的影响.结果表明,十二烷基苯磺酸钠、曲拉通X-100、CGN-3、增效剂YZ905和EF8108-Ⅱ具有非常好的增效作用,以十二烷基苯磺酸钠为最佳;同时研究了不同助剂浓度对5种助剂增效作用的影响,结果表明,助剂适宜的浓度为1‰~5‰,随着助剂浓度的增加,助剂的增效作用也增加。设计了2种配方,配方Ⅰ有更好的开发价值。
     以紫茎泽兰离体叶片针刺法检测了不同浓度的细交链孢菌酮酸对紫茎泽兰的致病性,同时,检测了50μg/ml的细交链孢菌酮酸对紫茎泽兰植株不同部位叶片的致病性。结果表明,细交链孢菌酮酸对紫茎泽兰具有很强的致病性,其对成熟叶片的致病性强于对嫩叶的。细交链孢菌酮酸的杀草谱和作物安全性评价中,离体叶片针刺法结果表明,浓度为50μg/mL时,细交链孢菌酮酸对受试的39种杂草中的26种杂草具有强致病性,对棉花和烟草两种作物的致病性较弱.幼苗喷雾法结果表明,浓度为62.5~1000μg/mL时,细交链孢菌酮酸对受试的15种杂草都具有不同程度的致病性;对马唐的致病性最强,其EC_(50)为57.48μg/mL,EC_(90)为119.34μg/mL;对棉花和烟草的致病性较弱。这些结果表明,细交链孢菌酮酸可以作为棉花田和烟草田除草剂。
     分别以绿藻Chlamydomonas reinhardtii、蚕豆根尖和哺乳动物细胞为材料研究了细交链孢菌酮酸对环境、高等植物细胞遗传和动物细胞的毒性。结果表明,低浓度时,细交链孢菌酮酸对C.reinhardtii具有一定程度的促生长作用,随着浓度的增加,C.reinhardtii的生长受到抑制,叶绿素的浓度降低,各自相对应的96h EC_(50)分别为310.36和294.27μg/mL。根据毒性分级标准,细交链孢菌酮酸的EC_(50)值远大于3μg/mL,其对非靶标生物水生藻类属于低毒。在12.5~50μg/mL低浓度时,细交链孢菌酮酸对蚕豆根尖细胞微核率和有丝分裂指数无显著影响;但是,当浓度升高到100~400μg/mL时,细交链孢菌酮酸使蚕豆根尖细胞微核率显著升高,有丝分裂指数显著下降。在12.5~100μg/mL浓度时,细交链孢菌酮酸对蚕豆根尖细胞多核仁率无显著影响,在200~400μg/L浓度时,细胞多核仁率显著升高。当细交链孢菌酮酸浓度为12.5~400μg/mL时,随着浓度升高和作用时间的延长,其对小鼠成纤维细胞(3T3 mouse fibroblasts,3T3)、中国仓鼠肺细胞(Chinese hamster lung Cells,CHL)和人正常肝细胞(human hepatocytes,L02)3种细胞的毒性基本增强。细交链孢菌酮酸对3T3的毒性最强,对CHL的毒性次之,对L-02的毒性最小,其对3种细胞的24 h EC_(50)分别为41.64μg/mL、59.33μg/mL和85.98μg/mL。
     在实验室和田间自然条件下对细交链孢菌酮酸在土壤中的降解动态进行了研究.结果表明,在实验室条件下,微生物对细交链孢菌酮酸在土壤中的降解影响较大,光照的影响较弱,土壤含水量增加和土壤温度在一定范围内升高促进其降解。田间研究表明,细交链孢菌酮酸在自然条件下降解的半衰期约为3.22 d,20 d就可基本完全降解。可认为细交链孢菌酮酸为易降解类物质。
     从上述研究结果可以看出,细交链孢菌酮酸具有杀草谱广,对棉花和烟草的安全性较好,对高等植物细胞遗传毒性低,在土壤中易降解等特性,表明其具有开发为微生物源除草剂的潜力。
Alternaria alternata (Fr.) Keissler is a natural pathogen to crofton weed (Eupatorium adenophorum), one of the malignant weeds in the world. The phytotoxin produced by the fungus is the main factor that can cause the disease on crofton weed and other weeds in arable land. During the earlier period, mass-production, the extraction craft procedure, isolation, identification, bioactivity, action mechanism and specificity of the AAC-toxin had been studied, which exhibits the development potential of the toxin for bioherbicide. Then tenuazonic acid was identified as the main toxic compound in AAC-toxin. However, above study results are not still satifatied with the requirements of basic data for commercialization of this product. On the basis of these results, in this study the extraction craft procedure was improved, and the further evaluation on the development potential of AAC-toxin for bioherbicide was conducted. The herbicidal activity, toxicology, degration in soil and some other characteristics of tenuazonic acid were also studied. The purpose of this studey is to provide essential data for commercialization and evaluate further potential for developing the toxin into bioherbicide.The main contents are given as follows:
     1. Improvement of extraction craft procedure, herbicidal activity, and emulsifiable concentrates formulation of AAC-toxin
     The adsorbability for different macroporous resin DA201, D101, HZ-803, 1300 and activated carbon to Alternaria alternata AAC-toxin was compared. The results showed that DA201 had the best adsorbability, with highest adsorption rate of 72.88% through bioassay of activity of the filtrate after being adsorbed by DA201 and its desorbed filtrate. DA201 was suitable for purification and enrichment of the toxin through column chromatography. Furthermore, optimum adsorption and desorption conditions for DA201 were made as follows: the loaded amount was in culture filtrate/resin of 60-70/1 (v/v), pH was 4.12-4.62, and 90% ethanol was used for eluting the toxin.
     Phytotoxicity of AAC-toxin on the main weeds in arable land, crops and Digitaria sanguinalis with different leaf ages was bioassayed. The efficacy against Digitaria sanguinalis and security to wheat and cotton of the toxin were investigated in fields. The results in seedling spraying assay showed that the toxin could efficiently control the main weeds and Digitaria sanguinalis before three-leaf age, and was safe to cotton. At the concentration of 4000/zg/mL, the efficacy of the toxin against 12 weeds was higher than 90%. The weeds were as follows: Trifolium repense, Digitaria sanguinalis, Cyperus difformis, Eclipta prostrata, Echinochloa crusgalli, Geranium carolinianum, Commelina communis, Sonchus asper, Vicia sativa, Ambrosia artemisiifolia, Conyza bonarinsis, Acalypha australis. The injury rate and fresh weight inhibition rate of cotton plants were only 2.96% and 8.67% respectively in field trial. The results in field assay were consistent with that in greenhouse assay. These results suggested that the crude toxin could be used as bioherbicide in cotton field.
     The surface tension, dispersion, stability and bioactivity of seven emulsifiable concentrates were tested. The results showed that emulsifiable concentrates A, C, D, F and G had nice dispersion, A, C, D and G had nice stability, D and F had high bioactivity, but A and G had larger surface tension. In general consideration, emulsifiable concentrate D, in which triton X-100 was used as emulsifier had higher potential for development.
     2. HPLC detection, herbicidal activity, toxicity and degradation in soil of tcnuazonic acid
     HPLC method was established for analysis of tenuazonic acid using a C18 re-phase chromatography column, acetonitrile/methanol/water (5:3:2, by vol) as the mobile phase, and UV detection at 248 nm. The standard deviation was 0.53, coefficient of variation was 1.14%, recovery was 97.17%~100.56%, and the liner correlation cocfficicnt was 0.996. Tcnuazonic acid production ability of 19 Alternaria alternata isolates was compared using combination of the above HPLC analysis method with bioassay of leaf puncture assay. The results showed that among 19 isolates, X501 had the highest productivity of tenuazonic acid with its concentration of 3.8400/zg/mL in filtrate, followed by NEW. The isolates 501-2, 501-3 and YN had weaker pathogenicity.
     The effects of 11 adjuvants including cmulgcnt 6201 on herbicidal activity of tcnuazonic acid wcrc studied by means of detached leaf puncture assay. The results showed that sodium dodccyl benzene sulfonate had the best enhancement effect, and triton X-100, CGN-3, synergist YZ905 and EF8108-Ⅱexhibited enhancement effect too. The optimum concentrations of the five adjuvants ranged from 1‰~5‰for enhancement effects. Two formulations wcrc designed, formulationⅠis worthy of more development study.
     Detached leaf puncture assay were used to evaluate the bioactivity of tenuazonic acid to Eupatorium adenophorum from 6.25μg/mL to 400μg/mL. The results suggested that tenuazonic acid was very pathogenitic to Eupatorium adenophorum. Pathogenicity of tenuazonic acid of 50/zg/mL to the leaves at different parts of Eupatorium adenophorum ZG population plant was also investigated using detached leaf puncture assay. The results showed that tenuazonic acid was more pathogenitic to mature leaves than to young ones.About the weed control spectrum and crop security of tenuazonic acid, the results in detached leaf puncture assay showed that, tenuazonic acid was very pathogenetic to 26 weeds among 39 assayed weeds but safe to cotton and tobacco at the concentration of 50μg/mL. At the concentration of 62.5~1000μ~g/mL in seedling spraying assay, tenuazonic acid was all pathogenetic with different degrees to 15 weeds but also safe to cotton and tobacco. These results indicated that tenuazonic acid can be developed as a bioherbicide for weed control in cotton and tobacco fields.
     The toxicity of tenuazonic acid on Chlamydomonas reinhardtii was studied. The results revealed that tenuazonic acid promoted the growth of C. reinhardtii at low concentrations ranging from 12.5 to 25/zg/mL, however, with increase of tenuazonic acid concentrations, marked inhibition of the growth and impact of chl contents were observed. The 96h EC_(50)(G) and EC_(50(Chl)) of tenuazonic acid to C. reinhardtii were 310.36μg/mL and 294.27μg/mL respectively. According to the toxicant classification standard with 3μg/mL, the EC_(50) values of tenuazonic acid were very low for aquatic algae, indicating it may be rather safe to the aquatic ecosystem.
     The effects of tenuazonic acid on micronucleus and karyokinesis of Vicia faba root tip cells were investigated to evaluate its cytogenetic toxicity. The results indicated that when its concentration was 12.5~50μg/mL, no significant effects of tenuazonic acid on micronucleus ratio and karyokinesis index were found compared with control. However, as the concentration was been increased to 100~400μg/mL, the micronucleus ratio significantly increased whereas karyokinesis index significantly decreased. Multi-nucleolus was the phenomen of abnormal karyokinesis of Vicia faba root tip cells induced by tenuazonic acid, and multi-nucleolus ratio was significantly increased at the concentration ranging from 200 to 400/zg/mL.
     The cytotoxicity of tenuazonic acid on 3T3 mouse fibroblasts, Chinese hamster lung cells, L-O2 human hepatocytes was investigated by MTT method. The results suggested that, at the concentrations ranging from 12.5 to 400/zg/mL, tenuazonic acid inhibited the proliferation of the three cell lines. The inhibition was enhanced with the increase of tenuazonic acid concentrations and exposure time. Tenuazonic acid was more cytotoxic to 3T3 and CHL than L-02, and 3T3 was the most susceptible to it. The ECso values for them to tenuazonic acid at 24 h exposure were 41.64μg/mL, 59.33μg/mL and 85.98μg/mL respectively.
     Degradation of tenuazonic acid in soil was investigated under laboratory and field conditions. The results showed that, under laboratory condition, the soil microorganisms obviously accelerated the degradation of tenuazonic acid, suggesting that microorganisms play an important role in degradation of tenuazonic acid. Sunlight also involved in degradation of tenuazonic acid, but was not as important as microorganisms do. In addition, the increase of water contents and temperature of soil promoted the degradation of tenuazonic acid in soil. The studies under field condition revealed that the half life of tenuazonic acid was only about 3.22 days, and the residual period was about 20 days in soil.
     These results above showed that tenuazonic acid has broad weed control spectrum but is safe to cotton and tobacco. And it is environmentally benign, lowly mutagenic, and quickly degradable. All these characteristics of tenuazonic acid suggest its potential for developing into a bio-basedherbicide.
引文
1.安传福.链格孢菌毒素的大批量生产、分离、纯化和化学结构初步鉴定及其作为微生物源除草剂应用的研究[D].南京农业大学硕士论文,2003.
    2.康卓.中国生物源农药产业化进展[J].农药,2001,3:4-8.
    3.蔡道基.农药环境毒理学研究[M].北京:中国环境科学出版社,1999,pp75-76.
    4.常缨,王学东,强胜.链格孢菌毒素对紫茎泽兰叶组织超微结构的影响[J].电子显微学报,2004,23(5):566-570.
    5.常缨,王义权,强胜.链格孢菌菌株致病性及其遗传差异性[J].应用与环境生物学报,2005,11(4):486-489.
    6.柏亚罗,冯坚.百草枯与可持续农业[J].现代农药,2004,3(5):31-36.
    7.陈炳华,李婷,陈婧宇,高许力,吴彩容.大孔吸附树脂对海边月见草总黄酮德吸附及解吸特性[J].植物资源与环境学报,2006,15(2):11-15.
    8.陈光荣,李明,金波,欧光鑑,杜念劬.利用蚕豆(Vicia faba)根尖的微核试验,检测农药和诱变剂的损伤[J].华中师范大学学报(自然科学版),1983,(4):69-75.
    9.陈寒青,金征宇.大孔吸附树脂对红车轴草异黄酮吸附分离特性的研究[J].天然产物研究与开发,2006,18:187-192.
    10.陈捷.植物病原菌毒素的致病机理[M].董金皋,李树正主编.植物病原菌毒素研究进展.北京:中国科学技术出版社.1997.32-49.
    11.戴新宾,陈世国,强胜,安传福,张荣铣.链格孢菌毒素对紫茎泽兰叶片光合作用的影响[J].植物病理学报,2004,34(1):55-60.
    12.刁亚梅,粟寒,李捷,王红梅.小麦白粉病离体叶段筛选方法初探[J].浙江化工,2000,31(增刊):78-79.
    13.董金皋,樊慕贞,韩建民,刘书华,曹丽慧.芸苔链格孢菌毒素对白菜细胞膜透性、SOD酶和POD酶活性的影响[J].植物病理学报,1999,29(2):138-141.
    14.董金皋,朱晞.真菌毒素生物测定方法研究概况I[J].河北农业大学学报,1992,15(4):99-102.
    15.董娟娥,梁宗锁,张康健,张利萍,李倩,大孔吸附树脂一次性分离杜仲宗杜仲总苷和杜仲黄酮的研究[J].农业工程学报,2006,22(7):154-158.
    16.杜丽亚,章钢娅,靳伟,土壤含水量和胡敏酸对有机氯农药降解的影响[J].土壤学报,2006,43(2):332-336.
    17.段昌群,王焕校,曲仲湘.重金属对蚕豆核酸和核酸酶的影响[J].环境科学,1992,14(3):31-36.
    18.范晋勇,王志平,吴金川,元英进.大孔吸附树脂提取麦拓莱霉素的工艺研究[J].离子交换与吸附,2003,19(6):495-503.
    19.伏建国.链格孢菌强产毒菌株的筛选和限制性内切酶介导整合(REMI)转化的产毒诱变[D].南京农业大学硕士论文.2005.
    20.付颖,叶非,王常波.生物源除草剂研究与使用进展[J].农药,2002,41(5):7-11.
    21.郭武棣.液体制剂[M].第3版.北京:化学工业出版社,2004,96-127.
    22.黄永林,阮俊,沈晓琳,杨雄辉.大孔吸附树脂分离提取大叶钩藤总生物碱[J].广西科学,2006,13(2):127-129.
    23.李凤琴.链格孢菌毒素和食品卫生[J].中国食品卫生杂志,2001,13(6):45-49.
    24.黎海彬,李小梅.大孔吸附树脂及其在天然产物研究中的应用[J].广东化工,2005,(3):22-25.
    25.李铷,董锦艳,向梅梅.微生物源除草剂的研究、应用现状及展望[J].杂草科学,2004,(4):1-7.
    26.李树正,岳东霞,刘准,杨秀风,张素华,张志铭.交链孢酸的抗菌活性及除草活性研究[M].董金皋,李树正主编.植物病原菌毒素研究进展.北京:中国科学技术出版社.1997.227-232.
    27.连玉朱,王金信,李浙江,刘迎,隋标峰.几种棉田除草剂大田防除效果及其对棉花的安全性测定[J].农药,2006,45(4):270-271,277.
    28.刘瑞源,钟平,戴开金.大孔吸附树脂提取中草药有效成分的研究进展[J].时珍国医国药,2004,17(6):385-386.
    29.陆敏,吴明勤,王金友.苹果链格孢菌浸染对苹果品种叶细胞超微结构的影响[J].植物病理学报,1995,25(1):47-50.
    30.鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,166-183.
    31.罗毅,刘锋,冯建林,张理汉,胡绪英.高效液相色谱-质谱法测定粮食中互隔交链孢霉醇、互隔交链孢霉醇单甲醚及玉米赤霉烯酮[J].色谱,1994,12(5):342-344.
    32.马振国,董金皋,樊慕贞.芸薹链格孢菌毒素致病机理及钝化初步研究[J].河北农业大学学报,2000,23(1):63-66.
    33.马振国,董金皋,樊慕贞.芸薹链格孢致病毒素研究Ⅱ——AB-毒素对白菜叶片细胞PAL、POD、SOD活性的影响[J].河北农业大学学报,2002,25(4):67-72.
    34.孟紫强.环境毒理学基础[M].北京:高等教育出版社,2003,199-209.
    35.农药部农药检定所.农药残留量实用检测方法手册(第一卷)[M].北京:中国农业科技出版社,1995,7-34.
    36.欧晓明,雷满香,张俐,陈九星,柳爱平,樊德方.新农药HNPC-A9908在甘蓝和土壤中的残留消解动态[J].农业环境科学学报,2004,23(4):818-822.
    37.强胜.生物除草剂的最新研究进展[J].杂草科学,1997,4:9-10.
    38.强胜.世界性恶性杂草—紫茎泽兰研究的历史及现状[J].武汉植物学研究,1998a,16(4):366-372.
    39.强胜.链格孢菌作为真菌除草剂防除紫茎泽兰潜力的研究[D].南京农业大学博士论文.1998b.
    40.强胜,常缨,万佐玺,李扬汉.采自紫茎泽兰的5个链格孢菌菌株致病性和若干特征的比较[J].南京农业大学学报,2002,25(4):23-27.
    41.强胜,万佐玺,董云发,李扬汉.链格孢菌毒素对紫茎泽兰致病性的初步研究[C].孙鼐昌编.面向21世纪中国杂草可持续治理(第六次全国杂草科学学术研讨论文集).南宁:广西民族出版社.1999.pp.158-165.
    42.裘维蕃.菌物学[M].北京:科学出版社.2000.827-828.
    43.邵维忠.农药助剂[M].北京:化学工业出版社.2003,p25-46.
    44.沈晋良.农药加工与管理[M].北京:中国农业出版社,2002,5-97.
    45.石小清,倪珏萍,王阿国,沈晓霞,刘艳.新化合物JS412除草活性的生物测定[J].浙江化工,2000,31(增刊):81-86.
    46.苏少泉,耿贺利.茎叶除草剂的吸收与助剂的使用[J].农药,2002,41(4):9-14.
    47.谭福杰,李显春,沈晋良,谭建国.植物化学保护实验指导书[M].南京:南京农业大学植保系昆虫生理化保组,1991,p5-13.
    48.汤富彬,朱国念.土壤中精喹禾灵残留测定及微生物降解研究[J].农业环境科学学报,2006,25(增刊):742-745.
    49.唐美珍,郭正元,袁敏,杨仁斌.典甲磺隆钠在土壤中的降解动态研究[J].农业环境科学学报,2005,24(4):724-727.
    50.汤志刚,周荣琪,丁立,段占庭.国产大孔吸附树脂浓集分离赤霉素[J].离子交换与吸附,1999,15(5):440-446.
    51.万佐玺.链格孢菌毒素及其对紫茎泽兰的致病机理[D].南京农业大学硕士论文.2000.
    52.万佐玺.链格孢菌毒素对紫茎泽兰致病性及生物测定方法的研究[J].湖北民族学院学报(自然科学版),2001,19(1):20-23.
    53.万佐玺.链格孢菌粗毒素的提取方法和稳定性的研究[J].湖北民族学院学报(自然科学版),2002,20(4):26-28.
    54.万佐玺,强胜,吴永尧.链格孢菌毒素的分离及活性测定[J].北华大学学报(自然科学版),2001a,2(5):428-430.
    55.万佐玺,强胜,徐尚成,沈振国,董云发.链格孢菌的产毒培养条件及其毒素的致病范围[J].中国生物防治,2001b,17(1):10-15.
    56.万佐玺,朱晶晶,强胜.链格孢菌毒素对紫茎泽兰的致病机理[J].植物资源与环境学报,2001c,10(3):47-50.
    57.王德铭.水生生物监测手册[M].南京:东南大学出版社,1998.57-60,257-260.
    58.王冬梅,尉芹,马希汉.大孔吸附树脂在药用植物有效成分分离中的应用[J].西北林学院学报,2002,17(1):60-63.
    59.王洪凯,张天宇.链格孢属真菌分类研究进展[J].山东农业大学学报(自然科学版),2001,32(3):406-410.
    60.王普,罗旭彪,陈波,姚守拙.大孔吸附树脂分离纯化荷叶中阿朴啡类生物碱[J].中草药,2006,37(3):355-358.
    61.王小丽,王素利,陈振山,刘丰茂.黄瓜及其栽培土壤中甲氨基阿维菌素苯甲酸盐的残留动态研究[J].农业环境科学学报,2005,24(增刊):307-310.
    62.王跃生,王洋.大孔吸附树脂研究进展[J].中国中药杂志,2006,31(12):961-965。
    63.吴清,陈贤春,杜守颖.大孔吸附树脂法富集人参叶中人参总皂甙的工艺研究[J].北京中医药大学学报,2006,29(5):344-346.
    64.徐浩,李振.嘧霉胺在黄瓜及土壤中的残留降解动态[J].浙江农业学报,2005,17(6):380-383.
    65.徐浩,李振,赵华,吴珉,胡秀卿.新农药苯醚菌酯(ZJ0712)在黄瓜及土壤中的残留研究[J].农业环境科学学报,2006,25(增刊):595-598.
    66.阎国华,甘立军,周燮.用H103大孔吸附树脂提取赤霉素A3的初步研究[J].南京农业大学学报,1998,22(1):22-25.
    67.严红,李明远,蒋有绎,张环,柴敏.利用真菌毒素筛选抗早疫病番茄材料的研究[M].李树正主编.植物病原菌毒素研究进展.北京:中国科学技术出版社.1997.222-226.
    68.杨欣.链格孢霉毒素研究进展[J].国外医学卫生学分册,2000,27(3):182-187.
    69.于建垒,宋国春,李瑞娟,王森.甲咪唑烟酸及其代谢物在花生及土壤中的残留动态研究[J].农业环境科学学报,2006,25(增刊):260-264.
    70.张一宾.茎叶处理用农药向作物及杂草的移行以及农药用助剂的作用机理[J].世界农药,2001,23(4):42-46.
    71.章元寿.关于植物病原菌毒素研究中几个问题的商榷[M].李树正主编.植物病原菌毒素研究进展.北京:中国科学技术出版社.1997.3-7.
    72.郑丽英,杨仁斌,郭正元.双草醚在稻田土壤中的降解及其影响因子的研究[J].土壤通报,2006,37(3):569-571.
    73.朱广廉,钟海文,张爱琴.植物生理学实验[J].北京:北京大学出版社.1990,pp13-16,161-165.
    74.朱虹,陆敏,吴明勤,李保聚,邢丽娟,魏松红.苹果斑点落叶病菌毒素对苹果叶片SOD酶的影响[M].李树正主编.植物病原菌毒素研究进展.北京:中国科学技术出版社.1997.210-213.
    75.朱九生,乔雄梧,王静,秦曙.乙草胺在土壤环境中的残留及其影响因子的研究[J].农业环境科学学报,2004,23(5):1025-1029.
    76. Abbas H. K., Boyette C. D. Biological control of weeds using AAL-toxin[J]. 1995. United States Patent 5256628.
    77. Abbas H K, Duke S O, Merrill A H, Wang E, Shier W T. Phytotoxicity of anstralifungin, AAL-toxins and fumonisin B1 to Lemna pausicostata[J]. Phytochemistry, 1998a, 47:1509-1514.
    78. Abbas H K, Paul R N, Riley R T, Tanaka T, Shier W T. Ultrastructural effects of AAL-toxin TA from the fungus Alternaria alternata on black nightshade (Solatium nigrum L.) leaf discs and correlation with biochemical measures of toxicity[J]. Toxicon, 1998b, 36(12): 1821-1832.
    79. Abbas H K, Riley R T. The presence and phytotoxicity of fumonisins and AAL-toxin in Alternaria alternata[J]. Toxicon, 1996,34(1): 133-136.
    80. Abbas H K, Tanaka T, Duke S V, Boyette C D. Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide[J]. Weed Technology, 1995a, 9(1): 125-130.
    81. Abbas H K, Tanaka T, Duke S V, Porter J K, Wray E M, Hodges L, Sessions A E, Wang E, Merrill A H, Riley R T. Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases[J]. Plant Physiology, 1994,106:1085-1093.
    82. Abbas H K, Tanaka T, Shier W T. Biological activites of synthetic analogues of Alternaria alternata toxin (AAL-toxin) and fumonisin in plant and mammalian cell cultures[J]. Phytochemistry, 1995b, 40(6): 1681-1689.
    83. Abbas H, Vesonder R F. Isolation and purification of AAL-toxin from Alternaria alternata grown on rice[J]. Toxicon, 1993,31(3): 355- 358.
    84. Abbas H K, Vesonder R F, Boyette C D, Peterson S W. Phytotoxicity of AAL-toxin and other compounds produced by Alternaria alternata to jimsonweed (Datura stramonium)[J]. Canadian Journal of Botany, 1993,71:155-160.
    85. Alexander M. Biodegradation of organic chemicals[J]. Environmental Science and Technology, 1985,19:106-111.
    86. An Y H, Zhao T Z, Mao J. Isolation, identification and mutagenicity of alternariol monomethyl ether[J]. Agricultural and Food Chemistry, 1989,37:1341-1343.
    87. Andersen B, Smedsgaard J, Joning I, Skouboe P, Pedersen LH. Real-time PCR quantification of the AM-toxin gene and HPLC qualification of toxigenic metabolites from Alternariia species from appales[J]. International Journal of Food Microbiology, 2006, 111: 105-111.
    88. Antony M, Gupta K P, Janardanan K K, Mehrotra N K. Inhibition of mouse skin tumor promotion by tenuazonic acid[J]. Cancer Letters, 1991,61(1): 21-25.
    89. Antony M, Shukla Y, Janardhanan K K. Protective effect of tenuazonic acid against dimethyl benz(a)antracene-induced skin carcinogenesis in mice[J]. Teratogenesis, Carcinogenesis, & Mutagenesis, 2002,22(4): 309-314.
    90. Ast T, Barren E, Kinne L, Schmidt M, Germeroth L, Simmons K, Wenschuh H. Synthesis and biological evaluation of destruxin A and related analogues[J]. Journal of Peptide Research, 2001,58: 1-11.
    91. Asturias J A, Arilla M C, libarrola I, Eraso E, Gonzalez-Rioja R, Martinez A. A sensitive two-site enzyme-linked immunosorbent assay for measurement of the major Alternaria alternata allergen Alt a1[J]. Annual of Allergy Asthma Immunology, 2000, 90(5): 464-465.
    92. Bartels-Keith J R. Alternaric acid. Part Ⅲ. Structure[J]. Journal of Chemical Society, 1960, 860: 1662-1665.
    93. Bland J M, Edwards J V, Eaton S R, Lax A R. Potential of natural peptidic compounds as leads for novel pesticides[J]. Pesticide Science, 1993, 39, 331-340.
    94. Bottini A T, Bowen J R, Gilchrist D G; Phytotoxin:Ⅱ. A characterization of a phytotoxie fraction from Alternaria alternata f. sp. lycopersici[J]. Tetrahedron Letters, 1981, 22:2723-2726.
    95. Bottini A T, Gilchrist D G Phytotoxin: Ⅰ. A 1-aminodimethylheptadecapentol from Alternaria alternata f. sp. lycopersici[J]. Tetrahedron Letters, 1981, 22: 2719-2722.
    96. Boutin B K, Peeler J T, Twedt R W. Effect of purified altertoxin Ⅰ, Ⅱ, and Ⅲ in the metabolic communication V79 system[J]. Toxicology and Environmental Health, 1989, 26: 75-81.
    97. Brandwagt B F, Kneppers T J, Nijkamp H J, Hille J. Overexpression of the tomato Asc-1 gene mediates high insensitivity to AAL toxins and fumonisin B1 in tomato hairy roots and confers resistance to Alternaria alternata f. sp. lycopersici in Nicotiana umbratica plants[J]. Molecular Plant-Microbe Interaction, 2002, 15: 35-42.
    98. Brandwagt B F, Kneppers T J, van der Weerden G M, Nijkamp H J, Hille J. Most AAL toxin-sensitive Nicotiana species are resistant to the tomato fungal pathogen Alternaria alternata f. sp. lycopersici[J]. Molecular Plant-Microbe Interaction, 2001, 14: 460-470.
    99. Brian P W, Curtis P J, Hemming H G, Jefferys E G, Unwin C H, Wright J M. Altemaric acid: a biologically active metabolic product of Alternaria solani (Ell. & Mart.) Jones & Grout; its production, isolation and antifungal properties[J]. Jouranl of Genetics and Microbiology, 1951, 5: 619-632.
    100. Buchwaldt L, Green H. Phytotoxicity of destruxin B and its possible role in the pathogenesis of Alternaria brassicae[J]. Plant Pathology, 1992, 41: 55-63.
    101. Buchwaldt L, Jensen J S. HPLC purification of destruxins produced by Alternaria brassicae in culture and leaves of Brassica napus[J]. Phytochemistry, 1991, 30: 2311-2316.
    102. Calmes M, Cavelier F, Jacquier R, Mercadier J L, Sabil S, Verducci J, Quiot J M, Vey A. Synthesis and biological activity of a destruxin analogue: D-Lac-6 destruxin E[J]. International Journal of Peptide and Protein Research, 1993, 41: 528-535.
    103. Carrasco L, Vazquez. Differences in eukaryotic ribosomes detected by the selective action of an antibiotic[J]. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 1973, 319(2): 209-215.
    104. Cavelier F, Jacquier R, Mercadier J L, Verducci J. Destruxin analogues: depsipeptidic bond replacement by amide bond[J]. Tetrahedron, 1996,52: 6173-6186.
    105. Cavelier F, Jacquier R, Mercadier J L, Verducci J, Traris M, Vey A. Destruxin analogs: variations of the a-hydroxy acid side chain[J]. Journal of Peptide Research, 1997,50:94-101.
    106. Cavelier F, Verducci J. New synthesis of the cyclic tetrapeptide tentoxin employing an azlactone as key intermediate[J]. Tetrahedron Letters, 1995,36(25): 4425-4428.
    107. Cavelier F, Verducci J, Andr6, F, Haraux F, Sigalat C, Traris M, Vey A. Natural cyclopeptides as leads for novel pesticides: tentoxin and destruxin[J]. Pesticide Science, 1998,52: 81-89.
    108. Chen S, Dai X, Qiang S, Tang Y. Effect of a nonhost-selective toxin from Alternaria alternata on chloroplast-electron transfer activity in Eupatorium adenophorum[J]. Plant Pathology, 2005, 54: 671-677.
    109. Clouse S D, Gilchrist D G Interaction of the asc locus in F8 lines of tomato with Alternaria alternata f. sp. lycopersici AAL-toxin[J]. Phytopathology, 1987,77: 80-82.
    110. da Motta S, Soares L M V. Simultaneous determination of tenuazonic and cyclopiazonic acids in tomato products[J]. Food Chemistry, 2000,71:111-116.
    111. Daly J M. Molecular determinants of plant diseases[M]. Tokyo: Japanese Science Society Press. 1987.199.
    112. Davis N D, Diener U L, Morgan-Jones G. Tenuazonic acid production by Alternaria alternata and A. tenuissima isolated from cotton[J]. Applied and Environmental Microbiology, 1977, 34:155-157.
    113. Davis V M, Stack M E. Mutagenicity of stemphyltoxin III, a metabolite of Alternaria alternata[J]. Applied and Environmental Microbiology, 1991,57(1): 180-182.
    114. Davis V M, Stack M E. Evaluation of alternariol and alternariol methyl ether for mutagenic activity in Salmonella typhimurium[J]. Applied and Environmental Microbiology, 1994, 60(10): 3901-3902.
    115. Delgado T, Gomez-Cordoves C, Scott P M. Determination of altemariol and alternariol methyl ether in apple juice using solid-phase extraction and high-performance liquid chromatography[J]. Journal of Chromatography A, 1996,731(1): 109-114.
    116. Devriese M, Tsakaloudi V, Garbayo I, Le6n R, Vilchez C, Vigara J. Effect of heavy metals on nitrate assimilation in the eukaryotic microalga Chlamydomonas reinhardtii[J]. Plant Physiology and Biochemistry, 2001, 39: 443-448.
    117. Dong Z, Liu G, Qian Y. Induction of mutagenesis and transformation by the extract of Alternaria alternata isolated from grains in Linxian, China[J]. Carcinogenesis, 1987, 8: 989-991.
    118. Dragan Y P, Bidlack W R, Cohen S M, Goldsworthy T L, Hard G C, Howard P C, Riley R T, Voss K A. Implications of apoptosis for toxicity, carcinogenicity, and risk assessment: fumonisin B(1) as an example[J]. Toxicological Science, 2001,61:6-17.
    119. Duke S O, Dayan F E, Romagni J G, Rimando A M. Natural products as sources of herbicides: current status and future trends[J]. Weed Research, 2000,40:99-111.
    120. Durbin R D and Uchytil T F. A survey of plant insensitivity to tentoxin[J]. Phytopathology, 1977,67: 602-603.
    121. Edwards J V, Dailey O D, Bland J M, Cutler H G Approaches to structure-function relationships for naturally occurring cyclic peptides[J]. American Chemical Society Symposium Series, 1988, 380: 35-56.
    122. Evans N, Mcroberts N, Hill R A, Marshall G Phytotoxin production by Alternaria linicola and phytoalexin production by the linseed host[J]. Annals of Applied Biology, 1996,129:415-431.
    123. Feng B, Nakatsuka S, Goto T, Tsuge T, Nishimura S. Biosyntheses of host-selective toxins produced by Alternaria alternata pathogens, I: (8R,9S)-9,10-expoxy-8-hydroxy-9-methyl-deca -(2E,4Z,6E)-trienoic acid as a biological precursor of AK-toxins[J]. Agricultural and Biological Chemistry, 1990,54(3): 845-848.
    124. Friedman M A, Aggarwal V, Lester G E. Inhibition of epidermal DNA synthesis by cycloheximide and other inhibitors of protein synthesis[J]. Research Communications in Chemical Pathology & Pharmacology, 1975,11(2): 311-318.
    125. Gallardo G L, Pefia N, Chacana P, Terzolo H R, Cabrera G M. L-tenuazonic acid, a new inhibitor of Paenibacillus Larvae[J]. World Journal of Microbiology & Biotechnology, 2004,20:609-612.
    126. Gardner J M, Kono Y, Chandler, J L. Bioassay and host-selectivity of Alternaria citri toxins affecting rough lemon and mandarins[J]. Physilological and Molecular Plant Pathology, 1986, 29: 293-304.
    127. Gardner J M, Kono Y, Tatum J H, Suzuki Y, Takeuchi S. Plant pathotoxins horn Alternaria citri: the major toxin specific for rough lemon plants[J]. Phytochemistry, 1985a, 24: 2861-2867.
    128. Gardner J M, Kono Y, Tatum J H, Suzuki Y, Takeuchi S. Structure of the major component of ACRL-toxins, host-specific pathotoxic compounds produced by Alternaria citri[J]. Agricultural and Biological Chemistry, 1985b, 49(4): 1235-1238.
    129. Giambrone J J, Davis N D, Diener U L. Effect of tenuazonic acid on young chickens[J]. Poultry Science, 1978,57:1554-1558.
    130. Gilbert J. Recent advances in analytical methods for mycotoxins[J]. Food Additives and Contaminants. 1993,10:37-48.
    131. Gilchrist D G W B, Grogan R G Production and nature of a host-specific toxin from Alternaria alternata f. sp. lycopersici[J]. Phytopathology, 1976, 66:165-171.
    132. Gilchrist D G W B, Moussatos V, Mirocha C J. Genetic and physiological response to fumonisins and AAL-toxin by intact tissue of a higher plant[J]. Mycopathologia, 1992,117:57-64.
    133. Gitterman C O. Antitumor, cytotoxic, and antibacterial activities of tenuazonic acid and congeneric tetramic acids[J]. Journal of Medicinal Chemistry, 1965,8:483-486.
    134. Griffin G F, Chu F S. Toxicology of the Alternaria metabolites alternariol, alternariol methyl ether, altenuene, and tenuazonic acid in the chicken embryo assay[J]. Applied and Environmental Microbiology, 1983,46:1420-1422.
    135. Grove F G, Mortimer P H. The cytotoxicity of some transformation products of diacetoxyscirpenol[J]. Biochemical Pharmacology, 1969,18:1473-1478.
    136. Hanelt M, Gareis M, Kollarczik B. Cytotoxicity of mycotoxins evaluated by the MTT-cell culture assay[J]. Mycopathologia, 1994,128:167-174.
    137. Harris E H. In: The Chlamydomonas sourcebook, a comprehensive guide to biology and laboratory use[M]. Academic Press, San Diego, 1989, pp.25-31.
    138. Hasan H A H. Phytotoxicity of pathogenic fungi and their mycotoxins to cereal seedling viability[J]. Mycopathologia, 1999,148:149-155.
    139. Hatta R. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata[J]. Genetics, 2002,161:59-70.
    140. Hayashi N, Tanabe K, Tsuge T, Nishimura S, Kohmoto K, Otani H. Determination of host-selective toxin production during spore germination of Alternaria alternata by high-performance liquid chromatography[J]. Phytopathology, 1990,80:1088-1091.
    141.Heisler E G, Siciliano J, Stinson E E, Osman S F, Bills D D. High-performance liquid chromatographic determination of major mycotoxins produced by Alternaria molds[J]. Journal of Chromagography, 1980,194: 89-94.
    142. Holland N, Evron Y, Jansen M A K, Edelman M, Pick U. Involvement of thylakoid overenergization in tentoxin-induced chlorosis in Nicotiana spp[J]. Plant Physiology, 1997, 114: 887-892.
    143. Horikawa E, Kodaka M, Nakahara Y, Okuno H, Nakamura K. Solid-phase synthesis of dehydropeptide, AM-toxin II, using a novel selenyl linker by side-chain tethered strategy[J]. Tetrahedron Letters, 2001,42: 8337-8339.
    144. Hu N, Mills D A, Huchzermeyer B, Richter M. Inhibition by tentoxin of cooperativity among nucleotide binding sites on chloroplast coupling factor 1[J]. The Journal of Biological Chemistry, 1993, 268(12): 8536-8540.
    145. Hyeon S, Ozaki A, Suzuki A, Tamura S. Isolation of a, β-dehydrocurvularin and β-hydroxycurvularin from Alternaria tomato as sporulation-suppressing factors[J]. Agricultural and Biological Chemistry, 1976, 40(8): 1663-1664.
    146. Iwasaki S, Muro H, Nozoc S, Okuda S, Sato Z. Isolation of 3, 4-dihydro-3, 4, 8-trihydroxy-1(2H)-naphthalenone and tenuazonic acid from Pyricularia oryzae Cavara[J]. Tetrahedron Letters, 1972, 13: 13-16.
    147. Jegorov, Sedmera P, Matha V. Biosynthesis of destruxins[J]. Phytochemistry, 1993, 33: 1403-1405.
    148. Johnson R D. Cloning and characterization of a cyclic peptide synthetase gene from Alternaria alternata apple pathotype whose product is involved in AM-toxin synthesis and pathogenicity[J]. Molecular Plant-Microbe Interaction, 2000, 13: 742-753.
    149. Jones R W, Lanini W T and Hancock J G. Plant growth response to the phytotoxin viridiol produced by the fungus Gliocladium virens[J]. Weed Science, 1988, 36: 683-687.
    150. Kaczka E A, Gitterman C O, Dulaney E L, Smith M C, Hendlin D, Woodruff H B, Folkers K. Discovery of inhibitory activity of tenuazonic acid for growth of human adenocarcinoma-1[J]. Biochemical and Biophysical Research Communications, 1964, 14(1): 54-57.
    151. Kimura N, Tsuge T. Gene cluster involved in melanin biosynthesis of the filamentous fungus Alternaria alternata[J]. Journal of Bacteriology, 1993, 175(14): 4427-4435.
    152. Kodaira Y. Toxic substances to insects, produced by Aspergillus ochraceus and Oospora destructor[J]. Agricultural and Biological Chemistry, 1961, 25: 261-262.
    153. Kohmoto K, Itoh Y, Shimomura N, Kondoh Y, Otani H, Kodama M, Nishimura S, Nakatsuka S. Isolation and biological activities of two host-specific toxins from the tangerine pathotype of Alternaria alternata[J]. Phytopathology, 1993, 83: 495-502.
    154. Kohmoto K, Scheffer R P, Whiteside J O. Host-selective toxins from Alternaria citri[J]. Phytopathology, 1979, 69: 667-671.
    155. Kohmoto K, Otain H, Nishimura S. In: Molecular determinants of plant disease[M]. Nishimura S et al., (eds.) Japan Sci Press, Tokyo Springer-Verlag, Berlin. 1987. 127-143.
    156. Kono Y, Gardner J M, Suzuki Y, Takeuchi S. Studies on host-selective toxins produced by a pathotype of Alternaria citri causing brown spot disease of mandarins[J]. Agricultural and Biological Chemistry, 1986, 50(6): 1597-1606.
    157. Kusaba M. Phylogeny of Alternaria fungi known to produce host-specific toxins on the basif of variation in internal transcribed spacers of ribosomal DNA[J]. Current Genetics, 1995, 28: 491-498.
    158. Kusaba M. Mitochondrial DNA variation in host-specific toxin-producing pathogens in the genus Alternaria[J]. Annals of Phytopathology Society of Japan, 1997,63:463-469.
    159. Kusaba M, Tsuge T. Nuclear ribosomal DNA variation and pathogenic specialization in Alternaria fungi known to produce host-specific toxins[J]. Applied and Environmental Microbiology, 1994, 60(9): 3055-3062.
    160. Kuyama S, Tamura S. Total synthesis of destruxin B[J]. Agricultural and Biological Chemistry, 1965,29:168-169.
    161. Larsen T 0, Perry N B, Andersen B. Infectopyrone, a potential mycotoxin from Alternaria infectoria[J]. Tetrahedron Letters, 2003,44:4511-4513.
    162. Lebrun M, Duvert P, Gaudemer F, Gaudemer A, Deballon C, Boucly P. Complexation of the fungal metabolite tenuazonic acid with copper (II), iron (III), nickel (II), and magnesium ions[J]. Journal of Inorganic Biochemistry, 1985,24:167-181.
    163. Lebrun M H, Nicolas L, Boutar M, Gaudemer F, Ranomenjanahary S, Gaudemer A. Relationships between the structure and the phytotoxicity of the fungal toxin tenuazonic acid[J]. Phytochemistry, 1988, 27(1): 77-84.
    164. Lee D, Fortin C, Campbell P G C. Contrasting effects of chloride on the toxicity of silver to two green algae, Pseudokirchneriella subcapitata and Chlamydomonas reinhardtii[J]. Aquatic Toxicology, 2005, 75:127-135.
    165. Lee S, Izumiya N, Suzuki A, Tamura S. Synthesis of a cyclodepsipeptide, protodestruxin[J]. Tetrahedron Letters, 1975,16: 883-886.
    166. Leon R, Galvan F. Interaction between saline stress and photoinhibition of photosynthesis in the freshwater green algae Chlamydomonas reinhardtii. Implications for glycerol photoproduction[J]. Plant Physiology and Biochemistry, 1999,37(7/8): 623-628.
    167. Li Z, Martin F M, Vederas J C. Biosynthetic incorporation of labeled tetraketide intermediates into dehydrocurvularin, a phytotoxin from Alternaria cinerariae, with assistance of β-oxidation inhibitors[J]. Journal of American Chemical Society, 1992,114:1531-1533.
    168. Liakopoulou-Kyriakides M, Lagopodi A L, Thanassoulopoulos C C, Stavropoulos G S, Magafa V. Isolation and synthesis of a host-selective toxin produced by Alternaria alternata[J]. Phytochemistry, 1997, 45(1): 37-40.
    169. Liebermann B, Ellinger R, Gunther W, Ihn W, Gallander H. Tricycloalternarenes produced by Alternaria alternata related to ACTG-toxins[J]. Phytochemistry, 1997,46:297-303.
    170. Liebermann B, Ellinger R, Pinet E. Isotentoxin, a conversion product of the phytotoxin tentoxin[J]. Phytochemistry, 1996,42(6): 1537-1540.
    171. Liebermann B, Ihn W, Baumann E, Tresselt D. Dihydrotentoxin and a related dipeptide produced by Alternaria alternata[J]. Phytochemistry, 1988, 27(2): 357-359.
    172. Liebermann B, Kolblin R. A new phytotoxic activity of the cyclic peptides tentoxin and dihydeotentoxin[J]. Journal of Phytopathology, 1992, 135: 245-250.
    173. Liebermann B, Nussbaum R, Gunther W. Bicycloalternarenes produced by the phytopathogenic fungus Alternaria alterrnata[J]. Phytochemistry, 2000, 55: 987-992.
    174. Liu G, Qian Y, Zhang P. Etiological role of Alternaria alternata in human esophageal cancer[J]. Chinese Medicine, 1992, 105: 394-400.
    175. Liu Y, Li Z, Vederas C. Biosynthetic incorporation of advanced precursors into dehydrocurvularin, a polyketide phytotoxin from Alternaria cinerariae[J]. Tetrahedron, 1998, 54: 15937-15958.
    176. Lowry O H, Rosebrough N J, Farr A L, Randall R J. Protein measurement with folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275.
    177. Maiero M, Bean G A, Ng TJ. Toxin production by Alternaria solani and its related phytotoxicity to tomato breeding lines[J]. Phytopathology, 1991, 81(9): 1030-1033.
    178. Marfod E C, Kajiyama S, Fukusaki E, Kobayashi A. Phytotoxicity of the tetramic acid metabolite trichosetin[J]. Phytochemistry, 2003, 62: 715-721.
    179. Meronuck R A, Steele J A, Mirocha C J, Christensen. Tenuazonic acid, a toxin produced by Alternaria alternata[J]. Applied Microbiology, 1972, 23(3): 613-617.
    180. Merrill A H Jr, Wang E, Gilchrist D G, Riley R T. Fumonisins and other inhibitors of de nobo sphingolipid biosynthesis[J]. Advances in Lipid Research, 1993, 26: 215-234.
    181. Mesbah L A, van der Weerden G M, Nijkamp H J J, Hille J. Sensitivity among species of Solanaceae to AAL toxins produced by Alternaria alternata f. sp. lycopersici[J]. Plant Pathology, 2000, 49: 734-741.
    182. Mikami Y, Nishijima Y, Limura H, Suzuki A, Tamura S. Chemical studies on brown spot disease of tobacco plants. I. Tenuazonic acid as a vivotoxin of Alternaria longipes[J]. Agriculture and Biological Chemistry, 1971, 35: 611-618.
    183. Miyashita M, Nakamori T, Miyagawa H, Akamatsu M, Ueno T. Inhibitory activity of analogs of AM-toxin, a host-specific phytotoxin from the Alternaria alternata apple pathotype, on photosynthetic O2 evolution in apple leaves[J]. Bioscience, Biotechnology, and Biochemistry, 2003, 67(3): 635-638.
    184. Mosmann T. Rapid colorimetric assay for cellular growth and survial: Application to proliferation and cytotoxicity assays[J]. Journal of Immunological methods, 1983, 65: 55-63.
    185. Montemurro N, Visconti A. Alternaria metabolites: chemical and biological data[M]. In: Chelkowski J, Visconti A (eds). Alternaria: Biology, plant disease and metabolites. Amsterdam: Elsevier Science Publishers. 1992.449-455.
    186. Morion H, Fortin C, Floriani M, Adam C, Garnier-Laplace J, Boudou A. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level[J]. Aquatic Toxicology, 2005,73: 65-78.
    187. Muramatsu T, Umetsu N, Matsuda K, Tamari K. Effect of tenuazonic acid on in vitro amino acid incorporation by rice embryo ribosomes[J]. Agriculture and Biological Chemistry, 1974, 38(10): 2049-2050.
    188. Murao S, Hinode Y, Matsumura E, Numata A, Kawai K, Ohishi H, Jin H, Oyama H and Shin T. A novel laccase inhibitor, N-hydroxyglycine, produced by Penicillium citrinum YH-31[J]. Bioscience, Biotechnology and Biochemistry, 1992,56(6): 987-988.
    189. Nadakazu T, Ueno T, Fukami H, Taga T, Masuda H, Osaki K, Otani H, Kohmoto K and Nishimura S. Isolation and structures of AK-toxin I and II, host-specific phytotoxic metabolites produced by Alternaria alternata Japanese pear pathotype[J]. Agricultural and Biological chemistry, 1985, 49(3): 807-815.
    190. Nawaz S, Scudamore K A, Rainbird S C. Mycotoxins in ingredients of animal feeding stuffs : I. Determination of Alternaria mycotoxins in oilseed rape meal and sunflower seed meal[J]. Food Additives and Comtaminants. 1997,14(3): 249-262.
    191. Nishimura S, Kohmoto K. Host-specific toxins and chemical structures bom Alternaria species[J]. Annual Reviews of Phytopathology, 1983,21: 87-116.
    192. Noda T, Take T, Otani T, Watanabe T, Abe J. Structure of bostrycin[J]. Tetrahedron Letters, 1968,58: 6087-6090.
    193. Noda T, Take T, Watanabe T, Abe J. The structure of bostrycin[J]. Tetrahedron, 1970, 26: 1339-1346.
    194. Nussbaum R, Gunther W, Heinze S, Iiebermann B. New tricycloalternarenes produced by the phytopathogenic fungus Alternaria alternata[J]. Phytochemistry, 1999,52: 593-599.
    195.Ohta Y, Yoshioka T, Mochimaru M, Hisabori T, Sakurai H. Tentoxin inhibits both photophosphorylation in thylakoids and the ATPase activity of isolated coupling factor F1 from the Cyanobacterium Anacystis nidulans[J]. Plant Cell Physilology, 1993,34(4): 523-529.
    196. Oikawa H, Kagawa T, Kobayashi T, Ichihara A. Synthetic study of AAL-toxins: Efficient construction of two vicinal diol moieties by asymmetric dihydroxylation[J]. Tetrahedron Letters, 1996, 37(34): 6169-6172.
    197. Oikawa H, Matsuda I, Ichihara A, Kohmoto K. Absolute configuration of C(1)—C(5) fragment of AAL-toxin: confomationally rigid acyclic aminotriol moiety[J]. Tetrahedron Letters, 1994a, 35(8): 1223-1226.
    198. Oikawa H, Matsuda I, Kagawa T, Ichihara A, Kohmoto K. Absolute configuration of main chain of AAL-toxins[J]. Tetrahedron, 1994b, 50(47): 13347-13368.
    199. Oikawa H, Yamawaki D, Kagawa T, Ichihara A. Total synthesis of AAL-toxin TA_1. Tetrahedron Letters, 1999,40:6621-6625.
    200. Oka K, Akamatsu H, Kodama M, Nakajima H, Kawada T, Otani H. Host-specific AB-toxin Production by germination by germinating spores of Alternaria brassicicola is induced by a host-derived oligosaccharide[J]. Physiological and Molecular Plant Pathology, 2005,66:12-19.
    201. Otani H, Kohnobe A, Kodama M, Kohmoto K. Production of a host-specific toxin by germinating spores of Alternaria brassicicola[J]. Physiological and Molecular Plant Pathology, 1998, 52: 285-295.
    202. Palmisano F, Zambonin P G, Visconti A, et al. Determination of Alternaria mycotoxin in foodstuffs by gradient elution liquid chromatography with electrochemical detection[J]. Chromatographia. 1989,27(9): 425-430.
    203. Pedras M S C, Biesenthal C J, Zaharia I L. Comparison of the phytotoxic activity of the phytotoxin destruxin B and four natural analogs[J]. Plant Science, 2000,156:185-192.
    204. Pedras M S C, Zaharia L I, Ward D E. The destruxins: synthesis, biosynthesis, biotransformation, and biological activity[J]. Phytochemistry, 2002,59:579-596.
    205. Pero R W, Posner H, Blois M, Harvan D, Spalding J W. Toxicity of metabolites produced by the "Alternaria"[J]. Environmental Health Perspectives, 1973,4: 87-94.
    206. Pinet F, Cavelier F, Verducci J, Girault G, Dubart L, Haraux F, Sigalat C, Andre F. Synthesis, structure, and properties of MeSerl-tentoxin, a new cyclic tetrapeptide which interacts specifically with chloroplast F1 H(+)-ATPase differentiation of inhibitory and stimulating effects[J]. Biochemistry, 1996,35(39): 12804-12811.
    207. Pollock G A, Disabatino C E, Heimsch R C, Hilbelink D R. The subchronic toxicity and teratogenecity of alternariol monomethyl ether produced by Alternaria solani[J]. Food and Chemical Toxicology, 1982, 20: 899-902.
    208. Porra R J, Thompson W A, Kriedemann P E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy[J]. Biochim. Biophys. Acta, 1989,975:384-394.
    209. Pound G S, Stahmann M A. The production of a toxic material by Alternaria solani and its relation to the early blight disease of tomato[J]. Phytopathology, 1951,41:1104-1014.
    210. Prelusky D B, Rotter B A, Rotter R G Toxicology of mycotoxins[M]. In: Miller J D, Trenholm H L, eds. Mycotoxins in grain: Compounds other than aflatoxin. St. Paul, Mn: Eagan Press. 1994, p:359-403.
    211. Qiang S, Summerell B A. Pathogenicity of Alternaria alternata on crofton weed (Eupatorium adenophorum)[C]. The Proceedings of 17th Asian-Pasific Weed Science Society Conference. Bangkok: Thailand Plant Protection Society, 1999.556-561.
    212. Qiang S, Zhu Y, Summerell B A, Li Y. Mycelium of Alternaria alternata as a potential biological control agent for Eupatorium adenophorum[J]. Biocontrol Science and Technology, 2006, 16(7): 653-658.
    213. Quayyum H A, Gijzen M, Traquair J A. Purification of a necrosis-inducing, host-specific protein toxin from spore germination fluid of Alternaria panax[J]. Phytopathology, 2003,93: 323-328.
    214. Raistrick H, Sticking C E, Thomas R. Studies in the biochemistry of micro-organisms 90. Alternariol and alternariol monomethyl ether, metabolic products of Alternaria tenuis[J]. The Biochemical Journal, 1953,55:421-433.
    215. Rich D H, Bhatnagar P, Mathiaparanam P, Grant J A, Tam J P. Synthesis of tentoxin and related dehydro cyclic tetrapeptides[J]. Journal of Organic Chemistry, 1978,43(2): 296-302.
    216. Riley R T, Goeger D E, Yoo H, Showker J L Comparison of three tetramic acids and their ability to alter membrane function in cultured skeletal muscle cells and sarcoplasmic reticulum vesicles[J]. Toxicology & Applied Pharmacology, 1992,114(2): 261-262.
    217. Robb J, Norval M. Comparison of cytotoxicity and thin-layer chromatography methods for detection of mycotoxins[J]. Applied and Environmental Microbiology, 1983,46: 948-950.
    218. Robbana-Barnat S, Lafarge-Frayssinet C, Fraysinet C. Use of cell cultures for predicting the biological effects of mycotoxins[J]. Cell Biology and Toxicology, 1989,1: 303-307.
    219. Robeson D J, Jalal M AF. Tenuazonic acid produced by an Alternaria alternata isolate from Beta vulgaris[J]. Journal of Inorganic Biochemistry, 1991,44(2): 109-116.
    220. Rosen T, Fernandes P B, Marovich M A, Shen L, Mao J, Pernet A G Aromatic dienoyl tetramic acids. Novel antibacterial agents with activity against anaerobes and staphylococci[J]. Journal of Medicinal Chemistry, 1989,32(5): 1062-1069.
    221. Rosett T, Sankhala R H, Stickings C E, Taylor M E U, Thomas R. Studies in the biochemistry of micro-organisms 103. metabolites of Alternaria tenuis auct.: culture filtrate products[J]. The Biochemical Journal, 1957, 67(3): 390-400.
    222. Saad S M, Halloin J M, Hagedorn D J. Production, purification, and bioassay of tentoxin[J]. Phytopathology, 1970,60: 415-418.
    223. Schade J E, King A D Jr. Analysis of the major Alternaria toxins[J]. Journal of Food Protection, 1984,47:978-995.
    224. Schobert R, Jagusch C, Melanophy C, Mullen G Synthesis and reactions of polymer-bound Ph3P=C=C=O: a quick route to tenuazonic acid and other optically pure S-substituted tetramates[J]. Organic and Biomolecular Chemistry, 2004,2:3524-3529.
    225. Schrader T J, Cherry W, Soper K, Langlois I L, Vijay H M. Examination of Alternaria alternata mutagenicity anf effects of nitrosylation using the Ames salmonella test[J]. Teratogenesis, Carcinogenesis, and Mutagenesis, 2001,21:261-274.
    226. Schrader T J, Cherry W, Soper K, Langlois I L Further examination of the effects of nitrosylation on Alternaria alternata mycotoxin mutagenicity in vitro[J]. Mutation Research, 2006,606: 61-71.
    227. Scott P M, Kanhere S R. Liquid chromatographic determination of tenuazonic acids in tomato paste[J]. Journal Association of Official Analytic Chemistry, 1980,63(3): 612-621.
    228. Scott P M, Stoltz D R. Mutagens produced by Alternaria alternata[J]. Mutatation Research, 1980, 78: 33-40.
    229. Scott P M, Weber D, Kanhere S R. Gas chromatography-mass Spectrometry of Alternaria mycotoxins[J]. Journal of Chromatography A, 1997,765:255-263.
    230. Shahin S A, El-Amoodi K H. Induction of numerial chromosome aberrations during DNA synthesis using the fungicides nimrod and rubigan-4 in root tips of Vicia faba L[J]. Mutatation Research, 1991, 261:169-176.
    231. Sharma T R, Tewari J P. Flow cytometric analysis of Brassica juncea cell and pollen cultures treated with destruxin B, a toxin produced by Alternaria brassicae[J]. Physiological and Molecular Plant Pathology, 1996, 48: 379-387.
    232.Shephard G S, Thiel P G, Sydenham E W, Vleggaar R, Marasas W F O. Reversed-phase high-performance liquid-chromatography of tenuazonic acid and related tetramic acids[J]. Journal of Chromatography-Biomedical Applications, 1991,566(1): 195-205.
    233. Sheu J T, Talburt D E. Stimulation of tentoxin synthesis by aged-culture filtrates and continued synthesis in the presence of protein inhibitors[J]. Applied and Environmental Microbiology, 1986, 51: 368-372.
    234. Shigeura H T, Gordon C N. The biological activity of tenuazonic acid[J]. Biochemistry, 1963, 2: 1132-1137.
    235. Shivanna K R, Sawhney V K. Pollen selection for Alternaria resistance in oilseed brassicas: responses of pollen grains and leaves to a toxin of A. brassicae[J]. Theoretical and Applied Genetics, 1993, 86:339-344.
    236. Simmons E G. Alternaria taxonomy: Current status, viewpoint, challenge[M]. In: Chelkowski J, Visconti A (eds). Alternaria: Biology, plant disease and metabolites. Amsterdam: Elsevier Science Publishers. 1992.1-56.
    237. Slater T F, Sawyer B, Strauli U. Studies on succinatetetrazolium reductase systems. III. Points of coupling of four different tetrazolium salts[J]. Biochim Biophys Acta, 1963,77:383-393.
    238. Smith E R, Fredrickson T N, Hadidian F. Toxic effects of the sodium and the N,N' -dibenzylethylenediamine salts of tenuazonic acid (NSC-525816 and NSC-82260)[J]. Cancer Chemother Reports, 1968,52:579-585.
    239. Soliman F S. Synthesis of tenuazonic acid analogues[J]. Pharmazie, 1977, 32(10): 572-575.
    240. Spassieva S D, Markham J E, Hille J. The plant disease resistance gene Asc-1 prevents disruption of sphingolipid metabolism during AAL-toxin-induced programmed cell death[J]. Plant Journal, 2002, 32:561-572.
    241. Stack M E, Mislivec P B, Roach J A G, Pohland A E. Liquid chromatographic determination of tenuazonic acid and alternariol methyl ether in tomatoes and tomato products[J]. Journal Association of Official Analytic Chemistry, 1985, 68(4): 640-642.
    242. Stack M E, Prival M J. Mutagenicity of the Alternaria metabolites altertoxin I, II, and III[J]. Applied and Environmental Microbiology, 1986,52:718-722.
    243. Steele J A, Mirocha C J. Identification of tenuazonic acid as an important toxic substance produced by Alternaria spp[J]. Phytopathology, 1971,61:913.
    244. Steele J A, Uchytil T F, Durbin R D, Bhatnagar P K, Rich D H. The stimulation of coupling factor 1 ATPase by tentoxin and its analogs[J]. Biochemistry Biophysics Research Communication, 1978, 84:215-218.
    245. Stevens K L, Badar-Ud-Din, Ahmad A, Ahmad M. The antibiotic bostrycin from Alternaria eichhorniae[J]. Phytochemistry, 1979,18:1579-1580.
    246. Steyn P S, Rabie C J. Characterization of magnesium and calcium tenuazonate from Phoma sorghina[J]. Phytochemistry, 1976,15:1977-1979.
    247. Sticking C E. Studies in the biochemistry of micro-organisms 106. metabolites of Alternaria tenuis auct.: The structure of tenuazonic acid[J]. The Biochemical Journal, 1959,72(2): 332-340.
    248. Stierle A, Cardellina H, Strobel G Maculosin, a host-specific phytotoxin from Alternaria alternata on spotted knapweed[J]. American Chemistry Society Symposium Series, 1989,439:53.
    249. Stiele A, Hershenhorn J, Strobel G Zinniol-related phytotoxins from Alternaria cichorii[J]. Phytochemistry, 1993,32(5): 1145-1149.
    250. Stinson E E, Bills D D, Osman S F, Siciliano J, Ceponis J, Heisler. Mycotoxin Production by Alternaria species grown on apples, tomatoes, and blueberries[J]. Journal of Agriculture and Food Chemistry, 1980,28: 960-963.
    251. Stinson E E, Osman S F, Heisler E G, Siciliano J, Bills D D. Mycotoxin production in whole tomatoes, apples, oranges, and lemons[J]. Journal Agricultural and Food Chemistry, 1981, 29: 790-792.
    252. Strobel G, Kenfield D, Bunker G, Sugawara F, Clardy J. Phytotoxins as potential herbicides[J]. Experientia, 1991,47: 819-826.
    253. Suemitsu K, Ohnishi K, Horiuchi M, Kitaguchi A, Odamura K. Porritoxin, a phytotoxin of Alternaria porri[J]. Phytochemistry, 1992,31(7): 2325-2326.
    254. Suemitsu K, Ohnishi K, Morikawa Y, Nagatomo S. Zinnimidine and 5-(3',3'-dimethylallyloxy) -7-methoxy-6-methylphthalide from Alternaria porri[J]. Phytochemistry, 1995,38(2): 495497.
    255. Suemitsu K, Ohnishi K, Nobuhara H, Horiuchi M, Horiuchi K. Isolation and identification of tentoxin from Alternaria porri (Ellis) Ciferri[J]. Agricultural and Biological Chemistry, 1990,54(9): 2449-2550.
    256. Suzuki A, Kuyama S, Kodaira Y, Tamura S. Structural elucidation of destruxin A[J]. Agricultural and Biological Chemistry, 1966,30:517-518.
    257. Suzuki A Tamura S. Isolation and structure of protodestruxin from Metarrhizium anisopliae[J]. Agricultural and Biological Chemistry, 1972,36:896-898.
    258. Tanaka A. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata[J]. Molecular Plant-Microbe Interaction, 1999, 8:691-702.
    259. Tanaka A. Structural and functional complexity of the genomic region controlling AK-toxin biosynthesis and pathogenicity in the Japanese pear pathotype of Alternaria alternata[J]. Mo lecular Plant-Microbe Interaction, 2000,13:975-986.
    260. Tanaka A, Shiotani H, Yamamoto M, Tsuge T. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata[J]. Molecular Plant-Microbe Interaction, 1999,12(8): 691-702.
    261. Templeton G E, Grable C I, Fulton N D, Bollenbacher K. Factors affecting the amount and pattern of chlorosis caused by an Alternaria tenuis metabolite[J]. Phytopathology, 1967,57: 516-518.
    262. Tietjen K G, Schaller E, Matern U. Phytotoxins from Alternaria carthami Chowdhury: structural identification and physiological significance[J]. Physiological Plant Pathology, 1983,23:387-400.
    263. Umetsu N, Muramatsu T, Honda H, Tamari K. Studies of the effect of tenuazonic acid on plant cells and seedlings[J]. Agricultural and Biological Chemistry, 1974,38(4): 791-799.
    264. van der Westhuizen L, Shephard G S, Snyman S D, Abel S, Swanevelder S, Gelderblom W C A. Inhibition of sphingolipid biosynthesis in rat primary hepatocyte cultures by fumonisin B1 and other structurally related compounds[J]. Food and Chemical Toxicology, 1998,36:497-503.
    265. Visconti A, Logrieco A, Bottalico A. Natural occurrence of Alternaria mycotoxins in olives——their production and possible transfer into the oil[J]. Food Additives and Contamination, 1995, 58(10): 1133-1135.
    
    266. Visconti A, Siblia A, Palmisano F. Selective determination of altertoxins by high performance liquid chromatography with electrochemical detection with dual 'in-series' electrodes[J]. Journal of Chromatography, 1991,540:376-382.
    267. Vurro M, Evidente A, Andolfi A, Zonno M C, Giordano F, Motta A. Brefeldin A and a,β-dehydrocurvularin, two phytotoxins from Alternaria zinniae, a biocontrol agent of Xanthium occidentale[J]. Plant Science, 1998,138: 67-69.
    268. Ward D E, Gai Y, Lazny R, Pedras M S C. Probing host-selective phytotoxicity: Synthesis of natural analogs of the host-selective toxin destruxin B[J]. Journal of Organic Chemistry, 2001, 66: 7832-7840.
    269. Ward D E, Lazny R, Pedras M S C. Synthesis of the host-selective phytotoxin destruxin B. avoiding diketopiperazine formation from an N-methyl amino acid depeptide by use of the Boc-hydrazide derivative[J]. Tetrahedron Letters, 1997,38(3): 339-342.
    270. Winter C K, Gilchrist D G, Dickman M B, Jones C. Chemistry and biological activity of AAL toxins[J]. Advances in experimental Medical Biology, 1996,392: 307-316.
    271. Xu L, Du L. Direct detection and quantification of Alternaria alternata lycopersici toxins using high-performance liquid chromatography-evaporative light-scattering detection[J]. Journal of Microbiological Methods, 2006, 64: 398-405.
    272. Yekeler H, Btimis K, Ozcelik N, Doymaz M Z, Calta M. Analysis of toxic effects of Alternaria toxins on esophagus of mice by light and electron microscopy[J]. Toxicologic Pathology, 2001, 29(4): 492-497.
    273. Yoshizawa Y, Li Z, Reese P B, Vederas J C. Intact incorporation of acetate-derived di- and tetraketides during biosynthesis of dehydrocurvularin, a macrolide phytotoxin from Alternaria cinerariae[J]. Journal of American Chemical Society, 1990,112: 3212-3213.
    274. Youngner J S. Influence of inhibitors of protein synthesis on interferon formation in mice II. Comparison of effects of glutarimide antibiotics and tenuazonic acid[J]. Virology, 1970, 40(2): 335-343.
    275. Yu F Y, Chu F S. Analysis of fumonisins and Alternaria alternata toxin by liquid chromatography- enzyme-linked immunosorbent assay[J]. Journal of AOAC International, 1998, 81(4): 749-756.
    276. Zonno M C, Vurro M. Effect of fungal toxins on germination of Striga hermonthica seeds[J]. Weed Research, 1999, 39(1): 15-20.
    277. Zur G, Shimoni E, Hallerman E, Kashi Y. Detection of Alternaria fungal contamination in cereal grains by a polymerase chain reaction-based assay[J]. Journal of Food Protection, 2002, 65(9): 1433-1440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700