苯直接催化氧化羟基化合成苯酚研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,人们对化学合成更看重反应的高产率和选择性,而对反应物分子中原子的有效利用重视不够,有时难免造成既浪费资源又污染环境的尴尬局面。二十世纪以后,随着人们对环境和资源的关心和重视,尤其是近年来绿色化学的发展,人们对提高化学合成反应的原子利用率、如何用催化剂来代替反应试剂等越来越关心,希望在节约资源的同时减少或消除环境污染。
    直接使苯催化氧化羟基化合成苯酚,只需一步化学反应就可从原料得到最终产品,符合绿色合成的观点。这是一个涉及直接活化C-H 键将羟基引入苯环而使其功能化的反应,是合成化学中最值得研究、也是最难解决的问题之一。因此,是近年来关注的热点之一。要达到这一目的,催化剂的选择和制备是最为关键的因素之一。本文在文献报道工作的基础上,制备了四种类型的催化剂,并对其进行了表征,研究了其催化活性,探索了催化活性中心的本质,推测了催化反应机理,优化了实验参数。
    采用多步反应多步酸化法制备了16 种杂多酸即,磷钼和磷钼钒(单钒和多钒取代)、磷钨和磷钨钒、砷钼和砷钼钒(单钒和多钒取代)、砷钨和砷钨钒、硅钼和硅钼钒、硅钨和硅钨钒杂多酸,用等离子原子发射光谱、热重分析、电位滴定、红外光谱、紫外光谱、粉末X 射线衍射、核磁共振等方法对制备的化合物进行了表征,表征结果证明制备化合物为Keggin结构的杂多酸。以冰醋酸为溶剂,过氧化氢为氧化剂,测试了这些催化剂在苯直接一步氧化羟基化为苯酚反应中的催化活性,实验表明,不含钒物种的杂
Traditionally, more attention is paid to the yield and selectivity than to the atomic efficiency. Thus, it is hard to avoid the embarrassed situation, that is, quite a few synthetic processes not only waste resource but also cause serious pollution. Since 20 century, people have cared more about the environment and resource. Especially, with the development of Green Chemistry, people concern more and more about how to improve the atomic efficiency, and how to use catalyst to replace the traditional reagent in chemical synthesis, in an attempt to eliminate environmental pollution and to save resource.
    The direct catalytic hydroxylation of benzene to phenol using benzene as the raw material, needs only one step from benzene to the final product. This accords with the view point of Green Chemistry. This reaction is directly connected to the activation of C-H bond on aromatic ring. This is one of the most important subjects that deserve detailed investigation. In addition, it is also one of the most difficult problems in synthetic chemistry. In order to realize this goal, the design and preparation of effective catalysts are fatally important. In this thesis, the direct catalytic hydroxylation of benzene to phenol was studied. Four kinds of catalysts were prepared and characterized. The catalytic activity was investigated and the active phase for the reaction was studied. The possible mechanism of catalytic reaction was also discussed and the reaction conditions
    were optimized. Sixteen kinds of heteropolyacids including heteropolymolybdates and vanadium-substituted heteropolymolybdates, heteropolytungstates and vanadium-substituted heteropolytungstates, arsenic-molybdenic and vanadium-substituted arsenic-molybdenic, arsenic-tungstic and vanadium-substituted arsenic-tungstic, silicomolybdenic and vanadium-substituted silicomolybdenic, silicotungstic and vanadium-substituted silicotungstic heteropolyacids were prepared using multi-step method. The products were characterized by elementary analysis, potential titration, thermal gravimetric analysis, infrared spectroscopy, UV-vis spectroscopy, X-ray powder diffraction, and NMR techniques. The results showed that the as-prepared compounds were HPAs with Keggin structure. The as prepared HPAs were used as catalysts for the direct hydroxylation of benzene in glacial acetic acid solvent with hydrogen peroxide as oxidant. The experiment showed that HPAs containing no vanadium species had no catalytic activity for the target reaction. In contrast, all the vanadium-containing HPAs had catalytic activity. This indicates that vanadium species in HPAs are active phase for the direct hydroxylation. Mo-containing HPAs have higher catalytic activity as compared with the W-containing HPAs (H4P(As, Si)Mo11VO40>H4P(As, Si)W11VO40). Keeping the coordinating atoms and substituted atoms the same, the catalytic activity of HPAs varies with different centeral atom, the following order is obtained: H4PMo11VO40>H4AsMo11VO40>H5SiMo11VO40;H4AsW11VO40>H4PW11VO40 ≈H5SiW11VO40. The catalytic activity and stability of mono-vanadium substituted and multi-vanadium substituted HPAs are different. The mono-vanadium substituted heteropolymolybdates(H4PMo11VO40) shows the highest turnover based on vanadium atom. In the present work, the turnover number of mono-vanadium substituted HPA catalyst was 50 mol phenol/mol catalyst with a yield of 22.1 % and a selectivity of 90.7 % to phenol. It is also showed that the mono-vanadium substituted heteropolymolybdates (H4PMo11VO40) was more stable than the multi-vanadium substituted
    heteropolymolybdates (H4PMo12-nVnO40; n=2 or 3). The H4PMo11VO40 was supported onγ-Al2O3, NaX-zeolite, TiO2 and SiO2 carriers using impregnation method. It is showed that all the supported heteropolyacid catalysts are catalytically active in the hydroxylation of benzene to phenol. The catalytic activity is closely related to the final contents of supported HPA. The more HPAs are supported, the higher the catalytic activity. With the same amount of heteropolyacid supported, the catalytic activity varies with the surface area of the carrier, that is, the bigger the surface area of carrier, the higher the catalytic activity. By optimizing the experimental conditions, the supported heteropolyacid catalyst of HPA (8.7 %)/ NaX-Zeolite was found to possess the best catalytic activity with a yield of 9.5 % and a selectivity of 93.1 % to phenol. When mono-vanadium substituted heteropolymolybdates (H4PMo11VO40)   was used as the catalyst, glacial acetic acid as the solvent, and H2O2 as the oxidant, the kinetics research of the hydroxylation of benzene to phenol exhibited that the hydroxylation rate of benzene to phenol shows first-order dependence with respect to the substrate, the catalyst and the oxidant, respectively, with an activation energy of 57.73 kJ.mol-1. The macro-kinetics rate equation was estimated to be dc/dt=k [HPA] [H2O2 ] [C6H6]. Twenty two Ni (or Fe, Ca, Ce, Pt)-based catalysts were prepared by impregnation and co-impregnation method. The supports and catalysts were characterized by BET and XRD. The as-prepared catalysts were used directly to catalyze the conversion of benzene to phenol. These experiments showed that the catalytic activity of the supported catalysts varies with the main component supported on the same carrier. For alumina-supported ones (Ni6.1/?-Al2O3, Fe6.2/?-Al2O3, Ca6.0/?-Al2O3, Ce6.0/?-Al2O3 and Pt1.1/?-Al2O3), the Ni-based catalyst (Ni6.1/?-Al2O3) exhibites the highest catalytic activity with a yield of 11.8 % and a selectivity of 94.0 % to phenol, while the catalytic activity of Pt-based catalysts (Pt1.1/?-Al2O3) is the lowest with a yield of only 0.5 % and a selectivity of 85.7 % to phenol. The dispersion of nickel species is different on
    different carriers. Among the four supports (?-Al2O3, NaX-Zeolite, TiO2 and SiO2) used, nickel species are well dispersed on ?-Al2O3, NaX-Zeolite, and TiO2, while the dispersion on SiO2 support is the lowest. Ni-based catalysts exhibited different catalytic activity when different supports were used to prepare the catalyst, and Ni/?-Al2O3 catalyst showed the highest catalytic activity. The catalytic activity of supported Ni-based catalysts varies with the amount of nickel supported. With increasing amount of nickel species, the catalytic activity increases firstly, reaches the highest phenol yield of 11.8 % with a nickel content of 6.1 %, decreases with further increase of nickel content. To double-component Ni-based catalysts containing Ca or Ce (Ca0.5Ni6.1/?-Al2O3, Ce0.6Ni6.0/?-Al2O3), Ca and Ce have little effect on the dispersion of nickel species. To double-component Ni-based catalysts containing Fe or Pt (Fe0.6Ni5.9/?-Al2O3、Pt0.6Ni6.1/?-Al2O3), Fe and Pt has significant effect on the dispersion of nickel species. The activity measurement showed that the catalytic activity of all the additive-contained double-component Ni-based catalysts is lower than that of Ni/?-Al2O3 catalysts. For Ca-contained triple-component Ni-based catalysts(Ca0.6Ce0.5Ni6.2/?-Al2O3, Ca0.6Pt0.5Ni6.1/?-Al2O3 and Ca0.5Fe0.6Ni6.1 /?-Al2O3), the additive has little effect on the dispersion of nickel species. In triple-component Ni-based catalysts without Ca species (Ce0.6Pt0.6Ni6.2/?-Al2O3, Ce0.5Fe0.5Ni6.1/?-Al2O3 and Fe0.6Pt0.5Ni6.0/?-Al2O3), the additive has significant effect on the dispersion of nickel. The activity measurement showed that the catalytic activity of all the additive contained triple-component Ni-based catalysts is not only lower than that of mono-component Ni-based catalysts, but also lower than that of the double-component Ni-based catalysts. Five activated carbon samples were characterized by using EBT, Boehm titration and XPS. These activated carbons are used as catalyst for the direct hydroxylation of benzene to phenol. The experiment showed that the amount of oxygen containing groups on the surface of the five activated carbons is different. Among them, the amount of oxygen containing groups in date nucleon
    activated carbon is the biggest. After treating the five activated carbons with dilute nitric acid, the amount of carbonyl group, carboxylic group and lactonic group on their surface increased, while the amount of phenolic group decreased. The amount of oxygen containing groups on the surface of activated carbon is found dependent on the concentration of nitric acid used for its treatment. After dealing with 2 M nitric acid, the amount of carbonyl group on the surface of activated carbon is the biggest, while the catalytic activity is also the highest with a phenol yield of 14.3 % and a selectivity of 92.6 %, respectively. When dealing with activated carbon with 2 M hydrochloric acid, there is little effect on the amount of oxygen containing groups on activated carbon surface, the catalytic activity changes also little. When dealing with activated carbon with 2 M sulfuric acid, the amount of carbonyl group on activated carbon surface increased and the catalytic reactivity increased slightly. In the direct hydroxylation reaction of benzene to phenol, the order of catalytic activity among the five activated carbons is: date nucleon>kichory nut nucleon>coconut shell>wood based carbon>coal based carbon. The experiment also showed that carbonyl group species on activated carbon surface is the active phase, while the catalytic activity of activated carbon increases with the amount of the surface carbonyl group. The mechanism of benzene direct catalytic hydroxylation to phenol by using activated carbons catalyst was also speculated.
引文
1. 何志荣.现代化工, 2001, 21 (11): 50.
    2. 世界苯酚生产及市场需求. 中国化工信息网网讯, 2002, (2): 26.
    3. 焦凤茹, 庞振. 化工科技, 2002, 10 (5): 57.
    4. 徐敏. 论世界苯酚市场供需动向及对中国市场影响[Z].北京:燕山股份公司市场营销中心信息科.2001.
    5. 聂颖, 燕丰. 中国石油和化学工业协会(2005 年01 月11 日07: 34).
    6. 锦西化工厂, 磺化碱熔法合成苯酚.北京: 石油化工出版社,1978.
    7. Wiseman P.“An introduction to industrial organic chemistry”, 2nded. London: Apply Science Publishers LTD. 1979, 203.
    8. 王京玉. 内蒙古石油化工, 2004, 30: 22.
    9. 郑立红, 王宪花. 氯碱工业, 2001, 29: 28.
    10. 郑瑛, 林深, 陈守正. 石油化工. 1998, 27 (4): 241.
    11. GR 2 162 756, 1972.
    12. JP 03 151 339, 1991.
    13. JP 0 421 645, 1992.
    14. 林深, 陈守正, 颜桂炀. 福建师范大学学报(自然科学版), 1994, 10 (4): 57.
    15. 林深, 陈守正. 福建师范大学学报(自然科学版), 1992, 8 (4): 58.
    16. US [P] 3702886, 1972.
    17. 颜桂炀, 林深, 陈守正. 福建师范大学学报(自然科学版). 1998, 14(1): 48.
    18. 吉林师范大学, 华南师范学院, 上海师范学院, 有机化学. 北京: 人民教育出版社, 1979, p 264.
    19. 苏为平, 叶兴凯, 吴越. 现代化工, 1992 (1): 37.
    20. 贾义霞, 高建荣, 黄敏, 俞开新. 化工纵横, 2001 (3): 8.
    21. US [P] 3 109 864, 1963.
    22. US [P] 3 240 820, 1966.
    23. US [P] 3 239 522, 1966.
    24. US [P] 314 243, 1964.
    25. 谢文莲, 李玲, 郭灿城. 精细化工中间体, 2003, (1): 8.
    26. 郭灿城, 尹振明, 龙明杰. 湖南大学学报, 2000, (4): 27.
    27. US, [P ] 6 008 415. 1999.
    28. 吴鑫干, 刘含茂. 化工科技, 2002 ,10 (2): 48.
    29. 吴泽彪等. 1994, 8 (5): 398.
    30. Emerson L, Pires M, Joao C. Appl. Catal. A: 2000, 203: 231.
    31. 谢文莲, 田爱国. 化工进展, 2003 (4): 421.
    32. 杨序清. 合成纤维工业, 1992,15 (1): 49.
    33. 张丽芳, 陈赤阳, 项志军. 北京石油化工学院学报, 2004, 12 (2): 39.
    34. E G 汉考克主编, 王杰, 白庚辛译. 甲苯, 二甲苯及其工业衍生物. 北京: 化学工业出版社, 1984, p157.
    35. 刘晔, 刘蒲, 高润雄, 刘省明, 赵转云, 殷元骐. 催化学报, 1998,19 (3): 224.
    36. 汪朝阳, 林思卫. 天津化工, 2004,18 (1): 51.
    37. Matralis H K, Papadopoulou C, Kordulis C. Appl. Catal. A: 1995, 126: 365.
    38. Miki J, Osada Y, Konoshi T. Appl. Catal. A: 1996, 137: 93.
    39. Van Hengstum A J, Van Ommen J G, Bosch H. Appl. Catal., 1983, 8: 369.
    40. Niwa S, Eswaramoorthy M, Nair J. Science, 2002, 295 (5552): 105.
    41. 曹钢. 异丙苯法生产苯酚丙酮. 北京: 化学工业出版社, 1983.
    42. US [P] 5 998 677, 1999.
    43. 潘秀艳. 石化技术, 1994, 1: 61.
    44. Tomyuk K. Bull. Chem. Soc. Jpn., 1994, 67: 2850.
    45. Hamado M. Aromailzkuic, 1994, 46 (1): 373.
    46. US [P], 5 110 995, 1992.
    47. US [P], 5 233 097, 1993.
    48. Sono M, Roach M P, Coulter E D. Chem. Rev., 1996, 96: 2841.
    49. Waller B J, Lipscomb J D. Chem. Rev., 1996, 96: 2625.
    50. Armstrong W H, Spool A, Papaefthymiou G C. J. Am. Chem. Soc., 1984, 106: 3653.
    51. Ménage S, Vincent J M, L ambeaux Cl. Inorg. Chem., 1993, 32: 4766.
    52. Leising R A, Kim J, Pérez A. J. Am. Chem. S oc., 1993, 115: 9524.
    53. 童金辉, 李臻, 夏春谷. 化学进展. 2005, 17 (1): 96.
    54. 马万红, 籍宏伟, 李静, 赵进才. 科学通报. 2004, 49 (18): 1821.
    55. 赵干卿, 李永杰, 高远浩. 平顶山师专学报. 2004, 19(5): 30.
    56. 陈彤, 付真金, 祝良芳, 刘雪奇, 胡常伟. 石油化工, 2003, 32 (6): 530.
    57. Tabushi I. Coord.Chem. Rev., 1988, 86: 1.
    58. Meanier B. Chem. Rev., 1992, 92: 1411.
    59. Yamada T, Takai T, Rhode O. Bull. Chem. Soc. Jpn., 1991, 64: 2109.
    60. Mastrorilli P, Nobile C F. J. Mol. Catal., 1994, 94: 19.
    61. Kaneda K, Haruna S, Imanaka T. Tetrahedron Lett., 1992, 33: 6827.
    62. Takai T, Hata E, Y amada T. Bull. Chem. Soc. Jpn., 1991, 64: 2513.
    63. Reddy M M, Punniyamurthy T. Igbal J. Tretrahedron Lett., 1995, 6 (1): 159.
    64. Iwamoto M, Tateishi M, Mizuno N. Chem. Lett., 1993, (11): 1125.
    65. 宋国强, 王钒, 吕晓玲等. 江苏石油化工学院学报, 1999, 1 (3): 13.
    66. Wang F, Zhang H, Song G Q, Lu X L. 石油化工高等学校学报, 1998, 11 (4): 35.
    67. 王荣民, 郝成, 李树本, 王云普. 化学世界. 1999, 7: 339.
    68. 王荣民, 王云普, 李树本. 化学通报.1999, 8: 8.
    69. Lyons J E, Ellis P E, Mayers H K. J. Catal. 1995, 155: 59.
    70. Grinstaff M W, H illM G, Labinger J. Science, 1994, 264: 1311.
    71. Bartoli J F, Battioni P, Defoor W R. Chem. Soc. Chem. Commun., 1994: 23.
    72. Panov G I. Cattech, 2000, 4: 18.
    73. Yamanaka I, Katagiri S, Otsuka K. Stu. Sur. Sci. Catal., 2000, 013: 809.
    74. Kitano T, Kuroda Y, Itoh A, Jian L F. J. Chem. Soc. Perkin. Trans., 1990, 2:1991.
    75. Miyake T, Hamada M, Sasaki Y. Appl. Catal: A: 1995, 131:33.
    76. Thangaraj A, Kumar R, Ratnasmy P. J. Catal. 1991, 131: 294.
    77. Tatsumi T, Yuasa Y, Tominaga H. Chem. Commun., 1992: 1446.
    78. Jintoku T, Taniguchi H, Fujiwara Y. Chem. Lett., 1987: 1865.
    79. Jintoku T, Nishimura K, Takaki K. Chem. Lett., 1990: 1687.
    80. Ohtani T, Nishiyama S, Tsuruya S, Masai. J. Catal., 1995, 155: 158.
    81. US [P] 6, 355, 847, B1, 2002.
    82. Burch R, Howitt C. Appl. Catal. A: 1992, 86: 139.
    83. 季东, 任通, 张小明, 索继栓, 丁勇. 化学进展. 2003, 15 (1): 51.
    84. Iwamoto M, Hirata J, Matsukaml K. J. Phy. Chem., 1983, 87 (6): 903.
    85. Suzuki E, Nakashiro K. Chem. Lett., 1988: 953.
    86. Fr. [P] 2 630 735, 1998.
    87. USSR. [P] 1805127, 1996.
    88. Panov G I, Kharitonov A S, Sobolev V I. Appl. Catal. A: 1993, 98: 1.
    89. Panov G I, U riarte A K, Rodk in M A. Catal. Today, 1998, 41: 365.
    90. Panov G I. Cattech, 2000, 4: 18.
    91. Yoshizawa K, Yumura T, Shiota Y. Bull.Chem. Soc. Jpn., 2000, 73: 29.
    92. Motz J L, Heinichen H, Hoblderich W F. Stud. Surf. Sci. Catal., 1997, 105: 1053.
    93. Ribera A, Arends C E, Vries S. J. Catal., 2000, 195: 287.
    94. Yoshizawa K, Shiota Y, Yumura T. J. Phys. Chem. B: 2000, 104: 734.
    95. Louis B, Reuse P, Kiwi-Minsker L. Appl. Catal A: 2001, 201: 103.
    96. Kharitonov A S, Sheveleva G A, Panov G I. Appl. Catal. A: 1993, 98: 33.
    97. Yoshizawa K, Shiota Y, Kagawa Y. J. Phys. Chem. A: 2000, 104: 2552.
    98. Kustov L M , Tarasov A L , Bogdan V I. Catal. Today, 2000, 61: 123.
    99. Leanza R, Rossetti I, Mazzola I. Appl. Catal. A: 2001, 205: 93.
    100. Motz J L, Heinichen H, Hoblderich W F. J. Mol. Catal. A: Chem [J], 1998, 136: 175.
    101. Panov G I, Kharitonov A S, Sobolev V I. Appl. Catal. A: 1993, 98: 1.
    102. Panov G I, Sheveleva G A, Kharitonov A S. Appl. Catal. A: 1992, 82: 31.
    103. Kharitonov A S, Sheveleva G A, Panov G I. Appl. Catal. A: 1993, 98: 33.
    104. Sobolev V I, Kharitonov A S, Paukshtis Y A. J. Mol. Catal., 1993, 84: 117.
    105. Sobolev V I, Panov G I, Kharitonov A S. J. Catal., 1993, 139: 435.
    106. Leanza R, Rossetti I, MazzolaI, Forni L. Appl. Catal. A: 2001, 205: 93.
    107. Hafele M, Reitzmann A, Roppelt D. Appl. Catal. A: 1997, 150: 153.
    108. US [P] 6, 437, 197 B1, 2002.
    109. Vedrine J C, Millet J M, Volta J C. Catal. Today, 1996, 92: 115.
    110. Alptekin G O, Herring A M, Willamson D L. J. Catal., 1999, 181: 104.
    111. Mcormick R L, Alptekin G O, Willamson D L. Topicsin Catal., 2000, 10: 115.
    112. Wang Y, Otsuka K. J. Catal., 1995, 155: 256.
    113. Wang Y, Otsuka K. J. Catal., 1997, 71: 106.
    114. Wang Y, Otsuka K. J Chem. Soc, Faradayrans, 1995, 91: 3953.
    115. Mcormick R L, Alptekin G O. Catal. Today, 2000, 55: 269.
    116. Millet J M M, Vedrine J C. Appl. Catal., 1991, 76: 209.
    117. Campelo J M, ClimentM S, Marinas J M. J. Mater. Chem., 1995, 5: 2019.
    118. Otsuka K, Wang Y. Appl. Catal. A: 2001, 222: 145.
    119. 任通, 闫亮, 张汉鹏, 索继栓. 分子催化. 2003, 17 (5): 342.  
    120. 任永利, 米镇涛. 化工进展. 2002, 21 (11): 827.
    121. 姜恒, 宫红. 化学试剂, 2000, 22 (1): 20.
    122. Walling C, Johnson R A. J. Am. Chem. Soc., 1975, 97 (1): 363.
    123. Ito S, Mitarai A, Hikino K, Hirama M and Sasaki K. J. Org. Chem., 1992, 57: 6937.
    124. Kunai A, Hata S, Ito S, Sasaki K. J. Am. Chem. Soc., 1986, 108: 6012.
    125. Kurata T, Watanabe Y, Katoh M and Sawaki Y. J. Am. Chem. Soc., 1988, 110: 7472.
    126. Tzedakis T, Savall A, Clifton M J. J. Appl. Electrochem, 1989, 19 (6): 911.
    127. Bremner D H, Burgess A E. Appl. Catal. A: 2000, 203 (1): 111.
    128. Tamagaki S , Sasaki M , Tagaki W. Chem. Soc. Jpn., 1989, 62 (1): 153.
    129. 张信芳, 张敬畅, 张天巧. 化工科技, 2001, 9 (1): 27.
    130. 曾金龙, 傅锦坤, 许翩翩等. 化学研究与应用, 1998, 10 (5): 550.
    131. Stockmann M, Konietzni F, Ulrich Notheis. Appl. Catal. A: 2001, 208: 343.
    132. 陈建芳, 曹声春, 谭本祝. 山西化工, 1998, 4: 7.
    133. US [P] 6 180 836 B1, 2001.
    134. Chou B, Tsai J L, Cheng S. Micro. Meso. Mater., 2001, 48: 309.
    135. Thangaraj A, Kumar R, Ratnasamy P. Appl. Catal., 1990, 57: 1.
    136. 高焕新, 李树本. 催化学报, 1996, 17 (4): 296.
    137. Bengoa J F, Gallegos N G, Marchetti S G. Micro. Meso.Mater., 1998, 24 (6): 163.
    138. Tanev P T, Chibwe M, Pinnavala T J. Nature, 1994, 368: 321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700