微结构光纤光栅免标记生物传感特性的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免标记光纤生物传感器由于具有结构简单、灵敏度高等优点,已经成为生物传感器的重要组成部分。而微结构光纤天然的微流通道、灵活的结构设计使它非常适合用于制作光纤生物传感器,因此对微结构光纤光栅生物传感器的研究具有十分重要的理论价值和实际意义。
     本文在总结目前光纤生物传感器的技术和研究现状的基础上,理论分析了高双折射型微结构光纤光栅和柚子型微结构光纤光栅生物传感模型的折射率、生物膜层厚度和温度的传感特性,并实验验证了柚子型微结构光纤布拉格光栅和长周期光栅的折射率及温度传感特性,为微结构光纤光栅的生物传感技术奠定了理论基础。论文的主要内容包括:
     首先,采用有限元法分析了高双折射型微结构光纤的传输特性,计算了光纤的传输模式及其模场分布,并运用耦合模算法和传输矩阵法对该光纤的布拉格光栅、级联布拉格光栅以及啁啾光栅的反射谱特性进行了仿真,得到了三类高双折射型微结构光纤光栅的反射谱。
     其次,深入分析了高双折射型微结构光纤布拉格光栅、级联布拉格光栅以及啁啾光栅的折射率、生物膜层厚度变化和温度的灵敏度,研究了利用布拉格光栅反射谱中两个谐振波长的波长差实现生物膜层厚度测量的新方法。分析了所设计生物传感器的折射率及生物膜层厚度灵敏度随光纤及光栅参数的变化规律,从而为传感头结构参数的优化设计提供了理论依据。
     再次,利用传输矩阵法分析了柚子型微结构光纤布拉格光栅的反射谱和该光纤长周期光栅的透射谱。研究了在充入不同折射率液体时光栅谐振波长的漂移情况和在生物膜层厚度发生变化时其谐振波长的变化规律。同时考虑热膨胀效应和热光效应对柚子型微结构布拉格光栅和长周期光栅的温度特性进行分析得到了相应的温度灵敏度。
     然后,利用扩展的传输矩阵法深入分析了柚子型微结构光纤中长周期与布拉格级联光栅的传输特性。研究了级联光栅在反射方式下工作时,反射谱的两个谐振波长对折射率、生物膜层厚度和温度的传感特性;研究了级联光栅在透射方式下工作时,长周期光栅和布拉格光栅谐振波长对生物膜层厚度及温度灵敏度的差别,理论分析了利用两个谐振波长同时测量生物膜层厚度和温度的方法。
     最后,对柚子型微结构光纤布拉格光栅和长周期光栅的折射率特性和温度特性进行了实验验证,对实验结果进行了详细分析,证明了利用微结构光纤光栅进行免标记生物传感器设计的可行性。
     本文对不同种类微结构光纤光栅折射率、生物膜厚度和温度传感特性进行了大量的理论和实验研究工作,为微结构光纤光栅免标记生物传感器的深入研究和应用奠定了基础。
Recently, Label-free optical fiber biosensor has played an important role in thebiosensors research field for the advantages of very simple structure and highsensitivity. And with the excellence of natural microfluidic channels and flexiblestructure, the Microstructured Optic Fiber (MOF) is very suitable for the design ofbiosensors. Thus, the research of MOF biosensor has important theoretical andpractical significance.
     Based on the conclusion of fiber biosensor technology and status, this dissertationanalyzes the refractive index, biological film thickness and temperature sensingcharacteristics of the biosensor model of high birefringence microstructured opticalfiber grating and the grapefruit optical fiber grating theoretically. And a number ofexpeiments are designed to verify the refractive index and temperature characteristicsof grapefruit optical fiber Bragg grating and the long period grating. This work willprovide theoretical foundation and experiment reference for the MOF gratingbiosensors technology. The main contents of the paper are as follows:
     Firstly, the transmission characteristic of the high birefringence microstructuredfiber is analyzed with the finite-element method. Meanwhile, the propagation modesand mode field distribution are calculated comprehensively. Further more, the Bragggrating, the cascaded Bragg gratings and the chirped grating of the MOF are calculatedbased on the coupled mode method and the transfer matrix method, and the thereflection spectrums are simulated thoroughly.
     Secondly, the refractive index, the temperature and the biological film thicknessresponse sensitivity of the high birefringence MOF grating, the cascaded Bragggratings and the chirped grating is analyzed. A novel method for measuring thebiological film thickness by the mean of Bragg grating resonant wavelength differenceis studied. And then the relationship between the optic fiber parameters and thesensitivity of this biosensor’s refractive index and biological film thickness isinvestigated. And the simulation result will provide theoretical reference for the optimal design of the biosensor parameters.
     Thirdly, the reflection spectrum of grapefruit MOF Bragg grating and thetransmission spectrum of grapefruit MOF long period grating are analyzed with thetransfer matrix method. Moreover, the resonant wavelength variety laws areresearched respectively when filled into different refractive index or differentbiological film thickness. Also, considering the coefficient of thermal expansion andthermo-optic effect, the temperature sensitivity of the grapefruit MOF Bragg gratingand long period grating is got theoretically.
     Fourthly, the propagation characteristics of the cascaded grapefruit MOF longperiod grating and Bragg grating are analyzed thoroughly with the extenedtransmission matrix method. And the two reflection spectrums response characteristicswith different refractive index, biological film thickness and temperature of thecascaded MOF grating are investigated. Meanwhile, the different sensitivity responsesof the long period grating and Bragg grating on the biological film thickness andtemperature in the casecaded grating are analyzed thoroughly. The method andfeasibility of measuring the biological film thickness and temperature at the same timeis studied theoretically.
     At last, experiments are established to verify the refrective index and temperatureresponses of the grapefruit MOF Bragg grating and long period grating. And theexperiment results show the feasibility of the label-free microstructured fiber gratingbiosensor.
     The paper does a lot of theoretically analyzes and experiment work on thesensoring characteristics of the refractive index, and the work lays the foundation forthe further research and application of the label-free microstructured optical fibergrating biosensor.
引文
[1]李博,郑磊,王前,等.电化学DNA生物传感器设计及在医学检验中的应用进展[J].分子诊断与治疗杂志,2011,3(1):46-50
    [2]周仕林,刘冬.生物传感器在环境监测中的应用[J].理化检验-化学分册,2011,47(1):120-124
    [3]刘传银,胡继明.亲和型生物传感器在生物医学上的应用进展[J].应用化学,2011,28(6):611-623
    [4]方珍,鞠文,秦亚楠,等.大肠杆菌O157:H7异硫氰酸荧光素标记抗体的制备及评价[J].吉林大学学报(医学版),2013,39(1):165-169
    [5]林志红,吴蒙,任恕.DNA生物传感器的设计原理及应用[J].国外医学分子生物学分册,1996,18(5):205-208
    [6]史光明,杨寅,王昱琳.电流型固定化酶生物传感器的研究进展[J].明胶科学与技术,2012,32(2):53-59
    [7]张延彪,徐超,姚辉,等.表面等离子体共振生物传感器及其应用[J].分析科学学报,2012,28(1):
    [8]杨秀云,梁凤,张巍,等.葡萄糖生物传感器检测方法的研究进展[J].应用化学,2012,29(12):1364-1370
    [9]赵德翼,赵明富,罗彬彬,等.基于光纤Bragg光栅的微生物生长过程检测研究[J].压电与声光,2011,33(5):725-728
    [10]李敏健,谭学才,梁汝萍等.基于溶胶-凝胶固定技术的生物组织传感器[J].分析化学,2004,32(10):1291-1294
    [11]唐阔,马安周,于清,等.固化条件对苯系物细胞传感器检测效果的影响[J].环境科学,2013,34(2):760-766
    [12]靖培培,黎宗强,吴健敏,等.倏逝波光纤免疫传感器的光纤再生[J].生物技术通讯,2012,23(6):909-912
    [13]许双姐,吴根英,许贺,等.石墨烯-壳聚糖复合物修饰电极构建电化学免疫传感器对1-芘丁酸的检测研究[J].分析测试学报,2012,31(12):1505-1512
    [14] Marek Piliarik, Hana ípová, Pavel Kvasni ka, et al. High-resolution biosensor based onlocalized surface plasmons[J]. Optics Express,2012,20(1):672-680
    [15] Geum-Yoon Oh, Tae-Kyeong Lee, Hong-Seung Kim, et al. Design of ultra-sensitive biosensorapplying surface plasmon resonance to a triangular resonator[J]. Optics Express,2012,20(17):19067-19074
    [16]徐霞,叶尊忠,吴坚,等.表面等离子体共振免疫传感器在蛋白质检测中的应用及其研究进展[J].分析化学,2010,38(7):1052-1059
    [17] A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, et al. Label-free, single-moleculedetection with optical microcavities[J]. Science,2007,317(5839):783-787
    [18] H. Y. Zhu, I. M. White, J. D. Suter, et al. Opto-fluidic micro-ring resonator for sensitivelabel-free viral detection[J]. Analyst,2008,133:356-360
    [19] M. Zourob, and N. J. Goddard. Metal clad leaky waveguides for chemical and biosensingapplications[J]. Biosensors&Bioelectronics,2005,20(9):1718-1727
    [20] N. Skivesen, R. Horvath, S. Thinggaard, N. B. Larsen, et al. Deep-probe metal-cladwaveguide biosensors[J]. Biosensors&Bioelectronics,2007,22(7):1282-1288
    [21] Jon Olav Grepstad, Peter Kaspar, Olav Solgaard, et al. Photonic-crystal membranes foroptical detection of single nano-particles, designed for biosensor application[J]. OpticsExpress,2012,20(7):7954-7965
    [22] Mohamed El Beheiry, Victor Liu, Shanhui Fan, et al.Sensitivity enhancement in photoniccrystal slab biosensors. Optics Express,2010,18(22):22702-22714
    [23] Tian Y., Wang, W., Wu, N., et al. Tapered optical fiber sensor for Label-Free detection ofBiomolecules[J]. Sensors,2011,11(4),3780-3790
    [24] Johan R.Ott, Mikkel Heuck, Christian Agger, et al. Label-free and selective nonlinearfiber-optical biosensing[J]. Optics Express,2008,16(25):20834-20847
    [25] Christos Markos, Wu Yuan, Kyriakos Vlachos, et al. Label-free biosensing with highsensitivity in dual-core microstructured polymer optical fibers[J]. OpticsExpress,2011,19(8):7790-7798
    [26] J. B. Jensen, P. E. Hoiby, G. Emiliyanov, et al. Selective detection of antibodies inmicrostructured polymer optical fibers[J]. Optics Express,2005,13(15):5883–5889
    [27]王占科,常津.免疫生物传感技术研究进展及其在医学检验中的应用[J].免疫学杂志,2011,27(3):271-274
    [28] Osca Esteban, Agustin Gonzalez-Cano, Natalia Diaz-Herrera, et al. Absoption as a selectivemechanism in surface plasmon resonance fiber optic sensors[J]. Optics Letters,2006,31(21):3089-3091
    [29] Hyun Soo Jang, Kwang No Park, Chang Duk Kang, et al. Optical fiber SPR biosensor withsandwich assay for the detection of prostate specific antigen[J]. Optics Communications,2009,282:2827-2830
    [30] Carolina Beres, Fabio Vieira Batistade Nazare, et al. Tapered plastic optic fiber-basedbiosensor-Tests and application[J]. Biosensors and Bioelectronics,2011,30:328-332
    [31] D. X. Xu, M. Vachon, A. Densmore, et al. Real-time cancellation of temperature inducedresonance shifts in SOI wire waveguide ring resonator label-free biosensor arrays[J]. OpticsExpress,2010,18(22):22867-22879
    [32]吴鹏,秦水介.基于折射率调制原理的光纤生物传感器的研制[J].激光与红外,2011,41(9):1006-1009
    [33] Zhiyong Wang, J.R. Heflin, Kevin Van Cott, et al. Biosensors employing ionic self-assembledmultilayers adsorbed on long-period fiber gratings[J]. Sensors and Actuators B,2009,39:618-623
    [34] Hyun Soo Jang, Kwang No Park, Jun P.Kim, et al. Sensitive DNA biosensor based on along-period grating formed on the side–polished fiber surface[J]. Optics Express,2009,17(5):3885-3860
    [35]马国欣,邱胜宝,向鹏,等.表面等离子体共振技术在生化检测中的研究进展[J].真空电子技术,2010,3:28-46
    [36]关春颖,苑立波,史金辉.微孔光纤表面等离子体共振传感特性分析[J].光学学报,2011,31(2):02060003-1-02060003-4
    [37] Aaron Webster, Frank Vollmer. Interference of conically scattered light in surface plasmonresonance.2013,38(3):244-246
    [38] Pavel Adam, Jakub Dostalek, Jirl Homola. Multiple Surface Plasmon Spectroscopy for Studyof Biomolecular Systems [J]. Sensors and Actuators B,2006,113(2):774-781
    [39]曾捷,梁大开,张晓丽,等.多通道光纤表面等离子体波共振传感器.仪器仪表学报,2011,3:508-513
    [40]徐锁生,魏华.光纤倏逝波生物传感器及其研究进展[J].生物技术通讯,2008,19(1):148-152
    [41]李维,许雪梅,刘茜倩.光纤倏逝波传感器系统研究[J].仪表技术与传感器,2009,(3):4-8
    [42] V. Ruddy, B. D. Macraith, J. A. Murphy. Evanescent Wave Absorption Spectroscopy UsingMultimode Fibers[J]. Applied Physics,1990,67(10):6070-6074
    [43] A. Messica, A. Greenstein, and A. Katzir. Theory of fiber-optic, evanescent-wavespectroscopy and sensors[J]. Applied Optics,1996,35(13):2274-2284
    [44]邓立新.基于倏逝场的光纤生物传感器系统关键技术研究[D].长沙:国防科学技术大学,2006:33-35
    [45] J. D. Andrade, R. A. Vanwagenen, D. E. Gregonis, et al. Remote Fiber-Optic BiosensorsBased on Evanescent-Excited Fluoro-Immunoassay:Concept and Progress[J]. IEEETransactions On Electron Devices,1985, ED-32(7):1175-1179
    [46]黄惠杰,翟俊辉,任冰强等.光纤倏逝波生物传感器及其应用[J].光学学报,2003,23(4):451-454
    [47] J. P. Golden, G. P. Anderson, S. Y. Rabbany, et al. An Evanescent Wave Biosensor Part I:Fluorescent Signal Acquisition from Tapered Fiber Optic Probes[J]. IEEE TransactionsBiomedical Engineering,1994,41(6):578-584
    [48] J. P. Golden, G. P. Anderson, S. Y. Rabbany, et al. An Evanescent Wave Biosensor Part II:Fluorenscent Signal Acquisition from Tapered Fiber Optic Probes[J]. IEEE TransactionsBiomedical Engineering,1994,41(6):585-591
    [49] S. K. Khijwania, B. D. Gupta. Maximum Achievable Sensitivity of the Fiber OpticEvanescent Field Absoption Sensor Based on the U-shaped Probe. Optics Communications,2000,175(1-3):135-137
    [50] A. D. Kersey, M. A. Davis, H. J. Patrick, et al. Fiber Grating Sensors [J]. Lightw. Technol.,1997,15[8]:1442-1463
    [51] Eric Udd. Fiber Optic Sensors [M]. William B. Spillman. San Francisco: John Wiley&Sons,Inc,2011:399-450
    [52] K. O.Hill, B. Malo, F. Bilodeau, D. C. Johnson, et al. Bragg Gratings Fabricated inMonomode Photosensitive Optical Fiber by UV Exposure Through a Phase Mask [J].Applied Physics Letters,1993,62(10):1035-1037
    [53] A. N. Chryssis, S. M. Lee, S. S. Saini, et al. High Sensitivity Evanescent Field Fiber BraggGrating Sensor [J]. IEEE, Photonics Technology Letters,2005,17(6):1253-1255
    [54] V. Bhatia, A. M. Vengsarkar. Optical Fiber Long-Period Grating Sensors [J]. Optics Letters,1996,21:692-694
    [55] V. Bhatia. Applications of Long-Period Gratings to Single and Multiparameter Sening [J].Opt. Exp.,1999,4:457-466
    [56] Stephen W James, Ralph P Tatam. Optical Fiber Long-Period Grating Sensors:Characteristics and Application [J]. Meas. Sci. Thechnol.,2003,14:49-61
    [57] Matthew P. Delisa, Zheng Zhang, Mira Shiloach, et al. Evanescent Wave Long-Period FiberBragg Grating as an Immobilized Antibody Biosensor [J]. Anal. Chem.,2000,72:2895-2900
    [58] Seungin Baek, Yoonchan Jeong, Byoungho Lee. Characteristics of Short-Period Blazed FiberBragg Gratings for Use as Macro-Bending Sensors [J]. Applied Optics,2002,41(4):631-636
    [59] K. Zhou, A. G. Simpson, X. Chen, et al. Fiber Bragg Grating Sensor Interrogation SystemUsing a CCD Side Detection Method with Superimposed Blazed Gratings [J]. IEEE,Photonics Technology Letters,2004,16(6):1549-1551
    [60] K. O. Hill, F. Bilodeau, B. Malo, et al. Chirped in-fiber Bragg Gratings for Compensation ofOptical-Fiber Dispersion [J]. Optics Letters,1994,19(17):1314-1316
    [61] G. P. Agrawal, S. Radic. Phase-Shifted Fiber Bragg Gratings and Their Application forWavelength Demultiplexing [J]. Photonics Technology Letters, IEEE,1994,6(8):995-997
    [62] G. Humbert, A. Malki, S. Fevrier, et al. Electric Arc-Induced Long-Period Gratings inPhotonic Crystal Fibers [J]. Electron. Lett.,2003,4:349-350
    [63] G. Kakarantzas, T. A. Birks, P. S. J. Russell. Structural Long-Period Gratings in PhotonicCrystal Fibers [J]. Opt. Lett.,2002,27:1013-1015
    [64] M. P. Hiscocks, M. A. van Eijkelenborg, A. Argysor, et al. Stable Imprinting of Long-PeriodGratings in Microstructured Polymer Optical Fiber [J]. Optics Express,2006,14:4644-4649
    [65] J. C. Knight, T. A. Birks, D. M. Atkin, et al. Pure Silica Single-Mode Fiber with PhotonicCrystal Cladding [J]. Proceedings of OFC,1996,PD3:339-342
    [66] J. C. Knight, T. A. Birks, P. St. J. Russell, et al. All-Sillica Single-Mode Optical Fiber withPhotonic Crystal Cladding. Optics Letters,1996,21(19):1547-1649
    [67] J. C. Knight, J. Brong, T. A. Birks, et al. Photonics Band Gap Guidance in Optical Fiber [J].Science,1998,282:399-342
    [68] T. A. Birks, J. C. Knight, St. J. Russell P. Endlessly Single-Mode Photonic Crystal Fiber [J].Optics Letters,1997,22(13):961-963
    [69] A. Ferrando, E. Silvestre, J. J. Miret, et al. Nearly Zero Ultraflattened Dispersion in PhotonicCrystal Fiber [J]. Optics Letters,2000,25(11):790-792
    [70] R. F. Cregan, B. J. Mangan, J. C. Knight, et al. Single-Mode Photonic Band Gap Guidance ofLight in Air [J]. Science,1999,285(5433):1537-1539
    [71] B. M. Trabold, A. Abdolvand, T. G. Euser, et al. Amplification of higher-order modes bystimulated Raman scattering in H2-filled hollow-core photonic crystal fiber[J]. OpticsLetters,2013,38(5):600-602
    [72] M. Nielsen, J. Folkenberg, N. Mortensen, et al. Bandwidth Comparison of Photonic CrystalFibers and Conventional Single-Mode Fibers [J]. Optics Express,2004,12(3):430-435
    [73] K. Saitoh, Y. Tsuchida, M. Koshiba. Endlessly Single-Mode Holey Fibers: the Influence ofCore Densign [J]. Optics Express,2005,13(26):10833-10839
    [74] Y. Tsuchida, K. Saitoh, M. Koshiba. Design of Single-Moded Holey Fibers withLarge-Mode-Area and Low Bending Losses: the Significance of the Ring-Core Region [J].Optics Express,2007,15(4):1794-1803
    [75] T. Murao, K. Saitoh, M. Koshiba. Design of Air-Guiding Modified Honeycomb PhotonicBand-Gap Fibers for Effectively SingleMode Operation [J]. Optics Express,2006,14(6):2404-2412
    [76]李川.光纤光栅:原理、技术与传感应用[M].张以谟,赵永贵,李立京.北京:科学出版社,2005:79-102
    [77] Susana Silva, J. L. Santos, F. Xavier Malcata, et al. Optical refractometer based on large-coreair-clad photonic crystal fibers[J]. Optics Letters,2011,36(6):852-854
    [78] N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, et al. Improved Large-Mode-AreaEndlessly Single-Mode Photonic Crystal Fibers [J]. Optics Letters,2003,28(6):393-395
    [79] Ming Chen, Qing Yang, Tiansong Li, et al. New High Negative Dispersion Photonic CrystalFiber [J]. Optik-International Journal for Light and Electron Optics,2010,121(10):867-871
    [80] Bhawana Dabas, R. K. Sinha. Dispersion Characteristic of Hexagonal and Square LatticeChalcogenide As2Se3Glass Photonic Crystal Fiber [J]. Optics Communications,2010,283(7):1331-1337
    [81] Y. Ni, Z. Lei, J. Shu, et al. Dispersion of Square Solid-Core Photonic Bandgap Fibers [J].Optics Express,2004,12(13):2825-2830
    [82] F. Gérǒme, J. L. Auguste, J. M. Blondy. Design of Dispersion-Compensating Fibers Based ona Dual-Concentric-Core Photonic Crystal Fiber [J]. Optic Letters,2004,29(23):2725-2727
    [83] Z. Wang, X. Ren, X. Zhang, et al. Design of Microstructure Fiber for Slope-MatchedDispersion Compensation [J]. Journal of Optics A: Pure and Applied Optics,2007,9(5):435-440
    [84] A. Argyros, I. Bassett, M. Eijkelenborg, et al. Ring Structures in Microstructured PloymerOptical Fibers [J]. Optics Express,2001,9(13):813-820
    [85] A. Podlipensky, P.Szarniak, N. Y. Joly. Bound Soliton Pairs in Photonic Crystal Fiber. OpticsExpress,2007,15(4):1653-1662
    [86] P. M. Valdimir, A. V. Kir’yanov, S. A.C. Carrera, et al. Modeling Fabrication andCharacterization of Large-Mode-Area Photonic Crystal Fibers with Low Bending Loss [J].Eighth International Symposium on Laser Metrology,2005:402-408
    [87] M. Hu, C. Wang, Y. Li, et al. Tunable Supercontinum Generation in a High-Index-StepPhotonic-Crystal Fiber with a Commma-Shaped Core [J]. Optics Express,2006,14(5):1942-1950
    [88] Y. Y. Wang, Xiang Peng, M. Alharbi, et al. Design and fabrication of hollow-core photoniccrystal fibers for high-power ultrashort pulse transportation and pulse compression[J].Optics Letters,2012,37(15):3111-3113
    [89] A. Michie, J. Canning, I. Bassett, et al. Spun Elliptically Birefringent Photonic Crystal Fiber[J]. Optics Express,2007,15(4):1811-1816
    [90] B. M. A. Rahman, A. Kabir, M. Rajarajan, et al. Birefringence Study of Photonic CrystalFibers by Using the Full-Vectorial Finite Element Method [J]. Applied Physics B: Lasersand Optics,2006,85(1):75-82
    [91] A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, et al. Highly Birefringent PhotonicCrystal Fibers [J]. Optics Letters,2000,25(18):1325-1327
    [92] B. J. Eggleton, P. S. Westbrook, R. S. Windeler, et al. Grating Resonances in Air-SilicaMicrostructured Optical Fibers [J]. Optics Letters,1999,24(21):1460-1462
    [93] N. Groothoff, J. Canning, E. Buckley, et al. Bragg Grating in Air-Silica Structured Fibers [J].Optics Letters,2003,28(4):233-235
    [94]刘锐,瞿荣辉,蔡海文,等.光子晶体光纤布拉格光栅传输谱特性的分析[J].光学学报,2006,26(7):1007-1012
    [95]秦海琨,张敏,刘育梁,等.光纤光栅生物传感器的研究进展综述[J].激光杂志,2008,29(5):1-3
    [96] G. E. Town, W. Yuan, R. McCosker, et al. Microstructured optical Fiber refractive indexsensor [J]. Opt. Lett.,2010,35(6):856-858
    [97] Bo Liedberg, Claes Nylander, Ingemar. Surface Plasmon Resonance for Gas Detection andBiosensing [J]. Sensors and Actuators,1983,4:299-304
    [98] Jeroen Pollet, Fillip Delport, Kris P.F.Janssen, et al. Fiber optic SPR biosensing of DNAhybridization and DNA-protein interaction [J]. Biosensors and Bioectronics,2009,25:864-869
    [99] V.V.R. Sai, Tapanendu Kundu, Chitra Deshmukh, et al. Label-free fiber optic biosensor basedon evanescent wave absorbance at280nm [J]. Sensors and Actuators B,2010,143:724-730
    [100]Reshma Bharadwaj, V.V.R. Sai, Kamini Thakare, et al. Evanescent wave absorbance basedoptic biosensor for label-free detection of E.coli at280nm wavelength [J]. Sensors andActuators B,2011,26:3367-3370
    [101]Mohammad Ismail Zibaii, Alireza Kazemi, Hamid Latifi, et al. Measuring bacterial growthby refractive index tapered fiber optic biosensor [J]. Journal of Photochemistry andPhotobiology B:Biology,2010,101:313-320
    [102]L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, et al.Photonic crystal fiber long-periodgratings for biochemical sensing [J]. Optics Express,2006,14(18):8224-8231
    [103]Zonghu He, Fei Tian, Yinian Zhu. Long-period gratings in photonic crystal fiber as anoptofluidic label-free biosensor [J]. Biosensors and Bioectronics,2011,26:4774-4778
    [104]孙艳,孙峰,杨玉孝,等.用于纳米生物膜层厚度测试的光纤生物传感器[J].光子学报,2002,31(6):657-661
    [105]庄其仁,龚冬梅,张渭滨等.长周期光纤光栅生物膜传感器[J].激光生物学报,2006,15(01):106~110
    [106]吕鹏.基于多模干涉的光纤生物传感技术研究[D].天津:天津大学,2009:34-49
    [107]李富宁.新型光纤法布里-珀罗干涉传感结构[D].哈尔滨:哈尔滨工程大学,2009:56-59
    [108]胡德波.倾斜光纤光栅表面等离子体共振生物传感器[D].济南:山东大学,2011:42-46
    [109]A. Cucinotta, S. Selleri, L. Vincetti, et al. Holey Fiber Analysis through the Finite-ElementMethod [J]. IEEE Photonics Technology Letters,2002,14(11):1530-1532
    [110]B. M. A. Rahman, A. Kabir, M. Rajarajan, et al. Birefringence Study of Photonic CrystalFibers by Using the Full-Vectorial Finite Element Method [J]. Applied Physics B: Lasersand Optics,2006,84(1):75-82
    [111]胡明列,王清月,栗岩锋.微结构光纤的有限元分析计算法[J].中国激光,2004,31(11):1337-1342
    [112]Lou Shuqin, Fang Hong, Guo Tieying, Jian Shuisheng. Investigation on the Fabrication ofPhotonic Crystal Fibre [J]. Chinese Physics Letters,2006,23(4):860-863.
    [113]方宏,娄淑琴,任国斌,王智,简水生.光子晶体光纤接续损耗的理论分析[J].光学学报,2006,26(6):806-811
    [114]J. Laegsgaard, N. A. Mortensen, and A. Bjarklev. Mode areas and field-energy distribution inhoneycomb photonic bandgap fibers [J]. Journal of the Optical Society of America B:Optical Physics,2003,20:2037-2045
    [115]Guo S., Albin S.. Simple plane wave implementation for photonic crystal calculations [J].Optics Express,2003,11:167-175
    [116]A.Peyrilloux, S.Fevrier, J.Marcou, etal. Comparison between the Finite Element Method, theLocalized Function Method and a Novel Equivalent Averaged Index Method for ModellingPhotonic Crystal Fibres [J]. Pure Appl.Opt.,2002,4(3):257-262
    [117]T. White, R. McPhedran, L. Botten, et al. Calculations of Air-Guided Modes in PhotonicCrystal Fibers Using the Multipole Method [J]. Optics Express,2001,9(13):721-732
    [118]王秉中.计算电磁学[M].北京:科学出版社,2002:52-61
    [119]张自嘉.光纤光栅理论基础与传感技术[M].北京:科学出版社,2009:43-49
    [120]陈金林,孙军强,夏利,等.双波长啁啾相移光纤光栅.光子学报,2009,38(7):1776-1779
    [121]车雅良,雒开彬,杜廷龙.大啁啾光纤布拉格光栅的脉冲响应特性研究.光学学报,2009,29(11):2973-2976
    [122]司世辉.生物传感器[M].北京:化学工业出版社,2002:10-13
    [123]王占科,常津.免疫生物传感技术研究进展及其在医学检验中的应用[J].免疫学杂志,2011,27(3):271-274
    [124]张先恩.生物传感器[M].北京:化学工业出版社,2006:25-27
    [125]彭秋莲.光学生物传感器的医学应用及进展[J].井冈山学院学报,2006,27(10):113-115
    [126]邓立新,冯莹,魏立安.免疫型光纤倏逝波生物传感器的研究与发展[J].激光与光电子学进展,2005,42(3):26-35
    [127]乔学光,贾振安,傅海威,等.光纤光栅温度传感理论与实验[J].物理学报,2004,53(2):494-497
    [128]卫延,常德远,郑凯,等.光子晶体光纤的温度特性数值模拟[J].中国激光,2007,34(7):945-951
    [129]Guan Shouhua, Yu Qing-xu, Song Shide, and Zheng Jianzhou, Theoretical and experimentalstudy on temperature characteristic of long-period fiber grating[J]. Chinese Journal ofSensor and Actua Actuators,2007,20(3):543-545
    [130]高侃,周赢武,瞿荣辉,等.长周期莫尔光栅的理论研究[J].中国激光,2005,32(3):427-430
    [131]秦莉,韦占雄,王庆亚,等.长周期光纤光栅温度稳定性分析及改善[J].光学学报,2000,20(2):190-194
    [132]曹莹,顾铮先.级联长周期光纤光栅和Bragg光纤光栅的光学特性[J].中国激光,2012,39(4):0405003-1-0405003-8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700