臭氧氧化过程中羟基自由基的氧化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对氯苯甲酸长期以来被用作羟基自由基检测的目标化合物。试验发现以对氯苯甲酸作为目标化合物会带来测量误差,因而选取多种结构不同的有机化合物进行实验以寻找适合作为新的目标化合物的有机物。采用不同的氧化方式,对中间产物进行检测,从而分析可能的氧化途径,及避免不良副产物的出现。针对毒性中间产物甲醛进行了研究。主要结果如下:
     通过大量实验验证,得出了两种适合作为羟基自由基目标化合物的有机物——丁二酸和丙二酸。它们无毒无害,是常见的二元羧酸。使用丁二酸作为目标化合物,在臭氧氧化氯酚的过程中,利用离子色谱检测水样中丁二酸的浓度变化情况。计算得出了羟基自由基的浓度变化情况。
     分别采用臭氧单独氧化和臭氧/羟基自由基混合氧化方式氧化壬基酚的水溶液。臭氧分子单独氧化和臭氧/羟基自由基联合氧化均能有效降解壬基酚,在设定氧化时间内均能完全去除任基酚。羟基自由基能极大地提高臭氧氧化壬基酚的经济性。混合氧化方式下的氧化程度高于单独臭氧分子氧化。
     采用腐殖酸和葡萄糖配水模拟自然水体进行氧化,以丁二酸和丙二酸作为目标物,发现葡萄糖没有明显的抑制或促进作用,而腐殖酸会促进羟基自由基的生成。
     鉴于中间产物甲醛的环境毒性,以甲醛为对象进行了实验。分别从污染物结构、氧化方式和氧化条件对甲醛产生量的影响进行实验。苯环上不同的取代基会影响甲醛的产量,而对于单烯烃来说,α-C上连接的基团对甲醛产量的影响更大;饱和链烃的甲醛产生量很少,可以忽略不计。以丙烯酸溶液为氧化对象,甲醛浓度变化表现为先增后减,出现峰值。增大进气流量会提高丙烯酸溶液的初始产甲醛速率,使甲醛浓度的峰值减小并提前出现;提高气态臭氧浓度产生类似的效果。·OH的增加有利于壬基酚和水杨酸的开环,从而形成更多的中间产物;而C=C结构更有利于O3分子的加成反应,·OH浓度的增加则提高了矿化率。
Parachlorobenzoic-acid has long been used to measure the hydroxyl radical as probe compound. It was found to bring error when Parachlorobenzoic-acid is used to be the target, so to choose several organic compounds with different structures for studying in order to find some suitable new compounds. Intermediates in different oxidizing method were detected so as to analyze the possible oxidative pathway and avoid the bad byproducts. Whereas the environmental toxicity of the intermediate formaldehyde, which was studied as object. Following results have been obtained:
     Succinic acid and malonic acid were found to be suit for target after a lot experiments. They are non-toxic compounds and harmlessness that are familiar binary carboxylic acids. Succinic acid was used as target during ozonation of chlorophenol, whose concentration was measured by ion chromatography. Variation of concentration of hydroxyl radical was computed.
     Oxidation by ozone alone and mixed oxidation by ozone/hydroxyl radicals were taken individually in ozonation of solution of nonylphenol. Both could degraded nonylphenol effectively, nonylphenol was wiped off in the setting time. Hydroxyl radicals could increase the economic efficiency hugely during ozonation of nonylphenol. Mixed ozonation has higher degree of oxidation than ozonation by ozone alone.
     Humic acid and glucose were used to simulate the natural water to be oxidized. Take Succinic acid and malonic acid as target, it is found that glucose didn't restrain producing hydroxyl radicals or accelerate to product but humic acid would accelerate to produce hydroxyl radicals.
     Experiments about effect of yield of formaldehyde cause by different pollutants structure、oxidative pathway and oxidative conditions were done. Benzene with different substituents in the ring would affect the yield of formaldehyde, especially for monoolefin, the group connected to theα-C would affect more seriously. The yield of formaldehyde of aliphatic saturated hydrocarbon was a fat lot which could be neglected. Take crylic acid solution as object, the concentration of formaldehyde showed increasing followed decreasing with a peak. When augment the inlet flux, the original yield rate of formaldehyde would increase during oxidizing crylic acid solution, and the peak value of concentration of formaldehyde would decrease and bring forward. So did angment of concentration of gaseous ozone. Augment of hydroxyl radicals would be propitious to ringopening of nonylphenol and salicylic acid so as to yield more intermediate product; C=C structure would be propitious to addition reaction of ozone, and the augment of hydroxyl radicals increased percent mineralization.
引文
[1] 邓秋农,沈光辉.臭氧技术的现状及发展趋势[J].净水技术,2001,3(20):7-11
    [2] 周志刚,李杰.臭氧污水治理技术应用研究进展[J].中原工学院学报,2001,8,14(S1):89-92
    [3] Staehelin J, Hoigne J. Decomposition of ozone in water in the presesnce of organic solutes acting as promoters and inhibitors of radical chain reactions[J]. Envir. Sci. & Technol. 1985, 19(12), 1206-1213
    [4] Elovitz, M S., von Gunten, U. Hydroxyl radical ozone ratios during ozonation processes. I-The R-ct concept[J]. Ozone Sci. Eng., 1999, 21(3): 239-260
    [5] Acero J. L., von Gunten. Influence of carbonate on the ozone/hydrogen peroxide based advanced oxidation process for drinking water treatment[J]. Ozone Sci. Eng., 2000, 22, 305-328
    [6] Pines D S, Reckhow. Effect of dissolved cobalt(Ⅱ) on the ozonation of oxalic acid[J]. Envir. Sci. & Technol., 2002, 36(19): 4046-4051
    [7] Loeb B. Ozone: science & engineering the first 23 yesrs[J]. Ozone Sci. Eng., 24(6), 399-413
    [8] 包南,刘和义.难生物降解的呋吗唑酮模拟废水臭氧氧化的降解机理[J].环境化学,2004,3(23):189-294
    [9] Daniele M B, Montalvao A F. Ozonation of a landfill leachate: evaluation of toxicity removal and biodegradability improvement[J]. Journal of Hazardous Materials, 2005, B117: 235-242
    [10] Gokcen F, Tulay A. Ozbelge. Enhancement of biodegradability by continuous ozonation in Acid Red-151 solutions and kinetic modeling[J]. Chemical Engineering Journal, 2005, 114: 99-104
    [11] 钟理,Kuo chiang-Hai.叔丁醇水溶液臭氧氧化的降解过程及反应机理研究[J].广东化工 1998,(3):24~27
    [12] Haag W R., Yao C D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants[J]. Envir. Sci. & Technol., 1992, 26(5): 1005-1013
    [13] Utsumi H, Han Youn-Hee. A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during Ozonation[J]. Water Research,2003,(37):4924-4928
    [14] Park Hoon-soo, Hwang Tae-mun.. Characterization of raw water for the ozone application measuring ozone consumption rate[J]. Wat. Res, 2001, 11(35): 2607-2614
    [15] 董里,李治国.2,4-二氯苯氧乙酸臭氧氧化动力学研究[J].环境污染与防治,2004,26(4):247-231
    [16] 钟理,Kuo C.H.废水中甲苯的臭氧氧化动力学的研究[J].环境科学研究,2002,2(13):20-24
    [17] 朱世云,张全兴.臭氧氧化降解水溶液中1-萘酚的动力学研究[J].环境化学,1999,3(18):227-232
    [18] 李海燕,曲久辉.饮用水中微量内分泌干扰物质(DBP)的O_3氧化去除研究[J].环境科学学报,2003,5(23):570~575
    [19] Huber M, Silviocanonica. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes[J]. Environ. Sci. Technol. 2003, 37, 1016-1024
    [20] 钟理,陈建军.臭氧氧化降解苯酚的动力学研究[J].中国给水排水,2002,9(18):8-12
    [21] 皮运正,吴天宝.可吸附有机卤化物的深度处理实验研究[J].环境污染与防治,2001,4(23):49-52
    [22] 皮运正,吴天宝.用于地下回灌的城市污水臭氧处理[J].清华大学学报(自然科学版),2000,40(6):84~87
    [23] Roberto Andreozzi. N-methyl-paminophenol (metol) ozonation in aqueous solution: kinetics, mechanism, and toxicological characterization of ozonized samples[J]. War. Res. 2000, 18(34), 4419-4429
    [24] 李海燕,曲久辉.饮用水中DBP的臭氧氧化效能与影响因素[J].环境化学,2004,3(23):278-283
    [25] 李海燕,曲久辉.饮用水中内分泌干扰物甲草胺的O_3氧化降解机制研究[J].环境科学,2004,2(25):43-47
    [26] 陈琳,刘国光.臭氧氧化技术发展前瞻[J].环境科学与技术,2004,8(27)增刊,143~147
    [27] Yao C D, Haag, W. R. Rate constants for direct reactions of ozone with several drinking water contaminants[J]. Wat. Res., 1991, 25(7), 761-773
    [28] Von Gunten, U.Ozonation of drinking water: part Ⅰ. oxidation kinetics and product formation[J]. Wat. Res., 2003, 37(6), 1443-1467
    [29] 张乃东,郑威.羟基自由基·OH在水处理中的应用.哈尔滨商业大学学报[J].2001,03(3):1004-1842
    [30] 谷学新,邰超,邹洪,郭启华.一个新的测定Fenton反应产生的·OH及清除的荧光方法[J].分析科学学报.2002,18(6),460-462
    [31] 皮运正,王建龙.对氯苯甲酸用于测量·OH方法探讨1.机理研究[J].环境科学学报,2005,25(11):120-124
    [32] 皮运正,王建龙.对氯苯甲酸用于测量·OH方法探讨2.误差分析[J].环境科学学报,2005,11(25):125~129
    [33] 皮运正,王建龙.DPD/POD法测定H_2O_2浓度时臭氧干扰的消除[J].分析化学,2005,33(10):133
    [34] GB/T15516-1995.水和废水监测分析方法指南[S].1997
    [35] Bader H, Sturzenegger V, Hoigne J. Photometric method for the determination of low concentrations of hydrogen peroxide by the peroxidase catalyzed oxidation of N,N-Diethyl-p-Phenylenediamine (DPD)[J]. Wat. Res., 1988, 22(9): 1109-1115
    [36] Harries J, Sheahan D, Jobling S. A survey of estrogenic activity in UK inland waters[J]. Environmental toxicological Chemistry, 1997, 16(3): 534-538
    [37] 刘征涛,徐静波.有机烷酚类化合物致突变性研究[J].环境科学研究,2001,11(3):1-3
    [38] 范奇元,金泰.我国部分地区环境中壬基酚的检测[J].中国公共卫生,2002,18(11):1372-1373
    [39] 程沧沧,胡莜静.附着态TiO_2光催化降解壬基酚的研究[J].工业安全与环保,2005,31(9):7-10
    [40] 胡建英,谢国红.4-壬基酚在氯消毒过程中的氧化途径[J].环境化学,2002,21(3):254-259
    [41] Yuan S, Yu. C. Biodegradation of nonylphenol in river sediment[J]. Environmental pollution, 127(2004): 425-430
    [42] 皮运正,王建龙.臭氧氧化水中2,4,6-三氯酚的反应机理研究[J].环境科学学报,2005,12(25):32-36
    [43] 恽愧宏.有机化学[M].北京,高等教育出版社,1998.395-398
    [44] GB 5749-85.生活饮用水卫生标准.1986
    [45] GB 3838-2002.地表水环境质量标准.2002
    [46] Pi Yunzheng, Jochen Schumacher. Decomposition of aqueous ozone in the presence of aromatic organic solutes. Water Research, 2005, 39: 83-88
    [47] Gracia R, Aragues J L, Ovelleiro J L. Mn(Ⅱ)-Catalysed ozonation of raw Ebro river water and its ozonation by-products[J]. Water Research, 1998, 32(1): 57-62
    [48] Zehra S C, Mirat G. Formaldehyde-Formation During Ozonation of Drinking Water[J]. Ozone Science and Engineering, 2003: 41-51
    [49] 马军,刘晓飞.臭氧/高锰酸盐控制臭氧氧化副产物[J].中国给水排水,2005,21(6):12-15
    [50] Nawrocki J, Raczyk-Stanislawiak U. Influence of Ozonation Condition on Aldehyde and Carboxylic Acid Formation[J]. Ozone Science and Engineering, 2003, 25: 53-62
    [51] Jaeshin K, Gregory V K. Comparative study of electrochemical degradation and ozonation of nonylphenol[J]. Water Research, 2005, 39: 2527-2534
    [52] GB3838-2002.地表水环境质量标准[S]. 2002
    [53] Pi Y Zh, Schumacher J. Decomposition of aqueous ozone in the presence of aromatic organic solutes[J]. Water Research, 2005, 39: 83-88
    [54] Peter D, Clemens V S. Reaction of Ozone with Ethene and Its Methyl-and Chlorine-Substituted Derivatives in Aqueous Solution[J]. Environmental Science and Technology, 1998, 32: 1112-1119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700